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We study the response of a noise-driven absorptive optical bistable system which is subjected
to deterministic periodic perturbations of the incident light intensity. This system is characterized
by state-dependent noise which in turn can strongly enhance—via stochastic resonance—the re-
sponse due to the external periodic perturbation. We demonstrate that the condition for stochastic
resonance sensitively depends on the shape of the bistable generalized potential (symmetric or asym-
metric). Furthermore, the generation of higher harmonics is studied in the presence of fluctuations.
We report on a novel phase-sensitive resonance phenomenon which virtually eliminates the higher
harmonics and thus allows for distortion-free amplification of signals via stochastic resonance.

PACS number(s): 05.40.+j, 05.20.—y, 42.65.Pc

I. INTRODUCTION

The concept of stochastic resonance (for a collection
of papers, see [1-7]) has been developed to explain the
more or less periodic occurrences of ice ages. The ba-
sic idea is that the fluctuation induced transitions be-
tween a metastable high temperature and low tempera-
ture state of the global earth climate are synchronized by
the weak periodic changes of the earth-orbit eccentricity,
thereby yielding a strong enhancement of the climate’s
response. Theoretical investigations [1-5] have shown
that the amplitude of the response of a noisy, bistable
system to small periodic forcing actually shows a maxi-
mum approximately at that value of the noise strength, at
which the period of the driving force matches twice the
system’s sojourn time in the (symmetric) stable states
(a more refined transcendental equation for the position
of the maximum has been derived recently in Ref. [4]).
This noise-induced enhancement of the response has been
termed stochastic resonance.

Further evidence of stochastic resonance has been
found in an experiment on a shorter time scale, i.e., by
studying the switching statistics of a bistable ring laser
[2]. Here, the probabilistic weights of the clockwise and
counterclockwise propagating laser modes are periodi-
cally modulated, yielding synchronization of the noise-
induced hopping between the two modes. The quantity
which has been studied in this experiment is the signal-
to-noise ratio. It has been obtained by measuring the
power spectrum of one of the modes. Such a power spec-
trum typically shows a Lorentzian-like background with
an additional sharp peak at the driving frequency and
additional (but much smaller) peaks at higher harmonics
[3,5]. The signal-to-noise ratio, defined by the ratio of the
weight of the peak at the driving frequency and the back-
ground power collected from a small bandwidth around
this peak, exhibits a resonancelike peak as a function of
the noise strength. Stochastic resonance has also been
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demonstrated in a periodically modulated noisy Schmitt
trigger [6], and very recently also in periodically stimu-
lated mechano-receptor cells of cray fishes [7].

In this paper we focus on the theory for stochastic
resonance in asymmetric continuous systems which are
driven by state-dependent (or multiplicative) noise [8].
As a working model we use the standard model for ab-
sorptive optical bistability. A weak, periodic modula-
tion of the incident light amplitude yields a signal in the
transmitted light amplitude at the fundamental external
frequency, and higher harmonics as well. We take into
account fluctuations in the inversion of the population in
the atomic levels, yielding a noisy transmitted amplitude.
The central problem we are addressing in this paper is
the impact of noise on the transmission of the periodic
modulation through the optical bistable system.

We remark, however, that our specific results for
stochastic resonance in optical bistability have a broader
validity, i.e., the novel characteristic features hold qual-
itatively true for other applications characterized by
potential-asymmetry, periodic modulation, and additive
or multiplicative fluctuations [9].

In Sec. II, we introduce the model and present a brief
sketch of the theory. In Sec. III we discuss in detail
the amplification of the periodic modulation of the in-
cident light and compare our numerical results with the
analytical findings obtained by using linear response the-
ory. Also of interest is the generation of higher harmon-
ics due to the nonlinearity of the system in the presence
of noise. The amplitudes of the higher harmonics are
studied as a function of the noise in Sec. IV. The am-
plitudes of some higher harmonics show a very peculiar
phenomenon, namely resonancelike suppression at cer-
tain values of the noise strength—a phenomenon which
has recently also been found in a two-state system [9].
These novel noise-induced resonances are—in contrast to
stochastic resonance—phase sensitive, i.e., the phases of
higher harmonics, discussed in Sec. V, exhibit at small
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modulation frequencies well defined jumps, which are lo-
cated precisely at those resonances. Qur conclusions are
given in Sec. VI. In the Appendix we describe the nu-
merical technique we are using to obtain high-precision
results.

II. MODEL AND BASIC EQUATIONS

A model for purely absorptive optical bistability in an
optical cavity was introduced by Bonifacio and Lugiato
[10]. For the amplitude y of the input light and the trans-
mitted amplitude z they have derived the equation of
motion for the dimensionfree variables as

dz 2cz _dV(z)

=y —z- = 2.1
a YT T 14z dz (2.1a)
where the potential V(z) reads
® 2cx’
z2
= —yz + £l + cln(1 + z?), (2.1b)

and where the parameter c is proportional to the inver-
sion of the population of the atomic levels. In Fig. 1,
the stationary values of the transmitted amplitude z are
shown as a function of the input light amplitude y for var-
ious values of the inversion c. At small values of the inver-
sion, there is one stationary value of the transmitted am-
plitude for fixed y. For larger inversion, the input-output
characteristics show bistability, i.e., there are three sta-
tionary transmitted amplitudes with the smallest and the
largest ones being stable, and the intermediate being un-
stable. In terms of the potential V(z), we find two min-
ima of V(z) when the system exhibits optical bistability
(see Fig. 2).

Having chosen a value for the input intensity y = yo
within the regime of bistability, we next periodically
modulate this value with the amplitude A, frequency {2,
and phase ¥. In Egs. (2.1) we then have to substitute
the value y by

—
(=]

X
S = N W Hh L1 OV X O
T

I L 3.

0 2 4 6 8 10 12

FIG. 1. The stationary states of the output light amplitude
z of an optical bistable element are shown versus the input
light amplitude y for various values of the parameter c.

FIG. 2. The potential V(z) (2.1) is plotted versus the input
and output light amplitudes y and z.

y(t) = yo + Acos(Qt + T). (2.2)

We also take into account fluctuations of the inversion
¢ due to spontaneous emission processes, collisions of
atoms, or fluctuations of the atomic density in the cavity
[11]. We assume that these fluctuations are fast and can
be modeled by white Gaussian noise I'(t) of vanishing
mean, i.e. [11],

vD

c—c+ TI‘(t), (2.3)
and noise correlation
(TER)T()) =25(t - t') (2.4)

with D denoting the noise intensity. The time depen-
dence of the transmitted light amplitude z is thus de-
scribed by the nonlinear (Stratonovich) Langevin equa-
tion with multiplicative noise, i.e.,

dz T T
1+ 2

vDI(t), (2.5)

being equivalent with a nonstationary Markovian
stochastic process. The corresponding probability den-
sity P(z,t; ¥) of the transmitted light amplitude = obeys
the Fokker-Planck equation

gt-P(;c, t;0) = {——% [D(l)(:r) + Acos(2 + \II)]

+§;2D(2)(m)} P(z,t; ), (2.6a)
where the drift is given by
DW(z) =yo—z— 261 -::::2 + D:(cl(1+_xa2”)23)»’ (2.6b)
and the state-dependent diffusion reads
D®(z) = D—mz—. (2-6c)
(1 + z2)2

In the absence of the modulation of the input light
amplitude, i.e., A = 0, the probability density approaches
for large times the stationary probability density
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Poi(z) = Ng(z) exp (—%ﬂ) , (2.7)

where g is given by

(2.8a)
and where the noise-induced, generalized potential reads

®(z) = Yo _ 2zyo + 2%(1 +¢) — 3,3_932
T

r

+— +(1+4+2c)Inz.

; (2.8b)

The quantity N denotes the (numerically determined)
normalization constant. The stationary probability den-
sity shows two maxima if the parameters ¢ and yo are
chosen such that our system is bistable (Fig. 3).

In the presence of modulation, the probability den-
sity P(z,t; ¥) eventually approaches a periodic function
P,(z,t; V) in time, with the period given by the pe-
riod of the modulation [12]. The asymptotic long-time
response (z(t; ¥)),, of the system to the periodic modu-
lation is a periodic function of time, i.e.,

(z(t; ), = /‘0°° zPys(z,t; U)dx

> M| exp[in(Q + ¢, + ©)].

n=—oo

I

(2.9)

We can also understand our optical system as a sort of
noisy nonlinear filter. The input signal is represented by
the modulation of the incident light amplitude, while the
output signal is given by the response (z(t;¥)),,. The
transfer from the input to the output is controlled by the
properties of the optical system and by the noise. Within
this notation, the amplification of the signal is given by

(3]
|M; |?
A?

m=4 (2.10)

while higher harmonics in the response of the system are
generated with the strength

FIG. 3. The stationary probability distribution P,; of the
undriven system (A = 0) [i.e., y(¢) = yo] is shown for the
noise strength D = 1 and ¢ = 6.

| M|

=4

(2.11)

In the following we shall investigate and physically in-
terpret the amplitudes (i.e., the strengths {7,}) and the
phases {¢, } of the complex-valued expansion coeflicients

{M,} in (2.9).

III. AMPLIFICATION OF THE OPTICAL
SIGNAL

Due to the complex Fokker-Planck equation with mul-
tiplicative noise and the singular structure in the gen-
eralized potential ®(z) we present in greater detail the
reasoning underlying our numerical approach in the Ap-
pendix. In the following we present our numerical results
together with analytical results based on the linear re-
sponse theory [3,15]. The numerical study is based on a
matrix-continued fraction solution of (2.6).

The amplification of the periodic input signal is mea-
sured by 7;; cf. (2.10) [3]. For the further discussion, we
distinguish between the “symmetric” and the “asymmet-
ric” case. In the symmetric case, the undriven station-
ary probability distribution P, (z) exhibits two peaks of
equal weight in the zero-noise limit D — 0 [i.e., the gen-
eralized potential ® in (2.8b) possesses equal minima at
the two metastable states]. In the asymmetric case P (x)
becomes unimodal in this limit D — 0. For the numer-
ical results presented below, we have always adopted an
optical bistable situation with ¢ = 6. This choice of the
constant ¢ implies for the symmetric case an input am-
plitude yo = 6.72584... .

A. The symmetric case

In Fig. 4(a), 7 is depicted as a function of the noise
strength D for various values of the modulation frequency
Q. The dotted lines show the results obtained within
linear response theory, detailed in Sec. IIIC. The solid
lines correspond to the numerical results which we have
obtained by using the numerical procedure described in
the Appendix.

The results look very much like those of a symmet-
ric quartic double well potential [3]. For weak noise, the
amplification of the signal increases with increasing noise
strength, and reaches a maximum. This phenomenon is
termed “stochastic resonance.” The vertically dashed
lines are an estimation for the position of the peaks
obtained by matching timescales: without driving the
system undergoes noise-induced jumps from one stable
state to the other, characterized by the mean first pas-
sage times T, (D) (from the lower to the upper stable
state) and Tyi(D) (reverse). In order that the trans-
mitted intensity responds optimally to the periodic sig-
nal, which tilts the potential alternately to the left and
right, it has to jump twice in one period of the signal,
ie., Ty + T =T := %" (a more precise transcendental
equation for the peak position has been obtained recently
in Ref. [4]). As expected from the arguments above, the
location of maximal amplification as a function of noise
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intensity D shifts to smaller values when the period of
driving becomes larger.

B. The asymmetric case

As an example for an asymmetric case we have chosen
yo = 6.8. In Fig. 4(b), n1(D) is shown for the same
external driving frequencies as in Fig. 4(a). Here, the
amplification approaches for decreasing driving frequen-
cies €2 a limit curve, where the maximum is located at a
finite, frequency-independent value of the noise strength.
The matching of time scales used above to locate the po-
sition of the peak does not apply in the asymmetric case.
This behavior can be explained as follows: the response
of a noisy bistable system to periodic forcing is made
up of both noise-assisted hopping between the poten-
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FIG. 4. The numerical results for the amplification 7, are
shown by the solid lines for the “symmetric case” yo = 6.72584
in (a) and the “asymmetric case” yo = 6.8 in (b) at ¢ = 6 and
A = 10™*. Different lines labeled by “n” correspond to the
external frequency Q = 10~". In (b), the curves for Q < 1073
are not distinguishable from the curve for 2 = 10~3. The dot-
ted lines correspond to results within linear response approx-
imation. They can only be distinguished from the numerical
results for frequencies larger than about 1072, The vertical
dashed lines indicate the position D. of the maxima deter-
mined by the argument of matching time scales discussed in
Sec. IIIA. In doing so, the mean first passage times {Tui,
Tiu} have been numerically evaluated from the corresponding
exact quadrature expression [14]. From right to left, these
lines correspond to the values D. at the driving frequency
©2=10"%,1072 1073, ..., respectively, both in (a) and (b).
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tial wells and the relaxation dynamics within the wells.
These two physical processes assume different weighting
factors. The weight of the response due to hopping is for
weak noise (D < 1) proportional to the Arrhenius factor
exp (—%I’), where A® is the potential difference of the
two metastable states. With A® # 0, this factor expo-
nentially suppresses the amplification n; at weak noise;
note also Sec. 6.3 in Ref. [15], Egs. (6.3.25), (6.3.46), and
(6.3.63) therein. Nevertheless, the drastically reduced
amplification 7;—as compared to the symmetric case—
still is of bell-shaped form, with the peak location shifted
to higher noise intensities. It should be stressed, however,
that the occurrence of the peak itself is still due to the
hopping mechanism, see below (3.19). This very fact be-
comes evident if we describe the amplification within the
approximation of linear response, being discussed in the
following section.

C. Linear response theory

For small amplitudes A we expand the full solution

Po,(z,t; ¥) in a power series with respect to A, i.e.,
Po,(z,t; %) = Py(z) + A p(z,t; ¥) + O(A%). (3.1)

The long-time response of the system to periodic forcing
is given by

Ac(t; T) := (z(t; ), — / 2P, (x)dz
0
= / R(t — t')Acos(Q2t' + ¥)dt'. (3.2)
Here, R(t) denotes the response function
_ ~f:ceL”(‘)t8%P,t(m)dz, if t >0,
R = { 0, ift<o, (39

where Lpp(z) is the Fokker-Planck operator of the un-
driven system

32

Lrp(z) = —%D(l)(z)+ 530 (@), (3.4)

dx?
with D) (z) and D@ (z) defined in (2.6b) and (2.6c).
We can express the response function R(t) in terms of a
generalized fluctuation-dissipation theorem [15] by setting

d

R(t) = ath(t), (3.5)

where

Kon(t) := (z(t)h[2(0)]) — (),, (h(2)),e -
To determine the corresponding function h(x), we use
the formal solution of the correlation function [14]

(3.6)

Kon(t) = / 2eLFP @t (2) P, () da. 3.7)
Taking the derivative with respect to time, and using
8
o =9 p=> )
DW(2)Pu(2) = 5= [DP(2)Pu(a)] , (3.8)

we arrive at
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Kt = [ L{ 091D (2) Pug)
Z h [D<2>(z)P,t( )]}dx.

On the other hand Eq. (3.3) can be written as
0
- _ Lrpt
R(t) = /a:e o [D(z)( {DO(@)Pu(z )] dz

_ /L {_ 1 9[DD(@)Po(x)]
D®)(z) oz

(2)
- T2 (2)1 o7 aDam(x) [Dm(z)Pgt(z)] } dz
(3.10)

Upon comparing Eq. (3.9) with (3.10) the result then
yields for the corresponding fluctuation in (3.5)

h(z) = / eI

1 1 1 4
—B(—;+2$+§JZ>.

K.n(t) can be approximated by a sum of three expo-
nentials with the typical time scales of the system Ar
and A, ;—stemming from hopping (A7) between the po-
tential wells and local motion (A 2) within the wells, re-
spectively, i.e.,

(3.9)

(3.11)

Ken(t)® Y gme ™" (3.12)
m=1,2,T
These time scales are given explicitly by [5,15]
1 1
Ar = +—1, 3.13a
T (Tlu ul ) ( )
8%V (z)
A2 = 3.13b
2 81:2 T=T(, Ty ( )

The times T}, and To,; denote the mean first passage times
of the unperturbed system from the lower-intensity to the
upper-intensity state, and vice versa, respectively, while
the positions z; and z, denote the minima of the poten-
tial V(z).

The amplification 77; and the phase shift ¢; follow from
the leading Fourier-coefficient of Az(t; ¥), Egs. (3.2) and
(2.9)-(2.11). Using the results of linear response (3.2),
(3.5), and (3.12) we have

Ax(t; ¥) = - = Z Amgm
m_l 2,T
CHQHT)  —i(Qt+Y)
[,\m IR W ] (3:14)

Thus the first Fourier-amplitude M, is given from (3.14)
within linear response by

A Am m W
M=-3 3 rE
m=1,2,T m Tt

(3.15)

The weights g,,, are determined by matching the approx-
imated correlation function (3.12) at ¢ = 0 to the exact
initial value and the first two initial derivatives, i.e.,

= Y gm = (@), — (@), (h(2)),,
m=1,2,T
(3.16a)
and
d 1
Ken0]_ == 32 dman = (PU@HE),
(3.16b)
d2
g Ken(®) . =m=2 A2 gm

(o

( y
<2)(m)____‘91; 2( )) (w)> - (3160

By simplifying the expressions for the mean values in
Egs. (3.16b) and (3.16¢) by use of the property

(Lrp@p(2)),, = <D(1)(m)8—1({;(5-)>3t
+ <D(2)(m)%w—)>st —0, (3.17)
where
Lip(z) = DW(z )6(9 + D (2) 2 82 618)

is the Hermitian adjoint operator of Lrp(z), we finally
obtain

d

dr.. 0 =1, 3.19
dtK a(t) . (3.19a)
d? dDW (z)
dtsz’h( ) t=0 < Oz >at ( )

The weights {g, } are obtained from the set of equations
(3.16a), (3.19a), and (3.19b).

The results of the linear response approximation are
shown in Figs. 4(a) and 4(b) by dotted lines for the sym-
metric and the asymmetric case, respectively. In both
cases we find excellent agreement for not too large fre-
quencies §2.

To analyze whether the maximum in 7; actually stems
from the hopping process, we neglected in the linear re-
sponse approximation the eigenvalues A; and Aj, char-
acterizing the intrawell motion, and retained only the
eigenvalue Ar. For both, the symmetric as well as for
the asymmetric situation, we still find excellent agree-
ment around the maximum of 7; and for larger values of
the noise strength. The behavior for D — 0, however,
is not reproduced correctly. Here, the response due to
the motion within the wells becomes dominating. This
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FIG. 5. The generation strengths for higher harmonics are
shown for the symmetric (a),(b) and asymmetric case (c),(d)
at ¢ = 6 and A = 10~*. The values of the driving fre-
quency are the same as in Fig. 4, i.e., line “n” corresponds
to 2 =10"".

emphasizes the fact that in the symmetric as well as in
the asymmetric case stochastic resonance is due to the
interplay of hopping between wells and the deterministic
modulation, i.e., the maximal amplification characteris-
tic for stochastic resonance is practically not affected by
the motion within the potential wells [16,17].

IV. GENERATION OF HIGHER HARMONICS

Most of the studies in stochastic resonance are re-
stricted to the discussion of the amplification 7;, or the
corresponding signal-to-noise ratio [1-7]. In this section,
we study for the first time to what extent the generation
of higher harmonics generated by a nonlinear system ex-
hibiting stochastic resonance is affected by the noise. In
Fig. 5 we have plotted the generation strengths 7, for
the second and third harmonic at the same values of the
signal frequency Q used in Fig. 4 for the signal amplifi-
cation 7.

In the symmetric case [see Figs. 5(a) and 5(b)] the gen-
eration strengths 7, and 73 exhibit a typical stochastic
resonance curve (at very small frequencies {2 those parts
of the curves which show a steep increase with increas-
ing noise strength are not shown). More surprisingly,
a peculiar resonance-absorption-like dip, which we term
noise-induced resonances (NIR), shows up in the second
harmonic, when the signal frequency decreases. How-
ever, the third harmonic does not exhibit such NIR in
the symmetric case.

In the asymmetric case [Figs. 5(c) and 5(d)], the gener-
ation strengths for the higher harmonics approach limit
curves for small, decreasing frequencies 2. In contrast
to the symmetric case, we now observe NIR in the third
harmonic.

To confirm the occurrence of noise-induced resonances,
we have compared the numerical results with those ob-
tained from the adiabatic approximation [18]. The re-
sult is shown in Fig. 6: the solid line corresponds to
the numerical result, whereas the dotted line depicts the
adiabatic approximation. For the adiabatic approxima-
tion to be valid in a large range of noise intensities we

107 : . : : -
102} 22

1031 ;:_..- |

1 I 1 1 I

0.5 1.0 15 2.0 25 3.0
D

FIG. 6. In the symmetric case, the numerical result for the
generation strength of the second harmonic 72 (line 1, solid)
is compared with the adiabatic approximation (line 2, dotted)
at ¢ =6, A =0.31623, and 2 = 1075.
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have chosen a driving frequency 2 = 107%. For exam-
ple, if we focus on 7,, Fig. 6 demonstrates that more
than one dip can occur in the dependence of generation
strength versus noise intensity. At present times, we—
unfortunately—have no simple physical explanation for
these novel phenomena.

The phenomenon of noise-induced resonances together
with the corresponding phase jumps actually occur un-
der very general circumstances. In Ref. [9] noise-induced
resonances have been found in asymmetric bistable as
well as in asymmetric monostable nonlinear systems. It
has been analyzed analytically for a bistable system by
using an asymmetric two-state approach in [9]. Noise-
induced resonances seem to be universal for asymmetric

25b ., . . . , ]
05 10 15 20 25 30
D

nonlinear noisy filters, but still need to be investigated
experimentally.

V. PHASE SHIFTS

Upon inspecting (2.9) we note that the asymptotic
mean value involves complex-valued Fourier coefficients
{M,}. It is of interest to investigate the behavior of
the corresponding phases {¢,} of (2.9)—which induce a
characteristic lag of the deterministic phase (Qt 4+ ¥)—as
a function of the parameters characterizing the stochastic
resonance.

In Fig. 7(a), the phase lag of the fundamental har-

0.5 1.0 15 20 25 3.0

FIG. 7. The phase shifts for the symmetric (a)-(c) and asymmetric (d)—(e) case are shown at ¢ = 6, A = 10™*. The lines
labeled with “n” correspond to values of the driving frequency = 10~ ™. In (d), line 4 (2 = 10™*) coincides with the axes
@1 = 0. The dotted lines in (a) and (d) show the results of the linear response approximation. The vertical dashed-dotted
lines in (a) and (d) represent the positions of the corresponding maxima in n;, cf. Fig. 4. From right to left these vertical lines

correspond to the curves labeled by “n”=1,2,3.
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monic ¢; is shown as a function of the noise intensity
for the symmetric case. In addition, the positions of the
maxima of the numerically calculated amplifications n;
are depicted by vertical dashed-dotted lines. With weak
noise, ¢ decreases for increasing noise strength, reaches
a minimum, and increases again with further increasing
noise intensity. Although this behavior has intriguing
similarities with stochastic resonance, the minimum of
the phase lag is actually not related to stochastic reso-
nance. The minimum in the phase shift marks the
transition from a hopping-motion dominated behavior to
an intrawell motion dominated dynamics [17].

In Fig. 7(d), the phase lag ; is shown in the asym-
metric case and the vertical dashed-dotted lines again
represent the positions of the maxima of 7. Here, the
phase lag ¢; shows a minimum similar as in the sym-
metric case. By decreasing the driving frequency fur-
ther, however, the minimum of the phase moves towards
smaller values of the noise strength. In contrast to the
amplification 7; [cf. Fig. 4(b)], the phase ¢;, as a func-
tion of the noise D, does not approach a limit curve as
@ — 0. This discrepancy between the minimum of the
phase and the maximum of the amplification emphasizes
their different physical origin.

In Figs. 7(b) and 7(c), the phases are shown for the
second and third harmonic in the symmetric case. Most
significantly, the phase of the second harmonic ¢, as a
function of the noise strength D assumes for decreas-
ing driving frequency 2 — 0 a step function with the
discontinuity occurring ezactly at that value of the noise
strength where we observed NIR. In Figs. 7(e) and 7(f),
the phases of the higher harmonics are shown as a func-
tion of the noise in the asymmetric case. Similarly as
in the symmetric case, we observe phase jumps at those
values of the noise strength, where we found NIR.

In both cases the phase jumps Ay,, approach the value
of (m/n), n=2,3, for decreasing signal frequencies. This
fact also holds true for n = 4 and n = 5 (not shown in
Fig. 7). All of these characteristic behaviors emerge also
within the regime of validity of the adiabatic approxima-
tion [3].

VI. CONCLUSIONS

We presented a detailed study of the phenomenon of
stochastic resonance in a model for absorptive optical
bistability. In contrast to the case with symmetric bista-
bility discussed in previous works [1-5] we investigated
stochastic resonance in a system which possesses both,
symmetric and asymmetric bistability. In doing so, we
found a significantly different behavior of the signal am-
plification as compared to the symmetric case: in the
weak noise limit the signal amplification 7, is ezponen-
tially suppressed in the asymmetric case, yielding a peak
position being not in accord with the reasoning involving
the matching of time scales for external driving and over-
barrier hopping. We further confirmed that for symmet-
ric as well as for asymmetric systems the phenomenon of
stochastic resonance is not phase sensitive, i.e., the phase
does not show any characteristic effect at the value of
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the noise strength where we observe stochastic resonance.
Moreover, we discovered a novel noise-induced resonance
mechanism. The generation strengths of some higher
harmonics 7,,, n=2,3, exhibit a resonance-absorption-like
dip at certain values of the noise strength. This charac-
teristic dip becomes very sharp as the signal frequency 2
approaches zero. Thus far, the physics of these dips could
be explained within the adiabatic approximation only;
cf. Fig. 6. This resonance absorption is—in contrast to
stochastic resonance—phase sensitive: we observe char-
acteristic phase jumps of values (7/n) precisely at those
parameter values where NIR occurs.

These novel phenomena (i.e., “dips” and “jumps”) can-
not be explained on a deterministic level, which implies
a zero noise intensity (D = 0). At present, these features
still await a simple physical intuitive explanation. We
hope that this work will stimulate future research which
hopefully will disentangle in greater detail these complex
novel features.
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APPENDIX: NUMERICAL SOLUTION

In order to apply the method of matrix continued frac-
tion for the solution of the Fokker-Planck equation (2.6),
we use instead of the probability density P(z,t;¥) the
function
P(z,t;¥)

p(.’l), t; ‘I’) = m.

(A1)
This function satisfies the equation of motion
1+ zz)az%p(x,t; ) = Lop(z,t; ¥)

+L1p(z,t; ¥) cos(t + ) (A2)

with the operators given by

Lo = -—% [(1 + z%)32(yo — ) — 2¢(1 + 22)%z?
62
+Dz?(1 - 2?)] + Dgﬁm:’(l + z?), (A3a)
A 7]
Ly = A5 [(1+2%)q]. (A3b)

Note that the introduction of the auxiliary function
p(z,t; ¥) leads to the property that—in contrast to
(2.6)—the operators Lo and L, contain no rational func-
tions.

The asymptotic probability density P, (z,t;¥),
and thus also the corresponding asymptotic function
Pas(z,t; ¥), can be expanded into a Fourier series with
respect to time and into the complete set of Laguerre
polynomials with respect to z, i.e.,
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Pas(z,t; V)

= % Z Z o, A) exp [in(Qt + \Il)]t(")()\z)

n=-—oc p=0

(A4)

with complex-valued coefficients ¢ (a, A). The parame-
ter a in (A4) always obeys o > —1 (see below). The
scaling parameter A is real valued and positive, but oth-
erwise arbitrary. The parameters o and A are chosen in
order to optimize the convergence of the numerical pro-
cedure. The constant N is used to normalize the asymp-
totic probability density according to

/00 P, (z,t; ¥)dz = (A5)

The Laguerre functions t( )(/\ ) are defined by the La-
guerre polynomials L™ (Az) [13] as

i (Az) := e ** (Az)* L) (Ax). (A6)
They meet the orthogonality relation
* e « MNa+p+1
/ L )t (Az)dz = 5,,,,,L_,A-——)-
0 p!
=1 A% (A7)
Further, they obey the recurrence relations
1 a
2t{) (Ae) = 5 [—(p + 1)t (M)
+(2p + a + )t (Az) - (p + )ty (Az)
(A8a)
and

(Q+ Y E {qu+1

]"'—6

+Aq°‘;‘,+j+1(p +1) [——”“m?p + p+1m12-3 +Pmi3 + erlm?]} ,

7

QF = 3 Aghe, P+ ma+rmis 4 om],

]——7

QY = Z {qu+1 mgy0p+”m}(l

1=-7
+Pm3 (1

z;%tg’)(,\x) =(p+1) [t},"j)l(,\z) - tg’)()\z)] . (A8D)

To abbreviate products of the form m"t£a)(km) we intro-
duce the quantities {Pm7}}, defined by

n

= 3 Pm} 3, 00).

j=—n

z"t{™) (Az) (A9)

The numbers {?m?}} follow from (A8a) by iteration, i.e.,

Pmg =1, (Al0a)
Pm7 =0 for all |j| > n, (A10b)
1 . . n_ _
pmJ A [TOJ 7 1(2p + 2.7 + 1) - Tl,j pmj_ll(P + ])
= Y23 PmiTi(p+J+1+a)], (A10c)
where
r L —nt1<i<n-1,
03 = 0, otherwise,
v _[Lif —nt2<i<n,
b 0, otherwise,
1L,if —n<j<n-2
=19, T ’ Al0d
Yz, {0, otherwise. ( )

Inserting (A4) into the equation of motion (A2) and
using the orthogonality and recursion properties of the
Laguerre functions, we obtain for the vectors c, :=

(c2,ck,...)T the vector recurrence relation

Q;cn—l + ann + Q:cn+1 =0. (All)

The matrices Q;; = Q are real-valued, while the matrix
Q.. has the complex-valued elements

(Qn)er

The real-valued elements of all matrices are given by

=: Q¥ — inQQT. (A12a)

PmIp +"mf(6 — 3p) +"m§(12 — 3p) +Pm$(6 —p)]

— P im23yo + P*'m3(3 + 4c + 7D — 2pD)

1
— P+lm;¥3yo + Pt

(A12b)
] (A12¢)
—p)(1 + 2¢+ D(1 - p)) +PmZ3yo(p — 2)
—p)(3+ 4c + (7 — p)D) + 6 + 8¢+ 8D] + Pm}3yo(p — 4)
+ pmjs-(15 + 10c — p(3 + 2¢)) + pm__?yo(p —6) + pm;(7 — p)]
+ A?;\r+j+1(P +1) [—"+1m2y0 + p+1m;(l +2c+ D —2pD)
(34 26) Py + 74 im]

(A12d)

+ A2 42 (P +3p+2)D [PPPm) +Pmi]
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In a similar way we find from the condition for the
normalization (A5)

oo

Z exp [in(Qt + ¥)]

n=-—oo

N

oo oo
xy e / z(1 + 2%)*{™ (Az)dz
p=0 0
oo
E exp [in(Qt + ¥)]
7
x Z & (°m} +3°m3 + 3°m} + °m]) A
p=0

7
=Y " ("mp +3°m + 3°m} + °m]) A, (A13)
p=0

The tridiagonal vector recurrence relation Eq. (A11) can
be solved for the coefficients {c,} by using the method
of matrix continued fractions [14]. The Fourier series
of (x(t; ¥)),,, which is the basis for the calculation of
the amplification and the generation strengths of higher

harmonics (2.10) and (2.11), is thus written in terms of
the expansion coefficients {c} as

oo
(@(t;9)),, = . Maexplin(@t+9)], (Al4)
where
1 oo
M, = N Zcﬁup (A15)
p=0
and
u, = / zt{) (Az)z(1 + 2%)%dz
0
= A;",\, [°mZ + 3%°m? + 3°mg +my]. (A16)

The amplitudes {|M,|} and thus the amplification 7; and
higher order generation strengths {7, } follow from (A15),
while the corresponding phases introduced in (2.9) are
given by

on = %arctan [W—M")] . (A17)

Re(M,,)
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FIG. 3. The stationary probability distribution P,; of the
undriven system (A = 0) [i.e., y(t) = yo| is shown for the
noise strength D =1 and ¢ = 6.



