
PHVSICAL REVrm E VOLUME 49, NUMBER 5

Three-level quantum amplifier as a heat engine: A study in finite-time
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The finite-rate performance of a quantum heat engine, constructed from a three-level amplifier,
is analyzed. Consistent definitions of thermodynamical quantities in terms of quantum observables
are postulated. The performance is analyzed in steady state, where the operation of the amplifier
only infiuences the surroundings. Quantum master equations describe the irreversible dynamics
induced by the coupling of the working medium to the reservoirs. It is shown that the standard
assumption of field-independent dissipation is inconsistent with thermodynamics. Field-dependent
relaxation equations, based upon the semigroup approach, and consistent with thermodynamics, are
formulated. These equations are valid if the time scale of the external field is slow compared to that
associated with the bath Buctuations. The steady-state values of the thermodynamical quantities
are evaluated. The power is found to have maxima as a function of important controls, such as
the field amplitude, frequency, and the coupling with the baths. The existence and locations of
these maxima differ from those obtained in the standard treatment, where the dissipation is field
independent. The irreversible nature of engine operation is due to the finite rate of heat transfer
and a genuine "quantum-&iction" loss term due to dephasing.

PACS number(s): 05.30.—d 42.50.—p

I. INTRODUCTION

The study of heat engines constitutes a crucial bridge
between abstract theory and realizable physical phenom-
ena. It was Carnot's concept of the heat engine which
first linked the second law of thermodynamics with the
upper bound on the efficiency of steam engines [1]. More
recently, macroscopic transport theory has been linked
with thermodynamics to provide more realistic upper
bounds on the performance of finite-rate thermodynami-
cal processes. "Finite-time thermodynamics" is the new
field of research that emerged from such studies. It is con-
cerned with optimizing the performance of processes sub-
ject to constraints of finite duration or rate [2]. Finite-
time thermodynamics combines three disciplines: ther-
modynamics, which traditionally lacks the time dimen-
sion, transport dynamics, and optimal control theory.

All previous studies in this field (with the exception of
Refs. [3—5]) based the underlying dynamics on a trans-
port theory which is applicable in the classical regime,
i.e., macroscopic systems at high temperature. For ex-
ample, the effect of dephasing, which is of fundamental
importance for the quantum engine, is absent. The ob-
jective of this study is to understand the implications of
quantum dynamics on the performance of heat engines.
To obtain this goal the dynamics have to be based on
the quantum theory of open systems. Consistent defini-
tions of thermodyaamical quantities in terms of quantum
observables should then be postulated. This setup con-
stitutes the bridge between quant»m theory and thermo-
dynamics.

The main obstacle is the lack of a closed theory for the
relaxation dynamics of systems interacting with intense

time-dependent external fields. The relaxation dynam-
ics is independent of the external field in the common
approach, which corresponds to the limit of weak fields

[6]. It will be shown that in order to be consistent with
thermodynamics the dissipation must be field dependent.
The demand for consistency with thermodynamics is the
guide to the construction of simplified field-dependent re-
laxation equations. These equations are valid when the
time scale of the external field is slow compared to that
of the bath fiuctuations. The analysis provided here is
restricted to the effect of nondiagonal coupling with the
heat reservoirs, where the nondiagonality is with respect
to the energy representation. Thus the results obtained
provide the performance limitations originating from one
source of irreversibility, associated with nondiagonal cou-
pling. The neglect of diagonal coupling has the advan-
tage of considerably simplifying the model, allowing a
straightforward interpretation of the results. This ap-
proach towards the dynamics has two other advantages:
it is based upon a microscopic dynamical theory and is
therefore more fundamental, and it is valid outside the
vicinity of equilibrium.

In the present work a quantum heat engine is the sub-
ject of study. The model is based on a three-level am-
plifier which can be realized as a heat engine [7]. The
present model difFers kom previously studied models of
quantum heat engines [3,4] in the following respects.

(a) Previous models treated four stroke engines of the
Carnot type. The working medium consisted of non-
interacting spin- j atoms or harmonic oscillators. In each
stroke of the engine the working medi»m interacts with
one or none of the two heat reservoirs. The engine then
produces a net amount of work per cycle. The present
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quantum engine, on the other hand, uses a continuous
mode of operation. This means that each of the reser-
voirs is coupled to diferent degrees of freedom of the
working medium, simultaneously. In steady state the
rate of heat absorption &om the hot reservoir is equal
to the net rate of heat dissipated into the cold reservoir
and work performed on the work reservoir.

(b) The only source of irreversibility in previous mod-
els was due to the finite rate of heat transfer between the
working medium and the heat reservoirs. The present
model contains an additional source of irreversibility
which resides in the coupling to the work reservoir. This
source may be interpreted as a genuine type of "quantum
&iction. " It is due to the fact that the total Hamiltonian
of the working medium does not commute with the inter-
action term between the working medium and the work
reservoir.

The irreversible operation of the amplifier is studied,
in the spirit of 6nite-time thermodynamics. It is shown
that the power output has maxima with respect to all
important control variables: the external 6eld amplitude
and frequency, the heat reservoirs' temperatures, and the
coupling of the working medium with the heat reservoirs.

The performance of the ampli6er was compared to that
of Lamb's semiclassical model of the three-level laser [8],
where the relaxation is 6eld independent. Therefore the
deviations &om Lamb's model are due to the infiuence
of the time-dependent external field on the relaxation,
included in the present model. In particular, power pro-
duction will eventually decrease for intense fields, due to
nonlinear eHects residing in the relaxation terms.

The basic model describing the relation between the
three-level amplifier and the heat engine is presented in
Sec. II. The linkage between thermodynamical quan-
tities and quantum observable is discussed in Sec. III.
The conditions for steady state operation are described
in Sec. IV. The dynamics of quantum open systems in
terms of quantum master equations are described in Sec.
V. The thermodynamic inconsistency associated with
the assumption of field-independent relaxation is demon-
strated in Sec. VI. The formulation of 6eld-dependent
relaxation equations, consistent with thermodynamics,
is described in Sec. VII. The relaxation equations are
solved for the steady state values of the thermodynami-
cal quantities, in Sec. VIII. The optimization of power
output with respect to the controls is described in Sec.
IX. A discussion of the results and their relation to pre-
vious work is presented in Sec. X.

II. THE BASIC MODEL

A generic heat engine [9] consists of four components:
the working medium, the power output mechanism, and
the hot and cold reservoirs, cf. Fig. 1. In order to
model quantum engines, the quantum realization of these
components must be pointed out. For the case of the
quantum three-level amplifier these four components are
modeled in the following manner [7].

(a) The working medium consists of many non-
interacting three-level atoms. For the sake of simplicity,

es

es

FIG. 1. The generic heat engine. The arrows indicate the
directions of the heat and work currents.

the unperturbed energy levels are equispaced. The un-

perturbed levels in order of increasing energy are —(do, 0,
and ~p ( ~» 0 and ti = 1). The Hamiltonian of a single

unperturbed three-level atom is given by

Hp ——u)p(Pi —P i), (2.1)

where P, —:P,; = ~i)(i~ are the projection operators
defined by the eigenvectors

~

—1), ~0) and ~1) of Hp,
corresponding to the eigenvalues —uo, 0, and ceo, respec-
tively.

(b) The power output mechanism is modeled by cou-
pling the two uppermost energy levels of each atom (i.e.,

~0) and ~1)), with a classical monochromatic electro-
magnetic 6eld of circular polarization. The interaction
between the field and the atom is represented by the fol-

lowing time-dependent Hamiltonian:

HI = e(e * Pi,p+ e' Pp, i), (2 2)

where P, ~
= ~i)(j~, ur is the field frequency, and e is

a parameter representing the strength of the coupling
between the system and the external field. e is propor-
tional to the field's amplitude and will be referred to as
"the field's amplitude" in the rest of this paper.

(c) The thermal coupling to the reservoirs is modeled

by quantum master equations [10]. The hot reservoir of
temperature Th, is coupled to the transition between the
extreme energy levels corresponding to

~

—1) and ~l).
The cold reservoir of temperature T, is coupled to the
two lowest energy levels corresponding to

~

—1) and ~0)

(cf. Fig. 2). Obviously Th ) T, ) 0. The temperatures
in the rest of this paper are measured in energy units.

Summarizing all the contributions to the dynamics,
the equation of motion of the observable becomes, in the
Heisenberg picture,

X = i[H, X] + + ZL, (X) + CD(X). (2.3)

X is an arbitrary operator from the Hilbert space of the
atom. The first term on the right-hand side of Eq. (2.3)
is due to the evolution induced by the total Hamiltonian,
H = Ho + HI. The second term on the right-hand
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W W OO
= —~ ( "'(P, ) —e"'(P.

, )) (3 2)

and the instantaneous heat Buxes are identified as

Qa = (C~(H)), Q, —:(C' (H)).

c

FIG. 2. The three-level quantum ampMer as a heat engine.

p+, p", p+, and p are the thermal transition probabilities,
and W is the Seld-induced transition probability. In steady
state, the heat absorbed from the hot reservoir of tempera-
ture Tq is transformed into induced emission (work) which

ampli6es the external Seld, and heat is duxnped into the cold
reservoir of temperature T,. The horizontal arrows indicate
the direction of the energy Suxes.

side corresponds to the time evolution due to a possible
explicit time dependence of the operator X. The last
two terms on the right-hand side, Z~&(X) and L&(X),
represent the dissipative evolution, induced by the cou-
pling with the hot and cold reservoirs, respectively. The
explicit form of these terms will be discussed in Secs.
V-VII .

The heat engine realization described above functions
as an amplifier in the following manner (cf. Fig. 2): the
selective thermal coupling to sufficiently hot and cold
reservoirs maintains a steady population inversion be-
tween the two uppermost levels. Net induced emission
is obtained which adds to the external field, and ampli-
fies it. Since the coupling with the external world is via
a field of frequency ru, the radiation emitted is of the
same frequency. The model assumes that the amplified
radiation does not react back on the atom. This corre-
sponds to a semiclassical approximation with respect to
the atom-Beld interaction [11].

III. THERMODYNAMIC RELATIONS

Thermodynamic expressions are obtained by substi-
tuting a thermodynamic observable for the operator X
in Eq. (2.3). In particular, the change in energy is ob-
tained by substituting the Haxniltonian H for X. Since
the Hamiltonian coxnmutes with itself the change in en-
ergy of the systexn simplifies to

dE - OH + (&" (H))+ (&' (H))- (3 1)

Equation (3.1) is the time derivative of the first law of
thermodynamics [3—5,12,13). The instantaneous power is
identified as

The engine in this study is operated under steady-state
conditions. This mode of operation is obtainable due to
the interplay between the relaxation processes and the
power output mechanism. Under steady-state operation
conditions the energy of the working medium is constant.
Energy conservation then assumes the form of Kircho8's
law: the sum of Buxes to the engine is zero,

&+Q +Qi

Entropy production in steady state is given by

P.Q. ——PaQa,

(3.4)

(3.5)

where P, = 1/T, and Ph = I/Ta are the inverse
temperatures of the cold and hot reservoirs, respectively.
The steady-state entropy of the working medium is con-
stant, and entropy is only being generated in the heat
reservoirs. Finally, the steady-state thermodynamic effi-

ciency of the amplifier is defined as the ratio of the power
obtained to the heat fiux absorbed from the hot reservoir:

Qa
1+

Qa
(3.6)

IV. THE STEADY-STATE OPERATION IN THE
ROTATING FRAME

The explicit time dependence of the generator of mo-
tion in the continuous hest engine model [Eq. (2.3)] orig-
inates in the interaction with a periodic field. This field
has a single frequency component of frequency u Thus, .
according to the Floquet theorem, the time dependence
of the system's observables becomes periodic, with a pe-
riod of 2z'/~. To exploit this property, it is advantageous
to change to a reference frame rotating with a frequency
(u [6,11].

The rotating kame is defined, in terms of the
Schrodinger picture, by the following transformation on
the eigenvectors:

(II) =e * 'I» o) =10
I

—I) =
I

—») (4.1)

As expected, the Haxniltonian becomes stationary in the
rotating kame:

H=~p(Pi —P i)+e (Pip+Ppi), (4.2)

where new projection operators in the rotating frame
have been defined: P;~:—~i)(j~ and P; = P;; (i, j =
—1,0, 1).

The thermodynamic observables can be expressed as
functions of the projections (P;~) and therefore they
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also become stationary in steady state. This is easily
seen for the "power operator, " given by

Hr = —ie(Py p
—Po y).

The observables corresponding to the heat currents, to
be constructed in Sec. VII, share the same property.

V. QUANTUM MASTER EQUATIONS

Consider an arbitrary quantum system with a time-
independent &ee Hamiltonian. Coupling this system to
a much larger quantum system which is in thermal equi-
librium, i.e. , a "heat reservoir, " will induce the relax-
ation of the system to a stationary equilibrium state.
The reduced equilibrium density matrix will take the
form p, ~

= e ~H/Tr(e ~H), with H the effective time-
independent Hamiltonian of the system. This scenario
has been extensively studied in the literature of open
quantum systems [10,14]. Some of the main results of
these studies, which are relevant to the present study,
are considered below.

It was found in numerous applications that Markovian
equations, also known as "quantum master equations, "
provide an excellent description of relaxation phenom-
ena for systems with time-independent free Hamiltonians

[6,8,10,15,16]. Furthermore, Markovian equations can be
derived by explicitly carrying out the reduction &om the
Hamiltonian dynamics of the extended system, consist-
ing of the system plus reservoir, to the internal dynamics
of the system. The reduced dynamics is given by master
equations provided the time scale of the bath fIuctuations
is much faster than that of the system's relaxation. Such
a separation of time scales is valid in the weak coupling
limit and the singular bath limit.

The semigroup school [10,17,18] provides the basis for
a generalized approach towards the description of non-
Hamiltonian dynamics. In this approach the semigroup
condition is axiomatically imposed on the evolution. This
means that the evolution will be Markovian and keep the
density matrix completely positive. This set of axioms
guarantees that the non-Hamiltonian dynamics of the
system can be realized by performing the reduction &om
a system plus reservoir Hamiltonian dynamics. Lindblad
and Kossakowski and co-workers obtained the universal
form of the generator for all the possible dynamical semi-
group maps [17,18]. Thus the semigroup approach pro-
vides the most general form of the quantum master equa-
tion which, in the Heisenberg picture, is given by

BXX = i[H, X] + + ZD(x),
04

C~(x) = ) p (Vt[X,V ] + [Vt, X]V ) . (5.2)

The operators V, Vt, H, and X are defined in the
Hilbert space of the system. H is the efI'ective Hamil-
tonian of the system when coupled to the reservoir. It
is usually a good approximation to substitute the free

Hamiltonian for H, in the limit of weak coupling to the
heat reservoir. Thus the first term on the right-hand side
of Eq. (5.1) contains the Hamiltonian-unitary-reversible
contribution to the dynamics. The operators V and
V are Hermitian conjugates, and, like H in the theory
of Hamiltonian dynamics, are not determined by the the-
ory. The parameters (p }are positive rate coefficients.
The second term on the right-hand side of Eq. (5.1)
contains the non-Hamiltonian (i.e., nonunitary) and irre-
versible contribution to the dynamics.

The description of the three-level system interacting
with two heat reservoirs can be split into that of two
eH'ective two-level subsystems, each interacting with a
single heat reservoir. For the relaxation of a two-level
system with the &ee Hamiltonian

H = "l~)(gl + "le)(el (5.8)

a reasonable choice for the operators (V }in Eq. (5.2)
are the Fermionic creation and annihilation operators:
P, s = ~e)(g], and Ps, = ~g)(e~ (es ( e,). This choice
leads to the following equation of motion:

X = i[H, X] + p+ (2(e~X~e) P —(P, X})
(2(glxlg) P. —(P., x}) (5 4)

where (A, B}is the anticommutator: (A, B}—:AB +
BA. The system asymptotically reaches thermal equilib-
rium if the rate coeKcients comply with detailed balance:

(e —~g)/T
) (5.5)

where T is the temperature of the heat reservoir.
Bloch equations [19]emerge when substituting the spin

polarization components, S, S„andS„for X in Eq.
(5.4). Then I/wq ——2(p + p+) and I/r2 ——(p + p+),
where the relaxation time constants v.

q and 72 corre-
spond to the population relaxation and dephasing, re-
spectively. The choice in Eq. (5.5) indeed leads the
system asymptotically to the correct equilibrium polar-
ization: (S ) = (S„) = 0, (S,) = —

2 tanh "2T"
It should be noted that Bloch equations have been de-
rived &om the reduced dynamics of a two-level system
in the limit of weak coupling to the heat reservoir [6,8].
That 72 is twice as large as 7.

q is characteristic of the
case of nondiagonal coupling between the system and
the heat reservoir. Diagonality in this context is defined
with respect to the eigenstates of the free Hamiltonian.
Diagonal coupling will add further dephasing, so that
1/r2 ——1/(2') + 1/wz, where 1/wz is a pure dephasing
term [6,20].

Detailed balance provides one constraint imposed on
the two rate coeKcients. Since the specific dependence
of the rate coeKcients on the field strength is important
for the present study, a specific model for the heat reser-
voirs is adopted. A standard choice is that of reservoirs
consisting of uncoupled normal modes. The coupling be-
tween the system and the reservoir is assumed linear in
the coordinates of the normal modes. For this choice, ex-
plicit expressions for the rate coefFicients can be derived
in the limit of weak coupling with the reservoir [8]:
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p+ —p(b, e) n(b, e/T), p = p(b, e) [n(6e/T) + 1],

(5.6)

where Le = e, —e~ and

Qp,
—— 4~o(p+P i —p" Pi) —ep" (Po, i + Pi,o), (6.4)

Q, = 2~o(7+P i —7'Po) —e7 (Po,i+ Pi,o) (6.5)

1
n(x) = (5.7) (P', = (P', ) P' —= (P', ')).

p is a constant parameter which determines the strength
of the atom-reservoir interaction. For example, if the
reservoir consists of a radiation field, p is proportional to
the square of the dipole matrix element corresponding to
the relevant transition. Energy units such that Ae 1
are used, so that the assn~ption of weak coupling to the
reservoir implies that p (( 1. The cubic term in Eq.
(5.6) is due to the choice of coupling linear in gb, e and a
density of states of the reservoir quadratic in be. These
ass»mptions correspond to heat reservoirs consisting of
radiation field or of acoustic phonons [8]. The last term in
Eq. (5.6) is just the thermal population of the reservoir
oscillator which is in resonance with the corresponding
atomic transition. The above expressions for the rate
coefficients are also consistent with detailed balance.

VI. THE THERMODYNAMIC INCONSISTENCY
OF A FIELD-INDEPENDENT DISSIPATION

The simplest assumption concerning dissipation in the
continuous heat engine model would be that the dissipa-
tion superoperators, 8& and 8D, are not affected by the
presence of the external time-dependent field. In such a
case l:~& is constructed to relax the unperturbed two-level
subsystem (l —1), l 1)}to thermal equilibrium at temper-
ature T~, and E& to relax the unperturbed two-level sub-
system (l —1), l0)}to thermal equilibrium at temperature
T,. Lamb's semiclassical model for a three-level laser is
based upon such an assumption of field-independent dis-
sipation [8,21]. The dissipation superoperators then as-
sume the form of Eq. (5.4):

The expected population relaxation induced by heat
exchange between the reservoirs and the working mediu~
is described by the first terms on the right-hand side of
Eqs. (6.4) and (6.5). The second terms, involving coher-
ences, are nonphysical since they lead to the following
inconsistency with thermodynamics: the steady-state ef-
ficiency can exceed the Carnot eKciency, and may even
exceed 1, in violation of the second law of thermodynam-
ics. A possible fix by arbitrarily neglecting the dephasing
terms in Eqs. (6.4) and (6.5) leads to a violation of the
first law of thermodyna~~cs [Eq. (3.4)].

The source of this inconsistency can be traced back to
the fact that the structure of the Hamiltonian of working
medi»~ is built into the dissipation superoperator, via
the detailed balance relations and the creation and anni-
hilation operators. In the field-independent approach,
the dissipation superoperator "knows" how to relax a
Beld-free system, while the real Hamiltonian contains an
additional term corresponding to the interaction with the
field. The nonphysical terms in Eqs. (6.4) and (6.5)
emerge from operating with the Beld-independent dissi-
pation superoperator on this term.

It is interesting to note that, under the ass»mptions
of the present section, the power in steady state does
not have a maximum as a function of the amplitude e.
Thus according to Lamb's analysis the power monoton-
ically increases from zero as e increases until it reaches
saturation. The rise in power as e increases is due to the
increase of the probability for induced emission, which
is quadratic in c. The power saturates since the degree
of population inversion asymptotically decreases as 1/e
[8]

~D(X) = ~+(2(1IXII) P-i —9'-i»})
+ p" (2(—llXl —1) Pi —(Pi, X}), (6 1) VII. A FIELD-DEPENDENT LIOUVILLIAN

'(X) =~'(2(0IXI0) P-i —P'-i X})
+ Y' (2(—llXl —1) Po —jPo, X}). (6.2)

The ratios of the rate coefficients comply with detailed
balance:

h C
24lp /Tg

&
——e

Y+ Y+

4alp /Tc (6.3)

By construction the Geld parameters e and cu are absent
&om the dissipation terms.

Implementing Eqs. (6.1) and (6.2) into Eq. (2.3) and
solving for steady state, the following expressions are ob-
tained for heat currents:

A field-dependent approach to dissipation, which is
consistent with thermodynamics, is provided in the
present section. Basing the relaxation equations on the
instantaneous full Hamiltonian rather than the Beld-free
Hamiltonian leads to a consistent theory. One way of con-
structing such a field-dependent quantum master equa-
tion would be to use Eq. (5.4) with the detailed balance
relations corresponding to the energy levels of the instan-
taneous Hamiltonian, and the creation and annihilation
operators based upon the eigenstates of the instantaneous
Hamiltonian.

This approach is by no means general. Its major ad-
vantages are (a) it will prove consistent with thermody-
namics and (b) it will naturally yield itself for interpre-
tation in terms of the standard theory.

The major limitations of this approach follow.
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(7.1)

~p &~pl
2

&p = ——
I

—
I

+e'
2 (2) (7.2)

2
(dp f ldp iz, = —+ —

~

+". (7.3)

The correlation diagram of the levels is shown in Fig.
3. Note that although the Hamiltonian is explicitly time
dependent, its instantaneous eigenvalues are stationary.
However, they do depend on the Geld amplitude c so
that the energy difFerence between the levels coupled
by the field increases as ~e~ increases. A unitary "ro-
tation" transformation relates the new eigenstates to the
old ones:

(a) The dynamics is assi~~ed to be governed by an
equation of the form of Eq. (5.4). The latter was
originally derived for a time-independent &ee Hamilto-
nian. Its application in the presence of the field, with
the instantaneous Hamiltonian substituting the constant
Hamiltonian of the original derivation, involves an as-
sumption concerning the separation of time scales. Three
time scales are involved here: that of the decay of
the reservoir's fluctuations (= 7~), that of the time-
dependent field ( 7~ 2x/u), and that of the system's
relaxation ( rs). In the derivation of Eq. (5.4) for a sys-
tem with a time-iadependent Hamiltonian, it is assumed
that 7g « rs (cf. Sec. V). If rg « 7g the derivation
of Eq. (5.4) is still valid, with the instantaneous Hamil-
tonian in place of the time-independent Hamiltonian in
each "time grain" [6 22]. Thus the Beld is assumed to
be slowly varying compared with the fiuctuations of the
heat reservoirs.

(b) The above approach considers only nondiagonal
coupling to the heat reservoirs. Furthermore, the contri-
bution of nondiagonal coupling, represented by p, does
not depend on the field. Yet, in the preseat context di-
agonality is defined in terms of the eigenstates of the
instantaneous Hamiltonian. Thus a coupling considered
nondiagonal at one field intensity might turn diagonal at
another intensity. Incorporating this mechanism into the
dynamics requires the derivation of the quantum mas-
ter equations in the weak coupling limit. This requires
treating the coupling to the heat reservoirs in terms of a
full three-level system rather than two efFective two-level

subsystems (cf. the Appendix).
The field-dependent approach for the description of the

amplifier's dynamics is aow presented. Diagonalizing the
full Hamiltonian, H = Hp + HI, at a given iastant in

time, yields the following instantaneous eigenvalues:

2 ](m,i2)'+c'

—Cil 0

FIG. 3. A correlation diagram showing the instantaneous
energy levels of the Geld-dependent Hamiltonian. These en-

ergy levels depend on the Seld amplitude ~. The horizontal
arrovr at the top indicates the direction of increasing e.

t ~Ei) I
I' cos(8/2)e ' ' sin(8/2) 0 )

~Ep) =
i

—sin(8/2)e ' cos(8/2) 0
E-,) )

t' l1)
x i0)

( I

—1) )
( cos(8/2) sin(8/2) 0 )—sin(8/2) cos(8/2) 0

I' l1) l
x i0) (7.4)

where the angle 8 is given by taa(8) = 2e/up. These
eigeavectors are explicitly time depeadent. They become
stationary in a reference kame rotating at the frequency
(d.

The transformation from the representation diagonal
in Ho to the representation diagonal in H may be in-

terpreted in geometrical terms (cf. Fig. 4). Since only
the two upper states are coupled by the field, an anal-

ogy to a spin-1/2 system interacting with a magnetic
field can be used. The field-&ee Hamiltonian of this ficti-
tious two-level subsystem is upPi, analogous to that of a
spin-1/2 system in a constant magnetic field. Consider a
stationary Cartesian coordinate system, (x, y, z), so that
the constant magnetic field lies along the z axis. The
representation diagonal in ~OPq is equivalent to that di-

agonal in S . The basis functions of this representation
are (0), (1).

The full Hamiltonian of the 6ctitious two-level sub-
system is cupPi + HI, which is analogous to a spin-1/2
system interacting with a rotating magnetic field. This
6eld has constant component along the z axis, of magni-
tude urp/p, and a component of magnitude 2e/p, rotating
with the frequency u in the (x, y) plane (p is the gyro-
magnetic ratio) [6,15]. The angle between this fictitious
magnetic 6eld and the z axis is 8. The angle between the
component of the field in the (x, y) plane and the x axis,
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A Z=Z

'~
'~

h
(Eg —E I. )/TP,

h e )

Y+

(EP —E I.)/Tc

(7.S)

For weak dipolelike interaction with a heat reservoir
consisting of uncoupled normal modes the rate coefB-
cients become [Eq. (5.6)]

&+ = I (E~ E—~) n[~a(E~ E-&)]~

~-" = I(E E—)'-( [D.(E —E-)]+I), (7 9)

FIG. 4. The geometrical interpretation in terms of a Scti-
tious two-level system, interacting with a rotating magnetic
field. The coordinates system (z, y, z) is stationary, while

the coordinate system (z, y, z) rotates with the frequency u
around the z axis, so that the z axis coincides with the (z, y)
component of the Sctitious magnetic Beld.

at a given instant, is art. The representation diagonal in
the instantaneous full Hamiltonian is equivalent to that
diagonal in the spin component along the instantaneous
direction of the field. The instantaneous basis of this
representation is ~Ep), ~Eq).

The transformation from the representation diagonal
in S, to that diagonal in the spin component along the
direction of the rotating field therefore consists of two
rotations: one, of angle wt around the z axis, and the
other, of angle 8 in the plane defined by the rotating
field and the z axis. This indeed is the transformation in
Eqs. (7.4). The instantaneous direction of the rotating
field is denoted as "the relaxation axis" for later use.

Next, projection operators in terms of the instanta-
neous eigenvectors of the Hamiltonian are defined:

p(Ep —E g) n[P, (Ep —E g)],

&(Ep —E-~)'("Ã (Eo —E-~)] + I) (7 iO)

T = 2' Im(lip p), (7.ii)

q, = (E, -E,)(2&,"II,-2&"II,), (7.i2)

The same value of the working medium-reservoir coupling
constant p is chosen for both reservoirs.

The new dissipation superoperators explicitly depend
upon the field parameters s and ~. The instantaneous
creation and anmhilation operators are explicitly time
dependent, while the rate coefficients are time indepen-
dent. This is opposite to the quantum spin and harmonic
engine models, where the creation and annihilation oper-
ators are stationary and the rate coefBcients are explicitly
time dependent [3,4].

By substituting H for X in Eq. (2.3), and using the
new dissipation superoperators [Eqs. (7.6) and (7.7)],
the following expressions for the power and heat currents
in terms of the new set of instantaneous projectors are
found:

q = (E —Eo)(2p—'llo —2p'll ), (7.is)

(7.5)

The projection operators IIq q and II q q are the in-
stantaneous creation and annihilation operators corre-
sponding to the coupling with the hot reservoir. The
projection operators IIp q and II q, p are the instanta-
neous creation and anmhilation operators corresponding
to the coupling with the cold reservoir. These projections
are implemented into a quant»m master equation of the
form of Eq. (5.4). The dissipation superoperators in the
Heisenberg picture then become

l:D(X) = p" (2(Eq~X(Eq) . II q
—(II q, X))

+p" (2(E ~X(E ) D —(II,X)), (7.6)

ZD (X) = p (2(Ep
~
X~Ep) II y

—(II X))
+p (2(E x iXiE x) . IIp —fIIp, X)).

The ratios of the rate coefEcients now comply with in-
stantaneous detailed balance relations, corresponding to
the field-shifted energy levels:

Ii, , = —(r +zz~)ii, ,, —zoll, +tell„ (7.14)

li, ,, = —(r —t.W~)Ii.,, + zc li, —t.c ii., (7.i5)

where II; ~ = (II;~), II;—:(II;). Note that the power is
still proportional to the imaginary part of the coherence,
now defined in terms of the representation diagonal in
the instantaneous Hamiltonian. This is due to the fact
that Im(lip p) is analogous to the spin component along
the rotating y axis, which is invariant under the rotation
by 8 around the rotating y axis. The heat currents corre-
spond to population transfer between the instantaneous
energy levels, and no longer contain artificial terms in-
volving coherence. The reason for this is obvious: the
new dissipation superoperators are designed to relax the
total Hamiltonian H, rather than Hp.

If the operators Hq, IIp, IIq p, and IIp q are substituted
for X in Eq. (2.3), and the dissipation superoperators
from Eqs. (7.6) and (7.7) are used, the following set
of coupled equations of motion for the working medi»m
observables is obtained:
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11, = —i'll, , + i.-ll, , —2(&,"+~")g,
—2p+" rIp + 2p+", (7.16)

(7.17)

where:

( 2& l ( cos(e) —sin(e) l & 2e

g sin(e) cos(8) p g b, id ~~
' (7.18)

(7.19)

(7.2O)

Equations (7.14)—(7.17) have a form similar to the
equations obtained from Lamb's semiclassical theory for
lasers [8]. However, the relaxation in Lamb's theory is
modeled by using the field-independent approach of Sec.
VI. This crucial difFerence is made apparent by the fol-
lowing facts.

(a) The populations and coherence in Eqs. (7.14)—
(7.17) are given in terms of the representation diagonal
in H, while in Lamb's theory they are given in terms of
the representation diagonal in Ho.

{b) Instead of the usual detuning, Bur, and amplitude,
e, as in Lamb's theory, new, "rotated, " detuning Kid and
amplitude i are defined. An interpretation can be based
on the geometrical picture in terms of a spin-z system
interacting with a rotating magnetic field. (cf. Figs.
4,5.) Consider the reference frame, (z, y, z), rotating at

VIII. THE STEADY'-STATE SOLUTION

Explicit expressions for stationary thermodynamical
quantities are obtained by solving Eqs. {7.14)—(7.17)
for steady state. For the power and heat currents Eqs.
(7.11)—(7.13) one finds

Q„" = (Ei —E i)W 1+O' I" (8 1)

a frequency ~ around the original z axis, with the x axis
coinciding with the rotating component of the magnetic
field in the (x, y) plane. An observer moving with this
rotating frame sees a stationary field in the {x,z) plane,
whose z and z components are 2e and A~, respectively.
The heat reservoirs induce relaxation which gradually di-
minishes the polarization perpendicular to the relaxation
axis while establishing a "stationary" polarization along
the relaxation axis. The role of the relaxation is to restore
the polarization (i.e., the population inversion) destroyed
by the field when inducing emission. It can only do so
along the relaxation axis. Thus only the field component
perpendicular to the relaxation axis will be afFective in
continuous lasing. The other component, parallel to the
relaxation axis, constitutes the detuning. Since the re-
laxation axis in Lamb's model lies along the z = z axis,
the efFective 6eld component is 2e, while the detuning is
A~. However, in the present model, the relaxation axis
is rotated in the (z, z) plane by an angle 8 with respect
to the z axis. Thus 2i is the effective field component,
while A~ is the detuning.

(c) Although still stationary, the rate coefficients now

explicitly depend on e. The rate coefficients in Lamb' s
theory are field independent.

Q," = —(Ep —E i)W 1+W I'' (8.2)

P" ='—(Ei —Ep) W 1+6' I' (8.3)

Substituting these results into Eq. (3.6), the following
expression is obtained for the steady-state efficiency:

X (8 4)

The right-hand side in Eqs. (8.1)—(8.3) is factorizable
into three contributions. Each of these contributions is
separately analyzed.

FIG. 5. The rotated detuning and amplitude. z is the re-
laxation axis in Lamb's model. The detuning, i.e., the field
component parallel to the relaxation axis, is A~, and the
effective component of the Geld, i.e., the Geld component per-
pendicular to the relaxation axis, is 2e. z is the relaxation
axis in the field-dependent model, so that Au and 2i are the
"rotated" detuning and field amplitude, respectively.

A. The energy difference

The first term in Eqs. (8.1)—(8.3) is the energy differ-
ence between the two field-shifted levels. Obviously, the
energy fIow through each transition is proportional to the
energy gain, or loss, per transition. The expressions for
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the heat currents and power in steady state are identi-
cal except for the first term. Thus the steady-state eK-
ciency, which is given by their ratio, reduces to the ratio
of the energy differences associated with the work and
hot reservoirs [Eq. (8.4)]. Note that the energy difFer-
ences depend on the field amplitude e, so that the energy
difFerences associated with the hot and work reservoirs
increases, while that associated with the cold reservoir
decreases, as the field amplitude increases (cf. Fig. 3).
The e dependence of this term is crucial for obtaining
consistency with thermodynamics, as will be shown be-
low. However, the e dependence of this term is relatively
weak compared with that of the other two terms, and
therefore does not play a dominant role when e is used
as a control.

B. The transition probability

W is the probability per unit time for a field-induced
transition between the levels ~Ep) and ~Ei). Since the en-

ergy of the system is constant in steady state, a transition
between ~Ei) and ~Ep) is accompanied by transitions be-
tween ~Ep) and ~E i) and between ~E i) and ~Ei). Thus
W is the probability per unit time for each of the transi-
tions.

W is explicitly given by

2e2 I'

I'2 + Lcm
(8.5)

Equation (8.5) is similar in form to the expression ob-
tained for W in Lamb's model:

2e2 I'
WLamb =

2I'2 + 6~ (8.6)

However, W and WLsmb differ in two resPects.

(a) The rotated e and b, III in Eq. (8.5) replace e and
b,~ &om Lamb's model. This is because the relaxation
axis in the present study is rotated by an angle 8 with
respect to the relaxation axis in Lamb's model.

(b) In Lamb's model I' is independent of the field
parameters in accordance with the assumption of field-
independent dissipation. However, I' is explicitly e de-
pendent in the present model [cf. Eqs. (7.2) and (7.3),
(7.9) and (7.10)].

Comparing the behavior of W and WL b as a function
of the amplitude e and the detuning, EId, the following
observations are made

(a) WL b is a parabolic function of e [cf. Eq. (8.6)].
The e dependence of W is more complex. For small e it,
too, is parabolic in e. Yet, as ~ becomes larger, W reaches
a maxim»m and starts decreasing as a function of e (cf.
Fig. 6). Two factors combine to induce this effect:

(1) As e increases, its relative contribution to the ef-
fective component of the Geld, 8, diminishes, while its
contribution to the efFective det»~ing, Lu, increases.

(2) I' is monotonically increasing in e, so that the
denominator in Eq. (8.5) also increases with e. The de-

0.8-

0.6-

0.2-

0

/'~ max

FIG. 6. The norxnalized probability per unit time for a
field-induced transition, W/W „,as a function of the nor-
malized field amplitude, s/s . The parameters used are
crap = 1.00, T = 0.05, Tp —— 0.50, p, = 0.005, and
bu = 0.00.

+ (2e)z
4)p +

4Pp
(8 7)

Thus the optimal operation &equency of the amplifier

8/(0 = 10 0.04 0.08
0

0.16 0.20
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FIG. 7. W (normalized), as a function of the normalized
frequency, in the resonance domain. The numbers associ-
ated arith each peak correspond to the value of normalized
Geld amplitude, c/up. The parameters of the calculation are
wo ——1.000, T = 0.050, Tp, ——0.500, p, = 0.001.

pendence of W on I' should be noted. For small I,W
increases linearly as I' increases. In this region, a bigger
I' implies more efficient p»mping, cooling, and lazing.
Yet, as I' become bigger, the I'z term in the denomina-
tor in the right-hand side of Eq. (8.5) becomes dominant
and diminishes W. This efFect is due to the dephasing
of IIi p, which weakens the power output mechanism [cf.
Eq. (7.11)]. Since population relaxation and dephasing
are inseparable and have counter effects on W, there is
a trade-ofF between them which will play a role in deter-
mining the maximum power when e is used as a control.

(b) W as a function of the field &equency III is plotted
in Fig. 7 for difFerent values of the amplitude e. W has
a sharp peak, and the value of Id at the maximum of this
peak is given by
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2e'(I' + uro2 + 4e')
410I (8.8)

is obtained above the "standard resonance" (i.e., at
Id ) uo). The deviation from "standard resonance" is
significant for intense fields (cf. Fig. 7) since I' /oIo (( 1
for the master equation to be valid (cf. Sec. V). The
maximization of R' with respect to the frequency u, for
a given field amplitude e, leads to the following maximal
value of W:

] Ox]0

W

E/ni =0.20
0

E/co =0.16

E/0I =0.08

Unlike R', R" is a monotonically increasing function of
e (cf. Fig. 8), because the frequency ur' follows the shift
of W towards higher frequencies (cf. Fig. 7). Finally,
the oK-resonance behavior is shown in Fig. 9. W reduces
to zero as u approaches zero, as expected. It should be
noted that this is not the case for Wr, b [cf. Eq. (8.6)].
As ~~] becomes very large, W asymptoticaHy approaches
the following finite value:

I

-50
I

-30
I

-10 10 30 50

FIG. 9. W as a function of the normalized frequency, ~/~0,
in the ofF-resonance domain, for difFerent values of field am-
plitude, ~. Notice that W asymptotically decays to a finite
value, rather than zero, as ~&u/too~ && 1.

W = tan (8).
2

(8.9)

It should be noted that Wr, b asymptotically reduces to
zero as the ]Id~ increases. As expected, the difference be-
tween the two approaches becomes significant only when
the field is intense.

C. The population inversion

h c
IIP f—Y+

+ 7—7++ 7+p—
(8.11)

The energy levels of this system in the absence of the
external field are E i, Eo, and Ei. The population oc-
cupancies are explicitly given by

The last term in the right-hand side of Eqs. (8.1)—(8.3)
corresponds to the steady-state population difference be-
tween the two levels coupled to the field, namely,

Y+ 7—

+ 3—7+ + Y+ 7—

Finally I' in Eq. (8.10) is given by

(8.12)

(8.10)
(8.13)

The terms Ilooand IIoi can be understood as represent-
ing the stationary population occupancies of a fictitious
three-level system, coupled to the same heat reservoirs.

700-
600—

~T =0.005c

500—
* 400—

300—
200—
100—

0 I I I I

0.2 0.4 0.6 0.8
I

1.2

FIG. 8. R, i.e., W maximized with respect to the field
frequency, as a function of the field amplitude for vari-
ous temperatures. The parameters of the calculation are
T,/TI„=0.100, P = 0.001.

Ep —Eg T,)
Ei —Eg T (8.14)

Equation (8.14) therefore sets an upper bound on ~ei [cf.
Eqs. (7.1)-(7.3)]:

/2(1 + o.2) —5a
1+ o.

(8.15)

where o. = T,/TI, . For e ) e
„

the device starts con-
suming power &om the field and ceases to operate as an
engine. Since the power is symmetric with respect to a
change in the sign of e [i.e., P(e) = P(—~), cf. Eq. (8.3)],
the field amplitude e can be chosen non-negative, with-
out loss of generality. Also note that T& must be at least

Note that I' has the dimension of a rate coefBcient.
Obviously, the amplifier has to amplify, meaning a net

production of power which is defined by P & 0. This can
be obtained under the condition of population inversion,
Ili' & IIo' [cf. Eq. (8.3)]. Population inversion then
requires that IIi ) IIo [cf. Eq. (8.10)]. From Eqs. (8.11)
and (8.12) one finds that IIoi & IIoo when
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twice as large as T, if positive power production is to
occur:

T 1

Tg 2
(8.16)

~ ~

Analyzing the numerator in Eq. (8.10), one finds that
as e increases, so does the energy difference Ej —E q,
while Eo —8 i decreases. Thus stationary population
in the level ~Ei) (IIoi) reduces, while that in the level

~EO) (IIO) increases (cf. Fig. 10). This amounts to a
decrease in the numerator of Eq. (8.10) as e increases,
up to a point (e = e ) where it becomes zero. It should
be noted that in Lamb's model, the populations II& and
IIy correspond to the unperturbed three-level atom and
therefore do not depend on e.

The power has a maximum as a function of e since it
is zero for both e = 0 and e = e ~. This behavior is
fundamentally different than that obtained from Lamb' s
model, where the power reaches saturation as the field
amplitude increases. This allows a finite-time thermody-
namic analysis of the performance of the amplifier, with
the power as the target function and e as the control (cf.
Sec. IX).

The numerator in Eq. (8.10) stands for the "thermo-
dynamic" population inversion in the absence of field-
induced transitions, the denominator represents the "ki-
netic" efFect on the steady-state population inversion.
Field-induced transitions diminish the population in-
version. Simultaneously, the population inversion is
constantly restored by the relaxation processes. The
steady-state population inversion is the result of trade-
ofF between the two forces. Indeed, as the probability
per second for a field-induced transition, W, increases
the steady-state population inversion decreases [cf. Eq.
(8.10)]. The coefBcient I' represents an efFective rate co-
efficient characterizing the restoring "relaxation forces. "
As I' increases, the steady-state population inversion in-
creases. It should be noted that I' decreases as e in-
creases. This represents the kinetical effect complemen-
tary to the thermodynamic efFect in the m~merator.

The steady-state efficiency [Eq. (8.4)] has the following
important properties

(a) The efficiency is bounded from above by the Carnot
efficiency:

T.
g & 1 ——.

Th
(8.17)

Tl
ln(II", /II i') ' ' ln(II", /IIO")

' (8.18)

where T,' and T& are the internal temperatures of the
(~E i), [Eo)) and (~E i), ~Ei)) subsystems, respectively.
If the engine produces power, while heat is being ab-
sorbed from the hot reservoir and ejected into the cold
reservoir, the internal temperatures must be such that
T, & T,' and Tp, & TI', . Population inversion requires
IIi' & ll&', which, according to Eq. (8.18), may be put
in the following form:

This is an immediate consequence of Eq. (8.14). The
efficiency reaches the Carnot efliciency [equality in Eq.
(8.14)] only in the reversible limit, when the power is
vanishingly small. Note that this important consistency
with thermodynamics does not depend on the specific
model used for the reservoir and is nniversal, depending
only on the assumption of instantaneous detailed bal-
ance. From the microscopic point of view, the reversible
limit corresponds to the population inversion threshold,
in accordance with the work of Geusic, Schultz-du Bois,
and Scovil, Levine and Kafri, and Ben-Shaul and Levine

[7]
(b) The efficiency does not explicitly depend on the

temperatures of the hot and cold reservoirs, and is a
monotonically increasing function of e. Its lower bound,
1/2, is reached as e approaches zero. The power and heat
input then go to zero at the same rate. To reach the other
limit where both the efFiciency and the power are zero,
one has to lift the constraint of constant energy difFerence
between the subsequent unperturbed energy levels.

(c) The coherences II i 0, Ils i, II i i, and IIi i are
zero in steady state. Thus the steady state of the reduced
two-level subsystems that interact with the reservoirs is
fully given by the populations (i.e., the diagonal density
matrix elements). Since those are two-level systems, the
population ratio muquely define the corresponding inter-
nal temperatures:

(8.19)

ooo

~ ~ o ~ o ~ ~ ~ ~ ~ ~ ~ ~ 4

FIG. 10. A schematic viewer of the change in the population
inversion IIq —IIO as a function of the Seld amplitude ~. Note
that II& —IIO decreases as e increases. It eventually reduces
to zero as ~ reaches e . The arrovr at the bottom indicates
the direction of increasing e.

g,„g,"the endoreversible efficiency, " would have been
the true efficiency if the only source of irreversibility
is due to finite rate heat transfer between the working
medium and the heat reservoirs. Equality in Eq. (8.19)
is obtained only in the reversible limit, where T, = T,
and Tp, ——TI', . That the efficiency is lower than g,np~
indicates that an additional source of irreversibility is in-
volved. This extra source of irreversibility may be given
two, complementary, interpretations.

(1) The first interpretation is based on an argnment
due to Levine and Kafri [7]. Population inversion in the
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lasing transition leads to a negative internal tempera-
ture. The corresponding population ratio in steady state
relates to this negative temperature, which is denoted by
T

El Eo
l (11; /11; )

Ei -&o
(Ei —E i)/T-a —(Eo —E i)/T-'!

(8.2O)

(8.21)

Thus power production involves entropy production in
the working medium, given by 'P/T& & 0 (since both
'P and Tp are negative). The entropy of the working
medium is constant in steady state. Thus the entropy
production in the lasing transition adds to the entropy
introduced into the working medium with the heat ab-
sorbed from the hot reservoir, and more heat must be
dumped into the cold reservoir in order to maintain the
entropy balance. Such an argument leads to the following
efficiency:

determined by p, T„andTg, (b) the field's frequency-
ur; and (c) the fields amplitude —e.

It will be shown that the power has maxima as a func-
tion of the above controls. These maxima result from the
following conBicts.

(a) Population relaxation is always accompanied by
dephasing. As the relaxation rate increases, the pumping
and cooling become faster (population relaxation), while

the coupling with the field weakens (dephasing).
(b) As the interaction intensifies, the probability for

field-induced transitions increases (at least for the low-

field domain, cf. Sec. VIII), while the levels are shifted
so that the pumping and cooling become slower.

(c) As e becomes larger its contribution to the effective
component of the Geld diminishes.

(d) As e becomes larger, the energy released by the
system per a single transition increases, while the net
number of such transitions diminishes.

A. power optimisation with respect to the coupling
parameter (p) and the heat reservoirs' temperatures

(T, and Tq)

which is identical to the efficiency found in Eq. (8.4).
(2) Although consistent, the above interpretation is

problematic in the following sense: the lasing two-level
sub-system is not really in internal equilibrium, corre-
sponding to a negative internal temperature, since the
corresponding coherences, IIq0 and IIO q, are not zero
in steady state. Furthermore, the whole mechanism of
power production depends heavily upon the existence of
these coherences [cf. Eq. (7.11)].The following interpre-
tation is therefore suggested: Finite power production
requires Gnite coherence in steady state; the latter are
constantly subject to thermal dephasing which destroys
the coherence, unless some of the power is constantly
invested to maintain it; the portion of power invested
for this purpose is therefore constantly dissipated and
ejected into the cold reservoir as heat. The power lost due
to this source of irreversibility is given by the heat flux
from hot reservoir multiplied by the difference between
the endoreversible efBciency and the actual eKciency:

A direct observation of the interplay between popula-
tion relaxation and dephasing is obtained when the cou-

pling parameter p is chosen as the control. p, determines
the strength of coupling between the working medium
and the heat reservoirs. It plays a role analogous to that
of the heat conductivity in Newtonian heat engines.

The normalized power as a function of y, is plotted in

Fig. 11, for constant frequency (ur) temperatures (T, and

T~) and various values of the amplitude (e).
The initial rise in power as p increases is due to faster

pumping and cooling, while the decrease in power as p,

becomes larger is due to dephasing. The dephasing is

more dominant for lower field amplitudes since the inter-
action with the 6eld is then smaller to begin with, and
therefore more sensitive to dephasing. Note that the va-

lidity of the whole model is restricted to p/wp (( 1, which

corresponds to the limit of weak coupling with the heat
reservoirs. Thus the maximum in power as a function of

+Plost = [gendo g]Qh (8.22)
-c=0.50m)

()

This lost energy is dumped as heat into the cold reservoir.
Since this source of irreversibility lies in the coupling be-
tween the working medium and the work reservoir, it
plays a role similar to that of classical &iction, and may
therefore be thought of as "quantum &iction. "

IX. POPPER OPTIMIZATION
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The central theme of 6nite-time thermodynamics is the

optimization of the performance of processes as a func-
tion of various controls. In the present work the steady-
state power production of the ampli6er, 7, is optimized
with respect to three controls: (a) The rate of relaxation,

FIG. 11. The normalized power as a function of the sys-
tem-bath coupling parameter p, , for various values of the field

amplitude e. The parameters of the calculation are (do ——1.00,
Au = 0, T = 0.05, and Th, ——0.50.
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FIG. 12. The normalized poorer as a function of T, for var-

ious values of the Beld amplitude e. The parameters of the
calculation are T,/Tq = 0.100 and p, = 0.001.

FIG. 13. The normalized poorer as a function of the Seld's
frequency, u (the line shape). The numbers on the curves cor-
respond to the dHFerent values of the normalized Beld ampli-
tude, c/ufo The .parameters of the calculation are T, = 0.050,
Tg ——0.500, and p, = 0.001.

p is only meaningful for low values of p, .
The same efFect is viewed by looking at the power as

a function of the temperatures of the heat reservoirs—
T, and Tj, . In Fig. 12, the normalized power optimized
with respect to ur is plotted as a function ofT„for a given
temperature ratio, aad for various values of the field am-
plitude e. As the temperatures increase, the relaxation
becomes faster. For relatively small temperatures, this
results in faster pumping and cooling, and therefore a
rise in power. For larger temperatures dephasing takes
over and the power decreases. Here too, the dephasing is
more dominant for lower field amplitudes.

B. Poorer optimisation arith respect
to the Seld frequency (~)

The next control to be considered is the field frequency
ur. The only term in the expression for the steady-state
power that depends on ur is the transition probability W
[Eq. (8.5)]. The power is also a monotonic function of
W [Eq. (8.3)]. Thus optimizing the power with respect
to ur is equivalent to the maximization of W with respect
to ~. The optimal frequency, ~', is given in Eq. (8.7),
and the corresponding optimal value of W is given in
Eq. (8.8). The maximum in W, and therefore in power,
is obtained for u ) up mostly since the effective detuning
is Lu rather than Lu. The new "resonance condition, "
Lcu = 0, is equivalent to

(2e)2

res = ~0 +
~o

The optimal frequency, ~', is shifted towards even higher
frequency, by I 2/~p. This is due to the fact that the
efFective amplitude, e, in the numerator of Eq. (8.5),
also depends on u.

The normalized power is plotted as a function of (d

in Fig. 13, for difFerent values of the 6eM amplitude.
Figure 13 gives the characteristic line-shape function at
the ampli6er output. As e increases, the field intensi-
6es, and the line broadens. This is an e8eet similar to

power broadening in absorption spectra. Note that since
the rate coefBcients are field dependent the functional de-
pendence of the line shape on the field amplitude is more
complicated than that obtained in the standard theory.

C. Poacher optimisation arith respect
to the Seld amphtude (e)

The steady-state power is factorizable into three con-
tributions [cf. Eq. (8.3)]. Each of the three factors de-
pend on the field amplitude e. The dependence of each
term on e was analyzed in Sec. VIII. The main conclu-
sions are summarized:

(a) The first term is Ei —Ep, the energy difference
between the two upper Beld-shifted levels. It is a mono-
tonically increasing function of e. This term does not
depend on the other parameters of the problem, except
for ~o.

(b) The second term is W. It depends on all the pa-
rameters (T„Tj„p,u, urp, and e). Here, one should make
a distinction between two cases. (1) When ~ is constant,
W has a maximum as a function of e. The reason for this
is that once the distance between the constant u and the
e-dependent to' [Eq. (8.7)] increases, the amplifier grad-
ually goes out of resonance [cf. Fig. 7], and the power
diminishes. (2) When W is optimized with respect to
ur for each value of c, it is denoted by W'(e) [cf. Eq.
(8.8)]. W'(e) is a moaotonically increasing function of e

[cf. Fig. 8]. This is because the change in the resonance
&equency, ~', is now followed as e increases.

(c) The third term is a measure of populatioa inver-
sion, IIi' —Ilo' [Eq. (8.10)j. This term depends on all
the parameters. It is maximal when c = 0 (IIi' —IIp" &
IIi —IIp), and reduces to zero as e approaches e . Thus
a net decrease in the gaia occurs as e is increased. Since
S' appears in the denominator of the expression for the
IIi' —IIp', two possibilities must be distinguished: (1)
When (d is 6xed, II&' —IIo will not decrease monotoni-
cally as e increases. Instead it will go through a "bump"



3916 EITAN GEVA AND RONNIE KOSLOFF

0.4—

dent
on

0.2—
I

max

FIG. 14. The individual components contributing to the
power as a function of the field amplitude ~, for fixed field
frequency. Note the "bump" in the curve for II& —IIp. The
components are normalized to their maximum. The param-
eters of the plot are up ——1.000, p = 0.005, Ace == 0.000
T, = 0.050, and Tq ——0.500.

FIG. 16. Comparison of the power as a function of the
field amplitude e obtained in the present study with that
obtained in the field-independent approach to dissipation
(Lamb's model). The comparison is made with the param-
eters up ——1.00, p, = 0.01, Eu = 0.00, T, = 0.05, and
Th, ——0.50.

When W is optimized with respect to ur, W' becomes a
d II"—II" be-monotonically increasing function of e, and i —

o e-
comes a monotonically decreasing function of e [cf. Fig.

The net decrease in II&' —lI&' as a function of e is ue
to the fact that both pumping and cooling become less
efficient as the energy splitting between the two upper
field-shifted energy levels becomes larger [cf. Fig. (10)].

The above properties are summarized in Figs.F' s. 14 and
15. The power as a function of e, obtained from ethe
present model, is compared with that obtained in Lamb' s
model, in Fig. 16. The predictions of both models co-
incide for low fields, as expected. However, the behavior
in the high-field domain diff'ers considerably. While in
the field-dependent model the power has a maximum as
a function of e and reduces to zero at a finite field ampli-
tude, it reaches saturation in Lamb's model. This

' er-
ence is the result of utilizing field-dependent dissipation,
where the rate coefficients are explicitly dependent on
the field amplitude e Ili Ilo obtained in the field-
dependent approach reduces to zero more quickly, an

becomes equal to zero at a finite value of e. However, in
the field-independent approach, the rate coefficients are
field independent, and W is proportional to ez, so that
IIi' —Ilo' reduces to zero only asymptotically, like 1/e2.

The value of e for which the power is optimized is de-
noted by e'. e' is a function of the temperatures. The
power as a function of e is plotted in Fig. 17 for difFer-
ent values of T, (the temperature ratio is fixed and given
by O. l in this case). The power function broadens as
the temperatures increase and the maximum

'
m is shifted

to higher amplitudes Figu. re 17 is misleading since as
the temperatures further increase e' moves backward to
lower amplitudes. This can be seen in ig.i . 18 where
e' is plotted vs T, for different values of T,/Tj, . The re-
verse in the direction in which e' moves, as seen on one
of the curves, occurs in all the other curves at higher
temperatures. This is probably due to the infiuence of
dephasing which becomes increasingly important as the
temperatures increase (cf. Sec. VIII). Since small am-
plitudes imply smaller dephasing, the engine is optima
for a smaller value of e'.
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0.2— II —II )*
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X
6$ 0.6—
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O.Z—

FIG. 15. The individual components contributing to the
power, after optimization with respect to the field frequency,
as a function of the field amplitude ~. The components are
normalized to their maximum. The parameters of the plot
are cup ——1.000, p = 0.005, T = 0.050, and Tg ——0.500.

0

~~ max

FIG. 17. The normalized power as a function of the nor-
malized field amplitude for different temperatures. The tem-
perature ratio zs xe:, p,

——fi d: T / T = 0.10. The other parameters
in this plot are (dp = 1.00 an p, == 0.01.
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FIG. 18. The optimal normalized amplitude as a function
of the normalized temperature of the cold reservoir. The pa-
rameters are coo ——1.00 and p, = 0.01.

X. DISCUSSION

In the present work, thermodynamic consistency was
utilized as the fundamental guide in the construction
of quantum relaxation equations for a system subject
to time-dependent external fields. It was shown that
thermodynamic consistency requires that the relaxation
terms become field dependent. Explicit simplified field-
dependent relaxation equations were constructed for a
three-level amplifier. The special interest in this system
is due to the fact that it may be realized as a heat en-
gine. The steady-state solution of these equations was
found to be considerably difFerent in comparison with
that obtained from the standard theory, where the relax-
ation is assumed to be field independent. The deviations
are most pronounced for intense fields. Their most im-
portant manifestations were found to be the following.

(a) The steady-state power production has a maximum
as a function of the field amplitude. In contrast to the
steady-state power obtained from the standard theory
which saturates as the field intensifies.

(b) The "resonance frequency, " i.e., the frequency for
which the transition probability, and therefore the power
production, are maximized, is field dependent. The res-
onance frequency in the standard theory is just u = us.

Utilizing consistent definitions of thermodynamical
quantities in terms of quantum expectation values, a
finite-time thermodynamic analysis of the quantum en-
gine was carried out. The power production was chosen
to be the target for optimization. It was maximized with
respect to the field's amplitude and frequency, the cou-
pling parameter, and the temperatures of the heat reser-
voirs. It was demonstrated how quantum phenomena,
such as the splitting of energy levels by the field and de-
phasing, can be visualized as sources for losses &om the
point of view of finite-time thermodynamics.

The main drawbacks of the present work are the field-
dependent relaxation equations, which were constructed
rather than derived. The underlying principle of the con-

struction is to obtain the simplest relaxation dynamics
which satisfy consistency with thermodynaniics. Such an
approach undoubtedly leaves out some of the physics (cf.
Sec. VII). However, this simple inodel already gives pre-
dictions that considerably deviate from those of the stan-
dard field-independent theory. Furthermore, the physi-
cal origin of these deviations is clear, and seems to be
more general than the specific model used. An alterna-
tive and more rigorous approach would be to derive the
field-dependent relaxation equations in the weak coupling
limit. The results of such an approach will be described
in a future publication. It will come as no surprise, how-
ever, that the equations obtained in such an approach
are far more difficult to work with and interpret.

The working medium in the model consists of atoms
with equally spaced energy levels. This assnmption was
made only for the sake of simplicity. When generalized to
atoms with arbitrary level spacing, general trends found
in the present study remain qualitatively valid. It should
also be noted that once the constraint on the energy
spacing is removed they become admissible controls [3,4].
The limit where both power and efficiency are zero, the
"short-circuit" limit, can then be obtained.

The present study has many similarities to the previ-
ous model of a continuous heat engine constructed from
two harmonic oscillators of frequencies u and urs [5]. The
work reservoir in that model consisted of a rotating field
of the resonance frequency v = ur —(us. It was found
there that in order to obtain thermodynamic consistency
the relaxation terms had to be field dependent. In both
Ref. [5] and the present study, field-dependent relaxation
equations were constructed, rather than derived, follow-

ing the basic demand of consistency with thermodynam-
ics. In both cases that demand led to the assumption of
instantaneous detailed balance.

The other manifestation of the field's presence is the
mixing of eigenstates coupled by the field. In the present
work, this effect was dealt with by using creation and
annihilation operators based upon the instantaneous,
mixed, energy eigenstates. In Ref. [5], however, relax-
ation terms of the general semigroup type, mixing the
creation operator of one dressed normal mode with the
annihilation operator of the other, were utilized. The
main difFerence between the two approaches is made clear
when one of the heat reservoirs, say the cold reservoir,
is decoupled. In such a case, the system will asymp-
totically approach different stationary states: The two
dressed normal modes in Ref. [5] reach thermal equilib-
rium with the hot reservoir, while in the three-level atom
of the present work the populations in ~E i) and ~Ei)
reach thermal equilibrium with the hot reservoir and the
population in ~Ee) is equal to that in ~Ei).

The asymptotic behavior in Ref. [5] is what one would
expect Rom a system arith stationary internal coupling,
where only one part of the system is directly interacting
with the heat reservoir [23]. However, the coupling in
the present study is explicitly time dependent, unless the
field is included in what is defined as "the system. " To
rigorously do this, one has to treat the field as a quantum
entity, which is not done in Ref. [5]. The remedy to this
seeming contradiction is found in using the dressed-state
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picture, which is only adequate in resonance (which is
why v = or —us in Ref. [5]). It is interesting to note
that the 6eld is considered part of the system for the
description of the coupling with the field, while the re-
laxation of the 6eld by the heat reservoir is neglected.
The point of view adopted in the present work differs
from that of Ref. [5] by the fact that the field is never
considered as part of the system. The asymptotic state
of the system, as opposed to the dressed system in Ref.
[5], is then easy to comprehend if the external field is
considered as a work reservoir of infinite temperature [7]:
The two-level subsystems {]E i), ]Ei)) and (]Eo) ]Ei))
reach thermal equilibria corresponding to the tempera-
tures Th, and oo, respectively.

The problem addressed in the present study belongs to
a larger class of processes subject to time-dependent ex-
ternal constraints while performing thermal relaxation.
This topic was avoided to a large extent in the literature.
However, such processes are of fundamental importance
in thermodynamics, spectroscopy, and quantum optics.
In this study the use of thermodynamical criteria has
been found to be crucial in the analysis. However, the
field-dependent relaxation theory obtained by only us-

ing thermodynamical criteria is incomplete. A complete
theory would require a rigorous derivation of the relax-
ation equations in the presence of the field. This topic is
currently under study.
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APPENDIX: THE EFFECT OF MIXING
IN THE GENERAL CASE

Consider, for example, the coupling of the levels
]
—1)

and ]1) to the hot reservoir. The most general reservoir-
system couplings have the following form:

HRS = Qpl, —1+0 sp —1,1+Ds (Pl p —i)

(Al)

where g, gt, and 17 are observables of the hot reservoir.
The coupling with the field mixes the states ]1) and ]0) to
give the new eigenstates ]Ei) and ]Eo) (]Ei) is assumed
higher in energy than ]Eo)). The hot reservoir is now sup-
posed to relax the two-level system ]Ei) and

]
—1). How-

ever, the two-dimensional sub-space spanned by ]

—1) and
]1) does not coincide with the two-dimensional subspace
spanned by ]

—1) and ]Ei). Thus one cannot write Hits
in terms of the eigenprojectors of the subspace spanned
by ]

—1) and ]Ei), and one must treat the coupling to
the hot reservoir in terms of a three-level system rather
than a two-level system. The same conclusion is true for
the coupling with the cold reservoir.
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