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Kinetics of heterogeneous condensation under dynamic conditions
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An analytical kinetic condensation theory for arbitrary power in the law of supercritical growth of
embryos is constructed. Exhausting of the heterogeneous centers is taken into account. A system of bal-

ance equations is formulated based on a quasistationary approach. Properties of the solution for the
essential period of the droplet formation are obtained using an iteration procedure. The universal solu-

tion method gives practically precise expressions for all coefBcients in the brief description of the evolu-

tion process.

PACS number(s): 68.10.Jy

I. INTRODUCTION

Condensation of supersaturated vapor into droplets
can be regarded as a model of first-order phase transitions
where some alternative methods of description are imple-
mented. We introduce some ideas to describe phase tran-
sitions in this situation. Usually some heterogeneous
centers become centers of supercritical embryos during
condensation, which indicates the occurrence of the pro-
cess of heterogeneous condensation. Heterogeneous con-
densation is described by nonlinear equations since drop-
lets consume metastable substances and free heterogene-
ous centers decrease at the same time.

Kinetic theory of first-order phase transition appears
naturally from the classical theory of nucleation, which
describes formation of embryos of the new phase. This
theory was developed first by Volmer [1], Becker and
Doering [2], Zeldovitch [3] and Frenkel [4] and modified
later by Lothe and Pound [5], Reiss, Cohen and Katz [6],
Reiss [7] and Fisher [8].

Wakeshima [9] started to investigate the kinetic prob-
lem of the metastable phase decay. Homogeneous decay
of the metastable phase was studied by Kuni, Grinin, and
Kabanov [10]. The theory of homogeneous condensation
under dynamical conditions was considered in [11,12]. A
corresponding iteration procedure for homogeneous con-
densation was proposed by Kuni [12]. Heterogeneous
condensation under dynamic conditions was investigated
in [13]. The method of the universal solution was intro-
duced in [14] and was studied in detail in [15,16]. All the
theories mentioned above are valid only until the begin-
ning of coalescence (Ostwald ripening). The coalescence
process, which is not observed here, was investigated first
by Slyozov and Lifshitz [17,18].

The process of phase transition is caused by the varia-
tion in time of the external conditions. The most natural
external conditions have a rather smooth continuous
form —the variation of the external thermodynamic pa-
rameters occurs during the whole period of the phase
transformation. Such external conditions will be called
dynamical. The main goal of the present paper is to give
an analytical description of the phase transition under
dynamic external conditions. This description will be

based on the methods suggested in [19]and is valid when
the critical embryo contains a large number of molecules.
This means that the capillarity approximation for the free
energy can be used.

The following assumptions will be used in this paper:
(i) The system is homogeneous in space (it means that

the elementary hydrodynamical element can be con-
sidered).

(ii) All heterogeneous centers are of the same nature.
(iii) The total number of the heterogeneous centers in

the whole system is fixed.
(iv) The regime of the substance exchange between an

embryo and environment is free molecular.
(v) No thermal efFects are observed.
We want to mention that the method presented here is

rather general and can be applied to some other compli-
cated physical phenomena.

II. EXTERNAL SUPERSATURATION

All values of magnitudes will belong to the unit volume
of the considered system in the further considerations.
All the energylike values, such as free energy Fof the for-
mation of the embryo, will be measured in thermal units

kt, T, where kb is the Boltzman constant and T is the tem-

perature of the system. Let us denote the total number of
the condensing molecules by n„, and the total number of
the heterogeneous centers by g„,. Values of g, , and n„,
are certain functions of time, which are supposed to be
known. The temperature is defined by the external condi-
tions, so the number of molecules of the saturated vapor
is also known at every moment. The approximate but
rather precise connection is given by the thermodynamic
equation

T—Te
n „(T)=n „(T, )exp Il

where P is the condensation heat per one molecule and
the index e marks the values at some moment t, of time.
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Since approximations like (1) are based on values at a
particular time t~, the choice of t~ leads to an estimated
error of the theory. In order to minimize this error the
time t, has to be chosen as the time when the number of
already condensated droplets is equal to the number of
droplets which will be formed later.

The power of the initial phase metastability can be de-
scribed by the supersaturation

(2)

where n is the number of molecules in the vapor. Let us
introduce the magnitude similar to the supersaturation
but independent from the vapor consumption. Ideal su-
persaturation is given by

totn

n„
where nt„ is the total number of the molecules of the
substance. This value can be considered as the supersa-
turation which can be attained in the system where no
vapor cansumption by the droplets occurs. Meanwhile,
the value of the supersaturation can be decreased by
binding part of molecules with the heterogeneous centers
in the process of solvatation. Sa the value of ideal super-
saturatian must be substituted by the value of external
supersaturation

We shall use two assumptions which will be justified
later. The first one establishes that the leading role in va-

por consumptian belongs to the supercritical embryos,
i.e., to the droplets. So the characteristic size p, of the
embryos at the middle of the period of essential forma-
tion of new droplets (PEFD) strongly exceeds the size p,
of the critical embryo:

p&&)p, .
Hence we can consider only regular grawth and set the

initial size of embryos entering the supercritical region
equal to zero. In the regular growth approximation the
Volmer-Zeldovitch-Frenkel equation for the distribution
function p(p, t) is reduced to the equation

p(p, —t)=——p (p, t)
8 dp

dt Bt dt

In the regian of the positive arguments the solution has
to be multiplied by the characteristic function af the posi-
tive half axis O~[O~(p~0}=1,0~(p(0}=0I. As a result,
the distribution p(p, t} of the droplets over the p axis is
given by the expression

p(p, t)= 8(z —x)f (x),n„V

where f is some function of the argument

1
tot 9totve ~(=a) ~ (4)

(10)

where v, is the number of malecules in the equilibrium
embryo. Equation (4) gives the self-consistent definition
af Q. Due ta the weak dependence of v, on Q this equa-
tion can be easily solved by standard iterations. The first
iteration

1
(ntot ntotve ~(=4)n„

is sufficient for the majority of cases. The behavior of Q
resembles the behavior of 4. We shall assume that it
changes smoothly in time.

III. EQUATIONS OF THE CONDENSATION KINETICS

Let us extract the characteristic of the supercritical
embryo which has v molecules and grows in time with a
regular velocity independent from the embryo size. A
rather wide class of the supercritical embryo growth laws
is covered by the power functions dvldt-v' y(g(t))
where p is a known function. Then the variable

grows with the regular velocity independent from the size
of the supercritical embryo.

The iterational procedure suggested in [19] provides
rather precise results for a ((I. The procedure suggest-
ed here can be applied for arbitrary a & 1. When a= 1
the system. of condensation equations can be solved
analytically. We assume that 1 —a is not too small in
comparison with unity.

and z is the coordinate on the p axis of the droplet which
appeared at t =t~. Thus the function z can be obtained
as the solution of the equation

—=p(g(t)),

(12)

exp[ F(v)+F(v, )], —
v=1

(14}

6v, is the half-width of the near-critical region

The farm of the function f(x) in (9) is determined
from the boundary conditions. This function is called the
size spectrum.

The second assumption is necessary to obtain the
boundary conditions. We assume that the state of the
near-critical embryos during the PEFD is close to the
quasistationary one. This distribution is described by the
stationary distribution function f,(g)kiln „,where expli-
cit dependence on g is extracted. The stationary classical
theory gives the following formula for the stationary dis-
tribution:

f—E exp( hF)—
b,v, hv, y(t)

where h,F is the height of the activation free energy, K is
the kinetic factor obtained from the gas kinetic theory
and Folmer-Frenkel theory, hv, is the normalizing factor
of the equilibrium distribution

(v +v )/2
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1/2
d F(v)

Av, = 2
dQ dQ»0
dx

(23)

and v, is the number of molecules in the critical embryo.
The second assumption must be valid during the period

of the essential formation of droplets. Let t& be the
characteristic time of the variation of the stationary state
in the near-critical region and let t, be the time of relaxa-
tion to the stationary state in the near-critical region.
Then the required assumption can be written as

tg»t, .

These assumptions will be valid in all situations except
the case when almost all heterogeneous centers are ex-
hausted at the end of the essential formation period. In
this case the result of the PEFD is obvious: the number
of droplets coincides with the total number of the hetero-
geneous centers, the form of the spectrum is unessential
during the period of essential formation, and the spec-
trum is monodispersive when the supersaturation starts
to fall.

We obtain the following expression for the function

f (x) using f, (g)gin „as the boundary condition for the
distribution p (p, t) when p =0:

This inequality describes the class of dynamic external
conditions completely. Actually all natural external con-
ditions belong to this class. Inequality (23) allows us to
write a linear approximation for Q(x) at the essential for-
mation period.

Due to (13) and (17) the function f (x) is a sharp func-
tion of the supersaturation g and argument x. The ex-
ponential dependence in (13) and (17) is much stronger
then the power dependence (z —x)'f and the subintegral
functions in (18) and (19) are well localized on the x axis.
Thus the PEFD can be extracted on the basis of the
behavior of the subintegral function in (18) and (19). The
following inequalities are valid during this period:

(24)

These inequalities will appear in further considerations
automatically. Equation (24) leads to

(25)

during the PEFD. Due to (13), (17), and (24), the approx-
imation

f(x)=f, (g) lg= p„)
q(x)
n„

g(x) —Q,f (x)=f,exp I 0, n„ f, =f,(Q, ) (26)

In order to determine the form of the functions g(x) and
g(x) the balance equations must be taken into account:

is valid during the PEFD. To justify (26) the following
estimates have to be taken into account:

()=C+g, g(z)= '
1 dx(z —x)' 'f(x), ((8)

n„V
dvc dvc ham

dg dg

dv, dv, dv,

dg dg dg

ri„,=g+N, N(z)= f dx f (x) . (19)
(27)

The first equation is the balance equation for the con-
densing substance. The second is the balance equation
for the heterogeneous centers. These balance equations
together with explicit expressions (13) and (17) for f (x)
form a closed system.

IV. SOME APPROXIMATIONS

Several approximations will be used in order to simpli-
fy the balance equations. We introduce parameter I:

dhF(g)
dg

Due to the equation

where v, h, is the number of molecules in the critical
homogeneous embryo. Then we come to the strong in-

equality

dhF(g) d b, F(g)
(28)

I dQ(x)
Q~ dx x=0

(29)

According to (28) we can linearize b,F as a function of g.
We suppose that the sharpest dependence on the supersa-
turation is given by exp( hF). This assu—mption puts,
however, very weak restrictions on y(t). Certainly, it is
necessary to check (28) directly for every concrete model
of heterogeneous centers.

Another parameter valI be dered by the expression

I =v, (Q, )—v, (Q, )

this parameter satisfies the strong inequality

I »1.

(21) This parameter is important for the linearization of the
function Q(x) during the PEFD. I.inearization leads to
the equation

Q~cx
Q(x)=Q, +

Due to (22) the following inequality is valid in the neigh-
borhood of 0, for the majority of external conditions: This linearization is based on the strong inequality
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dQ QdQ)Q
dx

(31)

(32)

where 5,Q is the variation of Q during the PEFD. Tak-
ing into account (24) we see that Eq. (31) follows from
(23). Equation (23) leads to the following form of (18}:

g(z)=f, dx(z —x)' exp cx —I' g(x) r)(x)
00 Q» n„»

for all values of the arguments then

G(g~(x), r)~(x))~G(g (x),g (x)) .

From (38) and (39) and the obvious inequalities

ga(0) —g & ga(2) —ga(0)

la(p) & Va(2) —la(p) l(

(39)

(4O)

ga(0) —ga(2) — —ga(2i)—

the following chains of inequalities can be constructed:

The balance equation for the heterogeneous center
leads to the form

—ga {2i+ 1) — —ga (3) —ga (1) & (41)

f ( )
dr)(x )

n ~ ~ dx
(33)

Qa (0) —ta (2) — —Qa (2i)—

~ ~ ~

Ia(2i +1)— —Ia(3) —~a(1) ' (42)

This difFerential equation can be easily solved:
T

r)(z)=rl( —~ )exp f, —dx exp cx —I'z g(x)
00 0»

N(x)=rl( —~ )
—rI(x) . (35)

The following integral representation for N(z) can be de-
rived:

(34)

The argument —oo marks values of the magnitudes at
the very beginning of the PEFD and the argument ~
corresponds to the end of the PEFD.

The total number of the droplets is introduced by the
equality

(i+, )=G(gs(;),H(g;)) . (43)

It follows from (41) and (42) that iterations Ig, i2;~ j and

Ir), i2;+&~j are growing monotonically, being restricted
from below. A similar fact is valid for Ig, iz;+, ij and

Ir4i2;~j. So odd iterations and even iterations converge.
A solution of the system exists if the limits of the odd and
even iterations coincide. The limits of odd and even
iterations are solutions of the iterated system (32) and
(34). If the initial system has a solution then this solution
is a solution of the iterated system also and the limits of
the odd and even iterations coincide. We have proved
the uniqueness of the solution of the system. The ex-
istence of the solution has to be proved also.

New iterations g&i;~ (reduced iterations} will be con-
structed in accordance with the rule

N(z)= f f (x)dx n „, .

V. ITERATION PROCEDURE

(36) For the initial approximation we take gbipi=O. These
iterations slightly difFer from the initial iterations g, i;~
and r), i;~. Iterations g, iz;~ and g, i2;+&~ estimate iterations

gb(i)'

ga(i+1) (ga(i)& )a(i)) & )a(i+1) H(ga(i)) ' (37)

Some properties of the solution of the system of bal-
ance equations ar important to justify further construc-
tions. We are going to determine these properties using
an iteration procedure Let us.denote the operator on the
right-hand side (rhs} of (32}by G(g (x),rj(x)) and opera-
tor on the rhs of (34) by H(g (x)). The iterations will be
constructed in accordance to the following rule:

ga(2i+1) —gb(2i +1) & ga(2i) —gb(2i) '

Equation (43) can be rewritten in the form

gb(&+1) z x L gb( ) x x

where we have extracted the function

&( —~ ) cx —I'g;(z)
I.(g, (z))=f, " exp

n„» 0»

(45)

H(g~ (x)) ~ H(g~(x) )

for all values of x. If

(38)

g (x) ~g (x),

If the initial approximation is chosen as
g ip&=O, rj,&p) g( —~ }, then the iteration procedure
gives upper and lower bounds for the solution. These
bounds converge to the exact solution. The main proper-
ty of the operators g and h is the "monotonous" charac-
ter of these operators. Namely, if

g~(x) ~g, (x)

for all values of the arguments then

Xexp f,f ' exp—cx —I g;
dX (46)

(48)

The next iteration (both initial and reduced) is formed
on the basis of the previous iteration with an argument
less than z. So the second iteration of type "a" gives an
estimate from above for the region of the essential values
of z, i.e., the estimate from above for the end of the
PEFD. These iterations give also approximations for the
droplet number and size spectrum:

(47}
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The second approximation gives

f, (z)(x }= f exp cx hf-,
bi(

—oo ) exp(cx)
1 —exp h—f, exp(cx )

C

(49)

q, (z) =rI( —00 )exp

1 —exp hf-, exp(cz)
C

(50)

N, (z)
= ri( —00 ) 1 —exp

1 —exp hf, —exp(cx)
e

(51}

where

1
y —rq(—

a

Q,n„,C3

(52)

Introducing

lly ll
= max y,

we obtain the inequality

L(y, ) —L(yz ) &1,+lz, (58)

y —= y' exp —y y .
a o

where

The chain of inequalities for N, (, )
is valid:

a (2) — a (4) — — a (2i)—

& ~ . . v (.. . (v C V"a(2i+1)— —"a(3)—"a(1) ' (53)

lly)
—

yzll

L
I2 max lly 1

(59)

It follows from (49) that the upper bound for the PEFD
in variable z can be well defined. This bound will be
denoted by "b" Analysis .of g (x) and r)(x) asymptoticly
leads to the existence of the absolutely unessential region
of big negative values of z due to (1) inequalities

X max—a~x&b

rgd exp cx—
0»

f,(b+a) . (60)

g(x)~0, ri(x)~rl, (z),
" &0, g &0;

(2) the explicit form off (x):

This inequality can be rewritten as

L(y, ) —L(yz) & max—a~x~b
(61)

q( —0O ) cx —I g(x)x expn„, (54} where

il
co =1+(b+ a) max lly)

—
yz ll .—a~x&b 'g

(62)

The Snal estimate is

(63)

where P is a certain constant.
We have the following expression and inequalities for

the iterations:L(y)=L y, it)=f, I exp (55)

and (3) the explicit form of subintegral functions in ex-

pressions for g and g.
We shall mark the upper boundary of this region by"—a." Substitution of the lower limit of integration by—a is unessential.
Let us consider L as a functional of two arguments

Then

BL
L(y, ) —L(y, ) & max (y( —yz)—a~x~b By

z 1/a
gb(i+1) gb(i)

& dx(z —x) llgb(i) gb(i —1)III—a

(64)

z
gb(i+1) gb(i) dx« —x) "[«gb(j))—L(gb{i —1))]

BL+ max ($2 —f2) .—a~x~b
(56)

gb(i+1) gb( ) —(z+a)(a +b)'"&llgb( ) gb(' —1)ll

(65)

(66)
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Recurrent procedure leads to

( (z+a)'
llgb(') gb(i+1) II

(
t! (67)

Summation of the rhs of (67} over all i gives the func-
tion const exp{z+a). So this sequence is fundamental.
All terms of the rhs of (57) are positive. So the sequence
of iterations is a fundamental sequence, and also the se-
quence of iterations is converging. The limit of iteration
defines the solution of the system of balance equations.
We have proved the existence of the solution. Odd and
even iterations are converging to one and the same limit.
The solution of balance equation system is unique.

Inequalities (41) and (42) allow one to estimate the er-
rors of g, (;) and g, (;) and due to (44) the error of gb(;).
The measure of the sufficient precision has to be defined
in accordance with the accuracy of modern experiments.
The most important characteristic of the process is the
total number of droplets. So we shall measure the accu-

I

)f flic, J f;
Ilf IIL ) f"f dx

(68)

Due to (53) we can obtain the following estimate for the
error of the initial iterations:

One the basis of (69) we can see that the initial iterations
are converging rather fast. The second iteration gives the
relative error less than 0.16. It can be shown by compar-
ison of (51) with the expression

N, (3)=ri( —~ )[1—exp( —Y/h)],

where

(70)

racy of our tha)ry in the relative error in the total num-
ber of droplets:

exp —i —cr i exp cr — exp 0 g
00 h+1

(71)

Unfortunately, an analytical expression for g, (z) can not
be obtained. Hence an analytical expressions for the fur-
ther iterations can not be presented either. So the real
problem is to obtain a more precise approximation.

First of all, we can use the second initial iteration for
analytical estimates for the duration of the PEFD in or-
der to justify (24}. We require that the relative number of
droplets formed outside the PEFD is equal to 5:

IN(0) —N(kh+x ) I
= IN(0) —N(+ oo ) l(1 —5), (72}

where the parameter 5 has a rather small value. We
denote by 5+x the right and left characteristic sizes of the
PEFD in x scale. Then we have for 5+x in the second ap-
proximation in iteration procedure a almost precise ex-
pressions:

ln(1+h ink@)

c ln(1+h in', ~)
(73)

where

1+exp
2 h

(74)

1=1——1 —exp
2 h

(75)

1 5 1
k+ =exp ——+—1 —exp (76}

h, 2 h

Thus the value of 5+x has the power of c '. Hence
lLQ has the power Q, /I and the first inequality (24) is
justified. The second inequality follows immediately from
the first and from {26}.During the period of essential for-
mation of the droplets the variations of g, Q, and qr are
very small.

Inequalities (7) and (16) can be rewritten as

c &&p

t «C
(77}

(78)

VI. UNIVERSAL SOLUTION

The leading idea for the further consideration is to
reduce the description of the process thought the
minimal set of variables. Let us extract those characteris-
tics of the spectrum f (x) which are suScient for the con-
densation process.

The balance equation for the condensing substance can
be presented in the form (18), which is valid not only dur-
ing the PEFD but also during the whole evolution. So g
can be expressed through

P]= X X X (79)

When the essential formation period is over the balance
equation for the heterogeneous centers is unessential and
the evolution of the system is described only by the bal-
ance equation for the substance. The following expres-
sion for g is valid due to the rapid vanishing off (x):

n„» V»
g — X Z X Xn„V (80)

n «V»
(z)=poz'

n V
(81)

Now the evolution is determined by the constant values
of the full momentums of spectrum. Even when the law
of droplet growth differs from the free-molecular one the
leading term is proportional to the total number of
embryos —the zero momentum of the spectrum
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The turning point in our consideration will be the
analysis of the velocity of convergence of the iterations

g, ~, ~
and i), ~, ~. Calculations by (51), (70), and (71) show

that the error increases with the growth of the parameter
h. Hence the situations h «1 are well described. But
the situations of the pseudohomogeneous condensation
when h »1 are described with a certain error. At the
same time the final approximations for the internal itera-
tional procedure are obtained directly without taking into
account the exhausting of the free heterogeneous centers.

The balance equation for the heterogeneous centers
disappears when i)=il( —oo) and the balance equation
for the substance has the form of the homogeneous con-
densation. Hence it can be reduced to the universal form.
This form can be obtained by analytical expression of the
solution as a function of the parameter f, from the situa-
tion when t, is the moment of the supersaturation max-
imum. We introduce the function

(82)

and obtain the universal equation [14—16]

P(z)+ —z I (z —x) '+'~ exp[ —P(x)]dx

z —x '/exp — x x 83

6=A z —x ' exexpx —6 x, (84)

8=exp BJ exp(x——G)dx

in appropriately normalized variables. It follows from
(83) that P(x) is a universal function [15]. The approxi-
mation of the pseudohoinogeneous universal solution is a
base for the further iterations.

The change of the variables from x,z to cx, cz and from

g, g to G = I' /Q„S=i)/rl( —oo ) leads to the equations

The inequalities mentioned above are so strong that
linearization remains valid in a region covering 6 Q. So
the choice of an arbitrary point in this interval as the
base for the approximations leads to the applicability of
linearization in every situation except h «1. So the
value of 0 at the moment when half of the imaginary
droplets are formed can be used as a base point in the
case of pseudohomogeneous formation. Then the
coefBcient

z —x '+'/ exp — x x
Q —cc

is determined as a constant. For example, 30=0.136 in
the case a =

—,'.
As far as the dependence in the evolution process is im-

plemented through tp;] and f' „exp[x —G(x)]dx, an

ordinary evolutional (not the net one) calculation is re-
quired. Moreover, as far as the position of the base point
is not essential we do not need the exact definition of t,
but must keep in mind the values of}uo( oo ) and po(0). In-
stead of the precise value of the source intensity
(1/a) I „(z—I) '+'~ exp[ —P(x)]dx we can take
some appropriate number (-—,

' in the case a= —,'). The
result of calculation gives the total number of droplets.
This number ( —

—,
' in the case a =

—,
'

) is connected with the

accuracy of the procedure. It must be chosen to mini-
mize the error introduced by the approximations.

This solution has maximum at some point zo. The no-
tation that this point must be the real maximum of super-
saturation gives the algebraic equation on the parameters
of the process similar to [13]. It must be solved by ordi-
nary numerical methods or by the methods proposed in

[20].
The concrete value of Ao with the help of (86) allows

one to justify (77) and (78) for all situations except h « 1.
Let us take for t, the estimate analogous to Zeldovitch's
for the homogeneous case [3]:

where constants A and B are defined by (b,v, )

s
W

(88)

(86)

Some choice of the basic point in the construction of
approximations (linearization of the external supersatura-
tion as a function of x and linearization of the free energy
as a function of the supersaturation) is essential only if
the exhausting of vapor plays a leading role in the inter-

ruption of the embryo formation, i.e., h ))1. In the al-
ternative situation h « 1 ("almost total exhausting of the
heterogeneous centers") the result of the condensation is

obvious —almost all heterogeneous centers are the
centers of droplets. So the total number of droplets is
equal to the total number of heterogeneous centers and
the spectrum has a monodispersious form. If the param-
eters of the ideal supersaturation are fixed then the rela-
tive sizes of region 6&Q of 0, corresponding to all situa-
tions except h « 1 are rather small:

(87)

where 8'+ is the direct Sow on the critical embryo which
can be estimated as

The height of the activation barrier dd can be estimated
by F~, . According to Gibbs equation this value is

C

proportional to the surface square

F (1/a) [(dim —1)/dim]
C

(89)

(dim is the dimension of space). Then we can justify (77)
and (78).

In further considerations the initial approximation will

be the solution for h ))1. It will be marked by the sub-

script ~. In application of the initial iteration procedure
the first and second approximations for q will coincide as
far as g (p) g ( ~ ) g . It is impossible to obtain an
analytical formula for the second approximation for g
and for the third approximation for q. So we sha11 con-



49 KINETICS OF HETEROGENEOUS CONDENSATION UNDER. . . 3955

sider reduced iterations only. The first iteration takes
into account the exhausting of the heterogeneous centers:

G(, )
= Ap jl

*
dx(z —x)"

Xexp BJ— d g exp[ / —G „(g) ]

( —1}+)BJ

1=o l! '

Q,.=I dx(z —x)'~ exp[x —G „(x)]N(i)(x),

which leads to the representation

(94)

(95)

where

Xexp[x —G „(x)), (90) N(z ) ( 0() ) =g P B (96)

G„(x}—:G(x)lo=)

For the normalized total number of droplets an explicit
expression can be used:

)P(+,)(ee)- f f(e)dx N(+z)( ~ ) =Pp+P) B,
where

(97)

where P; are some constants. This expression can be
linearized as a function of B because the result will be
substituted into the exponential formula for the number
of the free heterogeneous centers:

As far as

exp x —
G~&~ x .

)Pt+, ~(z)= f dtexp(t —G )

(91}

(92}

Po = exp x —Ao o x

P, = expx Ao o i x~o

Then the final expression is

(98)

(99}

N(+)(()0)= f dz exp[z —Apgp(z)]g Dt,
00 1=1

where

(93)

is a universal function, we can construct universal expan-
sion at the first step. Decomposition of the exponential
gives

N+(()o)=1 —exp[ B(Pp+—P,B)] . (100)

In the case a= —,
' the relative error of this expression is

less than 0.003. The analogous results can be obtained
for arbitrary a. It means that further iterations are
unessential. The expressions for the other times of the
spectrum can be obtained by the same procedure.
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