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Stochastically averaged master equation for a quantum-dynamic system interacting
with a thermal bath
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The methods of nonequilibrium density-matrix and coarse-temporal conception are used to obtain
the kinetic equation for the parameters p„(t) = Sp[p(t)in)(mi] of a quantum dynamic system
(QDS) interacting with a thermal bath and external stochastic field. It is important that the
stochastic Beld is taken exactly into consideration. For diagonal QDS parameters p „(t)this equation
is reduced to the generalized Pauli equation (GPE) with stochastic time-dependent coetficients
iv„(t). Special attention is given to the procedure of averaging over stochastic processes. It is
shown that after averaging over energy Quctuations affected by the stochastic field, in the first
cumulant approximation in terms of stochastic processes iv„(t), the GPE is transformed to the
Pauli equation for the QDS state population P„(t) = (p„„(t))t. As an example, the relaxation
behavior of a two-level system interacting with a dichotomous field (dichotomous Markovian process
of kangaroo type) and a harmonic oscillator coupled with a thermal bath is considered. It is shown
that the probability of relaxation transitions between energy levels may be changed by several orders
of magnitude under the in8uence of the dichotomous field.

PACS number(s): 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.60.+w

I. INTRODUCTION

There is a great number of physical systems where a
few relevant quantum variables are strongly separated
from the other ones. These quantum variables can be
treated as the quantum-dynamical system (QDS) that
interacts weakly with remaining variables called the ther-
mal bath. The bath is considered as a quantum statisti-
cal system being at equilibrium. Therefore, QDS relaxes
from its initial nonequilibrium state to the equilibrium
one due to the influence of QDS—thermal-bath interac-
tion. This interaction connects the energetic transitions
in QDS with those in thermal bath. The nature of ther-
mal bath and QDS-bath interaction depends essentially
on the real physical media (crystals, liquids, macromolec-
ular structures, plasma, gas) and real transitional pro-
cesses (for example, energy and charge transfer). Never-

theless, despite its different physical nature, any thermal
bath has very important common property. Namely, each
bath contains the infinite number of degrees of &eedom
and, hence, the continuous or quasicontinuous energy
spectrum. As a result the final irreversibility of quan-
tum relaxation transitions in QDS is directly connected
with transitions in the continuous spectrum of thermal
bath (see, for example, [1]).

There is a based universal method used to describe re-
laxation processes in QDS being in contact with thermal
bath. This method is based on the introduction of the
density matrix for the whole (QDS and bath) system.
Using the Liouville equation and the projection operator
technique to eliminate thermal-bath variables, Nakajima
[2] and Zwanzig [3] obtained the closed reduced equation
for the diagonal part of this density matrix. Nakajima-
Zwanzig approach was used by many other authors (see,

for instance, [4,5]) to obtain for QDS the generalized mas-
ter equation (GME), that is reduced in the Markovian
limit to the Pauli balance equation [6]

for the population P„(t) of the nth QDS state. These
populations satisfy the normalization condition

(1.2)

Equation (1.1) is valid on the time scale t ) 7p where
rp is the correlation time for memory function [4]. At
t ) 7p the memory function does not depend on time t
and coincides with time-independent value io„ in (1.1).
The latter characterizes the probability per time unit
to make a transition in QDS from the state in) to the
state im) (n g m). The real calculation of ur„ is con-
nected with perturbation theory and, consequently, with
the choosing of the QDS Hamiltonian Hp, thermal-bath
Hainiltonian HT, and the QDS-bath interaction V. In
the simplest cases one may use the "golden rule" to cal-
culate the time-independent transition probability m
In more complicated cases the situation is not so simple
[7] and the master equation in the Pauli equation form
is, generally invalid.

To avoid such kind of difhculties one may use the
stochastic theory approach to the description of relax-
ation. This theory is based on stochastic Liouville equa-
tion introduced by Kubo [8] and have been developed by
difFerent authors in numerous studies [9—16]. The main
idea of this approach is to treat the QDS-bath coupling
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phenomenologically and semiclassically via the introduc-
tion of a stochastic term in the QDS Hamiltonian. This
approach is not, however, free from difficulties. The main
problem is that the stochastic influence taken alone does
not lead to thermal equilibrium in QDS [14,17]. This
difhculty has been phenomenologically solved by the in-
troduction of the relaxation term in the QDS Liouville
equation [18,19]. Because of the strong influence of ex-
ternal field on the relaxation constants [20,21] this phe-
nomenological method is however not quite correct.

Rather successful efforts to solve correctly the prob-
lerns mentioned above have been made by Fox [14,17]
and, more recently, by Villaeys, Boeglin, and Lin
[22]. The kinetic equation was obtained in the case of
stochastic infiuence modeled by white or weakly colored
Gaussian Markovian noise. But in the real system such
idealization is not always valid. This circumstance re-
quires a development of the appropriate method to ob-
tain the kinetic equations for relaxation processes in the
case when both the quantum-thermal bath and strong
colored noise are simultaneously taken into account.

The aim of the present work is to obtain the master
equation in the case when the stochastic field is taken ex-
actly into consideration and the QDS-bath interaction is
treated as weak perturbation. Below, under thermal bath
one means the medium where the equilibrium time v,~ is
short enough to use the course-temporal conception. In
accordance with such a conception, relaxation transitions
in QDS are realized on a background of more fast energy
fiuctuations occurring in bath. The coarse-temporal con-
ception has been first introduced by Von Neuman [23]
for the macroscopic quantum system. Then Bogolyubov
[24] and more recently Peletminskii [25,26] using both
the Von Newsman concept and the principle of weaken-
ing of correlations have formulated the ergodic relations
for the coarse-temporal density matrix p"[p„(t)].This
matrix depends on time through time dependence of the
QDS parameters p„(t). For quantum systems, the pa-
rameters p„(t) correspond to the Hubbard operators

=~ n)(m
~

whose set is considered to be complete.
Therefore, the problem is to derive the kinetic equation
for the parameters p„(t) and then, by making an av-
erage over energy fiuctuations, to obtain the Pauli equa-
tions for the state populations

& (t) = h' (t))t.
Here, the subscript f shows the average over energy fiuc-
tuations.

The method of a kinetic equation for parameters
(t) of the quantum systems was developed in many

studies (see, in detail, [27]). In this paper we use the
Akhiezer-Peletminskii method (the so-called nonequilib-
rium density-matrix method [26]) to investigate the prob-
lem of stochastizatiou of quant»m energy levels. Accord-
ing to [28) it is possible to substitute the mathematically
idealized discrete stochastic process with known average
characteristics for the real Buctuations of the quantum
systexn parameters. After such a substitution we con-
sider this stochastic process as an external quasiclassical
stochastic field in terms of the Akhiezer-Peletminskii ap-
proach for a quantum system interacting with therxnal

II. WEAKENING CORRELATION PRINCIPLE
AND INTEGRAL EQUATION

In this section we reduce the Liouville equation to the
integral equation for the coarse-temporal density matrix
of the whole QDS—thermal-bath system.

A. Model Hamiltonian

We consider the whole system as the sum of the ther-
mal bath and QDS being under the infiuence of the ex-
ternal stochastic field. Let us assume that in spite of the
stochastic field action, the whole system Hamiltonian can
be divided into time-dependent and time-independent
terms,

H(t) = Hp(t) + V(t)+ HT, (2 1)

where Hp(t) is the QDS Hamiltonian, V(t) is the operator
of weak interaction between QDS and thermal bath, and

HT = ) Oi(B„+Bi+~z) (2.2)

is the Hamiltonian of the thermal bath. Op is the fre-
quency of the Ath bath mode, B&~ (B~) is the creation
(annihilation) operator (here and further on we use the
system of units in which the Plank constant 5 = 1).

Due to the completeness of a set of the Hubbard oper-
ators p =~ n)(m ~, the operators Hp(t) and V(t) can
be expanded over p„as [21]

H, (t) = ) H„(t)~„, (2.3)

(2.4)

The corresponding expression for the QDS density matrix
p(t) = p(p(t)) is given by

bath and strong external fields [27,20,21]. The great ad-
vantage of such an approach is that the stochastic field
may be arbitrarily strong. The only restriction is a re-
quirement for the stochastic field parameters to be inde-
pendent on the dynamic variables of QDS and thermal
bath.

In this paper we formulate the principle of weakening
of correlations for the case of external stochastic field
(Sec. II) and obtain the non-Markovian kinetic equa-
tions for the QDS parameters p„(t) (Sec. III). It is also
shown that in some simple cases the relaxation dynamics
of quantum systems may be described by the stochastic
master equation similar to (1.1), that is by generalized
Pauli equation, GPE. Further, we discuss the problem of
stochastic averaging of these equations, especially in the
case of fast stochastization (Sec. IV). Finally, we show
the possibilities of the general theory by investigation of
the relaxation behavior of two-level system interacting
with the dichotomous field (Sec. V).
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p(&) = ).v (t)'4 (2.5)

H„(t) = [ur„+ s„(t)]b„ (2 6)

= -, ) ) ~„",(~„„s , + &.&& „)
pl ~gt

x (B~t + Bg), (2.7)

The coefficients H„(t) and p„~(t) of the expansions
(2.3) and (2.5) are the parameters of a quantum system.
The operators of expansion (2.4), F„(t),depend on the
bath variables. The expansions (2.3)—(2.5) are quite gen-
eral ones. They will be used to obtain the general kinetic
equations for parameters p„(t) in Secs. II C and III A.

As an example, in the simplest case the coefficients

H„(t) and operators F„(t) may be expressed in the
form

0
p" (t) = U(t) p" (0)U'(t)+' d 0'(&+ t)

—t

x [p"(t + r), V(t + r)]U(t + r; t). (2.12)

Here we introduce the single- and double-time evolution
operators determined by the relations

»(t) = —i(H, (t) + HT )U(t),

U(o) = U'(o) = 1,U'(t) = U-'(t)

U'(t)U(t) = U(t)U'(t) = 1

U(t+r;t) =U(t+r)U'(t),

and then formally

where u„ is the spectrum of nonperturbated quantum
system, s„(t) is the energy addition to w„due to the
stochastic field, and e„" = (tc" „)' are the relaxation
parameters. In this case the stochastic field influences

only the diagonal parameters of the quantum system,
and the expressions (2.3) and (2.4) are written as

U(t) = exp( —iHT t)T exp~ i Hp(t'—)dt' ~,
0

(2.13)
t+~

U(t + r; t) = exp( —iHT r )T exp
~

i Ho (t')—dt' ~,

v(t) =v=-, )
x(B„'+B.)

(~ n) (m ] +
~
m)(n ~)

Ho(t) = ) [ur„+ s„(t)]
~
n)(n ~, (2.8)

(2.9)
p (t) = po (t) + p (t) + " (2.14)

where T is the Dayson chronological operator. Equation
(2.12) is an exact one at least with an accuracy to the
coarse-temporal condition (2.10). Hereafter, we will find
the approximate solution of Eq. (2.12) by using the ex-
pansion of the density matrix p'~(t) over the interaction
V in the form

The form (2.7) of the operator F„and, therefore, the
interaction (2.9) corresponds to the approximation where
transitions in the QDS are accompanied by creation or
annihilation of a single phonon in the thermal bath.
These expressions will be used in Sec. IIIB to obtain
the closed equations for the parameters p„„(t), i.e., the
generalized master equation.

B. Liouville equation

According to the Bogolyubov's functional hypothesis,
the density matrix psT of the whole system (QDS and
thermal bath) reduces on the time scale t )) r,z to the
coarse-temporal density-matrix

(2.10)

where v,~ is the above mentioned equilibrium time in the
thermal bath. Let us write the Liouville equation for the
coarse-temporal density matrix of a system

where at V ~ 0 the first order term pi' (t) ~ 0. This so-
lution must comply with the following asymptotic bound-
ary condition:

im (U (t) [p' (t) —p(t) pT] U(t) ) = 0 (2.15)

[due to the supposition that at t ~ —oo the interaction is
absent, V(t) = 0]. The relation (2.15) that expresses the
principle of the weakening of correlations will be used in
the next subsection to obtain the service integral equa-
tion. In Eq. (2.15) p(t) and pT are the density matrices
of the QDS and thermal bath, respectively. The density
matrix of the thermal bath,

G. Integral equation

pT = exp( —HT /k~T) [Tr exp( —Hr/k~T)], (2.16)

is supposed to be equilibrium. In (2.16) k~ is the Boltz-
mann constant, T is the absolute temperature, and the
symbol W denotes the trace over the bath states.

cp" (t) = i[p"(t), H, (t) + V(t) + HT ].

The formal solution of (2.11) is given by

(2.11) In this subsection we obtain the integral equation
which is asymptotically equivalent to the exact Eq.
(2.12). Let us introduce the double-time values in the
form
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p"(t;~) = U(t+ ~;t)p"(t)U'(t+ ~;t),
(t) r) = U (t + 7') t)p~~n(t + 7 ) t),

(t;7-) = Sp[p"(t;~)j„],
(2.17)

(2.17), Eq. (2.11) and the equation

Bp(t+ v) . Bp(t+ v) Bp„(t+r)
BT B'7 (t + T) B'r

o(t' ) = ( (t' ))
= U (t + 7; t)p(t) p/Ut (t + T; t) . (2.18)

Let us differentiate the relation (2.18) over 7. Then
combining the result of differentiation with the relations

I

where Sp denotes the trace operation over the states of
the whole system. At V = 0 the expressions (2.13)—(2.17)
yield

we obtain

U(t + 7; 't) [H()(t + 7 ) + HT ) p(t) pT ]U (t+ 7'", t)

.).Bp(t;7-)pT Bp„(t;7-)
- Bq„(t;~) B~

By using the relations (2.14)—(2.19) in Eq. (2.12), we can
write

0

() —p()»=U()[p () —p()pT']U() ' "U(t+ ~) [ (+ )~p (+ )]
—t

l

—&~~(t+&) —L~~(t+&) l
U(t+&~t) ~ (2.20)

where

L~ l (t) = iSp(p(t) pz [H()(t) + Hz, j„(t,0)]j,

) Lf l (t) = —i[H()(t) + HT, p(t)pz].
7fLTfl

(2.21)

Finally, by combining (2.21) with Eqs. (2.15) and (2.20) we can easily find the difference p" (0) —p(0)pT and, after
all, obtain the integral equation in the form

0

p"(t)=p(t)pT —zJ den'(t+r;&) (v(&+~), p"(s+~))

i ) —
~

—q„~(t+ ~) —L„'~(t + ~)
~

U(t + ~; t) (2.22)

This integral equation is used in the next section to cal-
culate the second order term in the kinetic equations.

III. KINETIC EQUATIONS

Lf l (t) = iSp(p"(t)[H (t) + HT, j„m]),

Lf l (t) = S ( o (t) [ (t) ]) (3.2)

Here we derive the kinetic equations for the QDS pa-
rameters p„(t) and then obtain the reduced kinetic
equations for the QDS populations p„„(t).

A. General kinetic equations

According to the Akhiezer-Peletminskii density-matrix
method [26] the kinetic equations for the parameters

(t) of the quantum system are given by

(t) = S ( (t)[H (t) + H + V(t) ])

L&'~ (t) = Sp( (t)[V(t),q„]),
respectively. The Eqs. (3.1) and (3.2) have been first ob-
tained by Peletminskii and Yatsenko [25] for the case of
the time-independent external field. Then these equa-
tions mere reproduced by several authors for a more gen-
eral case (for references see [27,21,20]). In presence of the
stochastic field Eqs. (3.1) and (3.2) remain formally the
same.

Let us consider the expression

0
p", (t) = i drn (t+ ~;t)

~

[V(t—+ ~), p(t+7)»]
= L&'& (t) + L„"&(t) + L&'& (t) + .", (3 1)

where the zero, first, and second order terms of the ex-
pansion of L„(t) over the interaction V(t) are defined
by the expressions

i) L&'&(t+r—) ~U(t+7.;t)
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which follows from Eq. (2.22). Using the relations tator [V(t),j ] over the Hubbard operators we obtain

Sp(p„„j ) = b „b„
for the Hubbard operators and expansion of the commu-

). L."'(t) ='[s(t+ )~ (V(t+ )) ]Bp„~ t+7

Therefore, the expressions (3.2) and (3.3) with the help
of Eqs. (2.3), (2.4) and (2.13) get transformed as

L~'& (t) = i) [H„„(t)q„(t)—H „(t)q„„(t)],
nl

L."' (t) = ').HF- -(t))»- -(t) —(F- (t))»- (t)],
nl

(3 4)

0

L."'(t) = -) ) d ([(»-(t)»:i (t+ ))»«(t+.)
ll' v v'

-(»'(t+ )»-(t)) ~ ~ (t+ )]( I~. (t') I )

H» (t)» 'i'(t + +))T' «i'(t + +) (»i'i(t + ~)» (t))»i" (t + ~)](m I ~. i(t ~) I r))

where

AF„(t + 7 ) = exp(i' v )»„(t+ v ) exp( —iHT r),

»(t) =- F(t) —(F(t)) . (3.5)

Here, the averaging (A)T = Tr(pTA) over the thermal
bath is achieved due to the equilibrium density matrix
(2.16) and the Hamiltonian (2.2). The obtained kinetic
Eqs. (3.1) and (3.4) are rather general and may describe
a number of stochastic field effects. Their greatest ad-
vantage is the exact account of the stochastic field in the

ues (m I i.i(t &) I n) of (3 4)

B. Generalized master equation

Our aim is to obtain the closed kinetic equation for the
state populations p„„(t) on the basis of the general ki-

netic equations (3.1) and (3.4). Unfortunately, because of
the complicated form of Eqs. (3.1) and (3.4) where diago-
nal and off-diagonal parameters p„(t) are strongly cou-

pled, these equations cannot be investigated as a whole.
Therefore, in this paper we restrict ourselves to the di-

agonal stochastic perturbation in the QDS Hamiltonian

Hp(t) (2.8) and specific form of the interaction V (2.9).
The choice of the QDS—thermal-bath interaction V

[and, respectively, the choice of the operators F„ in
(2.4)] determines completely the form of the kinetic equa-
tions. In the general case, the n ~ m transitions in QDS
are accompanied by multiphonon transitions in the ther-
rnal bath. As a result, relaxation of the state popula-
tions p (t) interferes with the evolution of the coher-
ences p„(t). Hence, the ofF-diagonal effects are signifi-
cant and one cannot neglect these e8'ects in the kinetic
equations for p (t). Nevertheless, it was shown in many
studies for field-independent cases (see, for example, [27])
that the conditions In~~I && I(F~~)T I

make it possible to
obtain the closed kinetic equation for populations p „(t)
on the time scale b, t » Iu I

i if n and m are nonde-

generate levels.
In the presence of the external field the situation is es-

sentially complicated because of the time dependence of
QDS levels. Namely, the restriction Is„(t)I « I~„

I

im-

posed on energetic fiuctuations gets appeared. However,
one can avoid this restriction by choosing the specific
form of the QDS—thermal-bath interaction. Expression
(2.9) is one of the possible forms of such an interaction. It
refiects the single-phonon approximation when relaxation
transitions in QDS are induced by creation and annihi-
lation of the optical phonons with resonant frequencies
Ap Iu„ I. In this case the multiphonon transitions
are not important, and we have rigorous decoupling be-
tween state populations p„„(t) and coherences p„(t) in
the general kinetic equations (3.1) and (3.4).

To manifest the stochastic field effects let us substi-
tute in the general kinetic equations (3.1) and (3.4) the
expressions (2.2),(2.6) and (2.7). To specify the kinetic
equations one must take into account that in this case,
the values included in (3.4) are given by formulas

(F„(t)) =o, L„' (t) = ( „+„(t))
L~'~(t) = o,

(r I i- (t;&) I n)
'+

= b „b„expI ~ s (t')dt'
I
exp[i~ ~],

t

(3.6)

bF, (t+7-) —= EF
= exp(iHT ~)b,F exp( —iHT ~),

(F „F „)T——(b b„„+b „b„)
x). I

K„"~ I'&~(~) = (F F „)T
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N(Ap) = 1

exp(Ag/It~T) —1
(3 7)

is the Bose function. In (3.6) e (t)—:s (t)—
e ~(t), ur = ru —ur ~, and the value

Rq(r) = N(A~) exp(iA~r) + [1 + N(A~)] exp( —iApr)

(3 8)

is the relaxation bath function in the one-phonon ap-
proximation (2.7). The relations (3.6) reduce the kinetic
equations (3.1) and (3.4), specified for the diagonal pa-
rameters p„„(t), to the GME at the external field (see
also [21,29])

0—p„„(t)= Re) dr[W „(r)G

x(t+ r;t)q (t+ r)
—W„(r)G„(t+r; t)q„„(t+r) . (3.9)

In Eq. (3.9) we introduce the memory function of the
thermal bath,

W „(r)=2)
~

K"„~ Rg(r)exp(i(u „r) (3.10)

and the Green functions

t+r
G „(t+r;t) = exp~ i e „(t')dt'

~

t )
(3.11)

for the set of independent Kubo oscillators [8,14,30]. The
functions (3.11) refiect the external field infiuence on the
n + m transitions and obey the equation

According to Eq. (2.7) the average in (3.6) is ex-

pressed through the average (B&Bp~)T . With the help of
Eqs. (2.16) and (2.2) this value is reduced to b~q~N(A~)
where

Equation (3.14) is the linear stochastic equation where
the time-dependent coefficients

0

m„(t) = Re drW„(r)G„(t+ r;t) (3.15)

are stochastic functionals m„[s„(t)]of the energy fiuc-
tuations s„(t).

The stochastic functional (3.15) is completely defined
by Eqs. (3.8), (3.10), and (3.11) that provide averaging
of the GPE (3.14) over fast stochastic processes.

IV. AVERAGING OVER STOCHASTIC
PROCESSES

Let us consider Eq. (3.14) as a stochastic difFerential
equation. The conventional way to make the averaging of
the equation over stochastic processes is connected with
application of the cumulant expansion method [8,14,30].
The approximation of the first cumulant in terms of the
stochastic process ts(t) leads to the Pauli equation (1.1),
where

0

m„~ = (m„(t))y = Re d7W„(r)(G„(r;0))y

(4 1)

is the probability averaged over stationary energy fiuc-
tuations. It is necessary to note here that the cumulant
expansion may be considered also as an expansion over
the Kubo number [8,30,32]

with phonon bandwidth I' it falls as exp( —I't) [31]]GME
(3.9) is simplified to the balancelike equation [generalized
Pauli equation (GPE)]

&'7 (t) = ).[ (t) (t) — (') (t)] (3 )

—G „(t;t') =is „(t)G „(t;t') (3.12)

with the initial condition G „(t;t) = 1.

C. Balancelike equation

Equation (3.9) is a non-Markovian one since the right-
hand side is determined by the values of p„„(t+ r) at
v. & 0. However, in some cases this non-Markoviality
may be neglected. For example, this is the case of a weak
relaxation interaction V when dp „(t)/dt V2 [20]. It
is clear from the expansion

p„„(t+r)= p„„(t)+7 "" = p„„(t)+~ rV (3.13)
dt

that non-Markoviality of the right-hand side of (3.9) is
signi6cant only in the higher approximations in powers
of V . By taking into account the relation (3.13) and the
fact that, as a rule, the memory function rapidly falls
in time [for instance, in the case of Oh~le thermal bath

7, 7 (&m (4.2)

whereas the Kubo number K, = Des, of the original

of the stochastic process m(t) . Here the subscript nm

is dropped and b.ur = ([m(t) —m]z)& and 7 are the
mean square amplitude and autocorrelation time of the
stochastic process m(t), respectively. Equations (1.1) and
(4.1) are valid only when K « 1. Proceeding from phys-
ical and mathematical viewpoints it is.clear that the value
Am cannot be greater than that of average transitional
probability m at any arbitrary mean square energy am-

plitude b.e = ([e(t) —(e)y]2)&~ of an original stochastic
process e(t) . Because of this fact the condition K « 1
is fulfilled if r « m ~. Further, we assn~e that the
stochastic process ur(t) varies on the time scale given by
the autocorrelation time 7, of the original process e(t).
From this ass»option it follows that the Brst c»~ulant
approximation in terms of the process ur(t) is a good one
for very fast energy Buctuation,
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m„= d~N ~ J„(u I„ (4.3)

by introducing the thermal-bath spectral function

process may be arbitrary. We restrict our consideration
to this approximation.

For the purpose of convenience, the expression (4.1)
for the average probabilities is written as

them it may be written in the form

I(~) = —Re (G(~+iv)). + .
'

)
1 vG (d+zv
7r (v[1 —vG(ur y iv)]),

(4.6)

where (( . )), = g. i p~( . .
)z denotes the averaging

over the stationary distribution of s (the subscript nm
is dropped). The static resolvent

J„(~)= 27r ) I

~"„I' b((u —Op). (4.4)

[The function (4.4) is extended on the negative value
&u ( Q due to the condition J„(—p)) = —J„(ur).] The
function J„(u) refiects the thermal-bath energy struc-
ture as well as its infiuence on the dynamic system [1,7].
We introduce here also the Kubo line shape function
[8,33]

I„(u) = —Re e' (G„(7;Q)) ydr
0

(4.5)

which contains all necessary information about the
stochastic field infiuence on the energy levels and may be
explicitly found for some kinds of stochastic processes.

It is convenient to simulate a real energy Buctuation
by the discrete Markovian kangaroo process (KP) [28,32].
We remind you that a KP is the Markovian process
that may take on the discrete random values from the
counting set (s~)~-i ~ with the stationary probabilities

(p~)z i N. It is modified from one value to another by a
stationary Poisson sequence with pulse rate (v(s'z))~ —i &
being a function of the current value of the random vari-
able (more detail see [32]). The KP line shape is found
easily using the results of Refs. [28,32]. According to

I

G, (ur) = e' 'G, (t, Q) dt
0

(4.7)

in (4.6) is given by Eq. (3.12) with s(t) = s~. We note
that the expression (4.6) is valid at any amplitude and au-
tocorrelation time of the energy Buctuations. The spec-
tral function J(ur) may be obtained, in any specific case,
&om a priori knowledge of the microscopic interactions,
but this function is usually taken in the model form [7].
In fact, the relation (4.3) for average probabilities has
the "golden rule" form in which the energy conservation
law b(u + ur„) is replaced by the line shape function
I(ur + (u„).

V. TWO-LEVEL SYSTEM
IN DICHOTOMOUS FIELD

To manifest the discrete stochastization influence on
average probabilities of quantum transitions we consider
the two-level system interacting simultaneously with the
dichotomous field and the harmonic oscillator that is cou-
pled with the thermal bath. In the coordinate represen-
tation the Hamiltonian of the model system is defined
as

& = [~i+s(t)l I1)(1I+~~ I 2)(2 I+ " + ' ' +«&2mp~p(I1)(2 I+ I 2)(1l)q
2mp 2

2

2 p 2
(5.1)

Here, q and p are the coordinate and momentum of the
given oscillator, (Xg, Pp) are the coordinates and mo-
menta of the bath oscillators, mp, Mp, u0, 0p are their
masses and frequencies, respectively; ~p and cp are the
coupling constants and cuq and su~ are the stationary en-
ergy levels of the QDS .

Such a model can be used for the investigation of the
bridge mode accompanied charge transfer between sites
1 and 2 that are space separated in the macromolecule
[34,35]. Here the intersite bridge mode q may be treated
as a reaction coordinate. The rest of the macromolecu-
lar modes are considered to be bath modes. The thermal
bath is often supposed to be Ohmic. For the Ohmic bath,
in the semiclassical limit, the particle moving along the
chosen coordinate is exposed to the action of a &ictional
force linearly proportional to its velocity with a coeK-

cient g [1,36]. In this case, using the results of work [36],
the model Hamiltonian (5.1) can be transformed as (2.1),
(2.8), and (2.9) with the eB'ective spectral function

J((u) = 8rcpp (~& ~2)2 + 4~2~2 (5.2)

defined according to (4.4). In (5.2) p = rI/2mp is the
broadening of oscillator levels. Note that J(ur) is propor-
tional to the imaginary part of dynamic susceptibility
of a damped harmonic oscillator y" (p)) with undamped
frequency up and a friction coefficient q [37],

J(u)) = 4~pmp(spy" ((u).

Let us suppose that the Buctuating part of energy s(t)
is described by the dichotomous Markov process of kanga-
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roo type (DMPK) with the space of realizations (s+, s

jump frequencies (v+, v ), and probabilities of realiza-

le
tions p+ ——v /(v++v ),p = v+/(v++v ). For exam-

p e, such kinds of Huctuation may be caused by thermal
activation of two positional reorientations of the charge
molecular group adjacent to site 1. Then the correspond-
ing line shape function may be easily derived using Eqs.
(4.6), (4.7), and (3.12). Namely,

10 '=

10 '-:

't6
10 '=.

(5.4) 000 200 4.00 600 800

w ere e' = (s(t))y = (s+v +p v~)/(vp+v ) ss the av-

erage over energy fiuctuations and b, = (
~/(v++v ) and v, = (v++v )/2 are their mean square

amplitude and reverse autocorrelation time, respectively.
The expression analogous to (5.3) was obtained earlier by
Kubo [33] (in a different way) for DMP. However, DMP is
not identical to DMPK. The difference is that in contrast

jump. This leads to a half reduction of the reverse au-
tocorrelation time of DMPK as compared to DMP. The
dependence of I(u) on the stochastic process parame-
ters is illustrated in Fig. 1. If the DMPK Kubo number

, = b,s/v, is small then I(ur) has a single caked f
u = s. e K, increasing leads to the line profile

broadening and by K, = 1/2 to its splitting. The further

10':

10 '=:

10':

10 '.
-l

10 ':'

10-

0.00 2.00 4.00 6.00 8.00

FIG. 2. Dependence of the transition probabilities ming

(solid line) and mph' (dashed line) in units of s on ampli-
tude s (in units of k&T) of symmetrical DMPK in the case
of (a) weakly colored noise: K, (( 1, v = 10~s s ~ and

(b) strong colored noise: K, )) 1, v, = 10~ s ~; T = 300

(~ 1.9 x 10~z s
-1)

s, and eo ——1.0 x 10 eV ( 1.5 x 10

/ / / / ~

/ / / / /
/ / / / ~

/ / / /
/ / / ~ M I

/ /
/

/
/ ~ /

/ / /
/ / /
/

/
/ ~/

/
/ ~/

0-,

increasing of the Kubo number leads to the narrowing of
both peaks situated at u = s+ and u = e'

The stochastically averaged transition probabilities
mqz and mzq may be defined now by Eq. (4.3) taking
into account Eqs. (3.7), (5.2), and (5.4). The integral in

t
can be exactly calculated in analyt' al f

he theory of residues. Some results of the corresponding
numerical calculations are shown in Fig. 2 for the case o
symmetrical DMPK (s+ ———s = = b, ,
I/2) vy = v = v . ence

+ = —s- =s= s~p+ =p
,). We stress the sharp dependence

of the transition probabilities [and hence the relaxation
time ~ = (mq2 + ur2q) in QDS] on the amplitude of
Buctuation in the case of stron l l d dg y co ore ic otomous
noise (K, )& 1). This changing of the average probabil-
i ies under stochastic in8uence may reach several orders
o va ue.

VI. CONCLUSION

FIG. 1. De ep ndence of the line form function Ig j j b
rary umts ) on frequency u (in units of Ae) for zero centered

z arith various reverse autocor-
relation times v = (v + v+)/2 (in units of Ae) aud Sxed
mean square amplitude Ae = ~e e

In thos paper, we obtained the kinetic equations for
a description of the evolution of parameters (t) f
q system interacting with thermal bath and dis-

rsp o a

crete stochastic
in the co

ic eld. Special attention is paid t bt
'

g e coarse-temporal master equation for the quantum
state pop ations (p „(t))y averaged over fast field fiuc-
tuations.
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GME, (3.9)—(3.11) and GPE [(3.14) and (3.15)] are the
main results of this paper. GME and GPE provide for all
necessary information about diagonal stochastic eKects in
the second order term over the bath-system interaction
without any quantitative restrictions on possible values
of the amplitude and &equency of a stochastic in8uence.
The Pauli equation (1.1) is obtained from GPE in the first
cumulant approximation in terms of stochastic processes
w„(t). Such approximation is valid only in the case of
very fast stochastic influence s(t).

Here we have shown that the (to„)f, averaged over

fast process transition probabilities, are sharp nonlinear
functions of amplitude c of energy Buctuations, and they
may be changed by several orders of magnitude under the
stochastic inBuence. This fact makes it possible to con-
trol transition probabilities through the external stochas-
tic Geld.

At last, the general kinetic equations (3.1) and (3.4)
can be used as a basic equation to study the effects of
nondiagonal stochastic and regular perturbations of re-
laxation processes in the QDS in future investigations.
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