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Particle coarsening in the late stage was investigated using numerical simulations. The multipar-
ticle diffusion problem was solved using a multipole expansion method which is valid to an arbitrary
order of the expansion. The simulations were performed using both monopole and monopole plus
dipole approximations. We found that the monopole approximation yields a good description of the
diffusion field up to a volume fraction of approximately 0.1. Beyond this volume fraction, particle
migration induced by interparticle diffusional interactions plays an important role. The simulations
were parformed using two different initial spatial distributions. Despite the different initial states of
the system, we find that the spatial correlation functions evolve to unique scaled time independent
forms. These spatial correlation functions show that depletion zones exist between small particles
and that the density of small particles near large particles is less than that of a random spatial
distribution. A scaled time independent structure function similar to that observed experimentally
was found. The slope of the structure function in a log-log plot is close to 4 at small wave numbers
and is —4 at very large wave numbers. Oscillations in the structure function, which are related to
the spherical shape and size distribution of particles, are present at large wave numbers. The rate
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constant of the cubic growth law and the scaled particle size distribution are also determined.

PACS number(s): 64.60.My

I. INTRODUCTION

In the late stage of a first-order phase transition, the
evolution of the two-phase mixture is driven by the reduc-
tion in the excess energy associated with the interfaces
between the two phases. The reduction in total interfa-
cial energy results in an increase in the average size of
the minority phase domains. This Ostwald ripening or
coarsening process takes place by the diffusion of heat or
mass from regions of interface with high interfacial curva-
ture to regions of interface with low interfacial curvature.
Here we will consider the dynamics of coarsening follow-
ing an off-critical quench wherein the system is composed
of an array of second-phase domains.

A complete theory of the coarsening of a system of
spherical particles was developed by Lifshitz and Sly-
ozov [1] and by Wagner [2] (the LSW theory). They
found that in the long-time limit the cube of the aver-
age particle size should increase linearly with time during
coarsening, and that when the particle size distribution
is scaled by the time dependent average particle radius, it
should assume a unique time independent form for all ini-
tial conditions. However, the primary assumption in the
LSW theory is that the concentration field surrounding
a particle is given by a solution of the diffusion equation
for an isolated spherical particle. This means that diffu-
sional interactions between particles are not taken into
account, and thus the theory is valid only in the limit
of a zero volume fraction of the second-phase. Experi-
ments have shown that amplitude of the temporal power
law for the average particle size, the rate constant, is
much higher and the particle size distribution function
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is broader than those predicted by the LSW theory and
as volume fraction increases, these discrepancies become
larger [3].

At nonzero volume fractions, the diffusion field as-
sumed by LSW is perturbed due to the existence of other
particles. Qualitatively we would expect that the concen-
tration gradient at the particle-matrix interface to be-
come steeper as volume fraction of particles increases.
Thus, the kinetics of the coarsening process should in-
crease as the volume fraction increases. All treatments
of the coarsening process predict that the presence of a
nonzero volume fraction does not alter the exponent of
the temporal power laws, but does affect the amplitude
of these power laws. The influence of a nonzero volume
fraction of coarsening phase has been investigated using
mean-field theories [4-7], statistical mechanical theories
[8-12], and numerical simulations [7,13-16]. The predic-
tions of all of these theories reduce to the LSW results
in the limit of zero volume fraction. However, many of
these theories yield very different predictions. For ex-
ample, Marder’s theory [12] yields a rate constant at a
particular volume fraction which is as much as an order
of magnitude larger than other theories. In addition, all
of the statistical mechanical theories and simulations are
based upon a solution to the diffusion field in the matrix
using monopole sources or sinks of mass located at the
center of the particles. This implies that the theories are
valid only at low volume fractions of coarsening phase.
The approximate value of the limiting volume fraction is
unknown. Generally, the mean-field theories give higher
rate constants than those of the statistical mechanical
theories.

The importance of the particle spatial correlations on
the dynamics of coarsening has recently been recognized
[9,15,17]. It is clear that for the evolution of the sys-
tem to be described by temporal power laws, the particle
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spatial correlation functions must have specific time inde-
pendent forms when scaled by a time dependent length
scale, such as the average particle size. However, the
nature of the particle spatial correlations created dur-
ing coarsening is not well understood. Experiments have
shown that scaled time independent spatial correlations
do indeed exist. Many workers have shown that the
structure function, which is measured using small angle
x-ray, neutron, or light scattering, assumes a time inde-
pendent form when scaled by a time dependent length
[18-27]. While it is clear that the structure function de-
pends on the spatial correlations, using this measured
structure function to determine the spatial correlation
function is problematical, as the structure function de-
pends on both the particle spatial correlations and the
particle size distribution. In principle, information on
the particle correlations can be obtained by examining
the small wave number behavior of the structure func-
tion. However, this can be difficult due to the strong
background intensity of the transmitted beam. Never-
theless, attempts have been made to reproduce the mea-
sured structure function by assuming specific forms for
the particle size distribution and the particle spatial cor-
relation functions [23,24,28-30]. In these works, the spa-
tial correlations are modeled by assuming that a deple-
tion zone of a certain size exits surrounding each particle.
Although it is possible to reproduce the measured struc-
ture function by this method, the existence of depletion
zones surrounding particles has not been confirmed ex-
perimentally, due to the difficulty in measuring correla-
tion functions in real space in three dimensions. However,
there has been progress along these lines by Krichevsky
and Stavans [31] for coarsening in a two-dimensional sys-
tem. They measured the radial distribution function and
pair correlation functions, and showed that the proba-
bility of finding small particles near a large particle is
larger than that of finding small or large particles near
each other. Theoretically, Beenakker [15] calculated mo-
ments of the pair distribution function found from com-
puter simulations using the monopole approximation and
found that the particle spatial correlations are not simple
hard sphere correlations. Marder [12] developed a theory
which accounts for the effects of spatial correlations be-
tween coarsening particles; however, the particle correla-
tions are much different from those found by Beenakker
at small particle separations. Tokuyama et al. [32,33]
calculated the structure function in the late stage, and
showed that the structure function depends on the wave
number k as k* for small k and k~* for large k. How-
ever, the calculated structure functions are broader than
those obtained by experiments. Yao et al. [7] calculated
the structure functions from their simulations. Unfortu-
nately, due to the small size of the system employed in
their simulations their scaled structure functions at low
wave numbers are time dependent, and thus the system
is not in the scaling region.

Here we discuss the effects of a high volume fraction
of coarsening phase on the dynamics of coarsening. We
have investigated the coarsening process via numerical
simulations, as these allow us to examine the effects of
many body diffusional interactions on the coarsening pro-

cess without any a priori assumptions on the form of the
particle spatial correlations. We have determined parti-
cle correlation functions in addition to the amplitudes of
the temporal power law for the average particle size and
scaled time independent particle size distribution func-
tions. The radial distribution function, pair correlation
functions, and the structure function are used to charac-
terize these spatial correlations. Simulations with differ-
ent initial particle spatial distributions, but the same par-
ticle size distribution, are performed to test the existence
of time independent scaled spatial correlations. As men-
tioned above, in all the previous simulations {7,13-16],
the diffusion field is calculated using the monopole ap-
proximation. Since the validity of the monopole approx-
imation is restricted to low volume fractions, the effect
of dipole sources and sinks is examined. Finally, we also
consider the validity of assuming that the minority phase
particles are spherical in these multiparticle systems.

II. MATHEMATICAL FORMULATION OF THE
COARSENING PROBLEM

In reality, the morphology of the individual second-
phase domains is not fixed. Thus, a description of the
coarsening process at high volume fraction involves a so-
lution to a multiparticle free-boundary problem. As solu-
tions to free-boundary problems in three dimensions with
large numbers of particles are quite difficult, we shall as-
sume that the particles are spherical. However, to obtain
a self-consistent theory, we will justify this assumption
later.

Thus, we take the system to consist of a large spherical
external boundary S, with N spherical particles embed-
ded in the matrix. We shall frame our description in
terms of a binary stress-free two-phase mixture in which
coarsening takes place by the flow of mass from small par-
ticles to large particles. Our interest is restricted to the
late stage where the volume fraction is nearly the equilib-
rium value, or the supersaturation is very small. Thus,
to a high degree of approximation the concentration field
in the matrix is given by a solution to the steady state
diffusion equation,

ViC =0, (2.1)
where C is the concentration, in mole fraction of com-
ponent 1. Local equilibrium is assumed to exist at
the particle-matrix interface so that the concentration
is given by the Gibbs-Thomson equation,

CR)=C2 (1+ %)

R

where R is the radius of the particle, C:3 is the equi-
librium concentration at a planar interface in the matrix

phase, the capillary length « for the matrix phase is given
by

(2.2)

20V,

CH{(CpY — Co)G,,

a= (2.3)

o is the interfacial energy, v,, is the molar volume of the
matrix phase, Cp9 is the equilibrium concentration at a
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planar interface in the particle phase, and G','n is the sec-
ond derivative of the molar free energy with respect to
composition of the matrix phase. The capillary length is
a material constant with a typical value of 108 — 10—10
m. Although Eq. (2.2) is not valid for small particles,
since the concentration becomes infinite as R goes to
zero, the fraction of these particles at any moment is
sufficiently small so that Eq. (2.2) is assumed to be valid
for all particles. The flux conservation condition at each
point on the interface of a particle is

e . ac
(G = Co)Vp = D—

7 (2.4)

where V,, is the normal velocity of the interface, D is the
diffusion coefficient in the matrix phase, n is a normal
to the interface which is directed from the particle to-
ward the matrix, and 8/0n denotes the derivative in the
direction of n. For a spherical particle, V), is given by

dR
Vo= —. 2.5
n = (2.5)
Mass is conserved in the system so that the normal
derivative of the concentration is zero at each point on

the external boundary,

e
— =0 on S, (2.6)
an
where n is the normal to the external sphere, which is
directed inward, toward the matrix.

The problem can be recast in the following dimension-

less variables,

,— Ro(C—Cz)

2.7
aCrl ’ (2.7)
R
= — 2.8
T RU, ( )
eq
p = CmDa (2.9)

P 0

where Ry is the initial average radius. Dropping the
prime on ¢, Egs. (2.1), (2.2), (2.4), and (2.6) become

Viu =0, (2.10)
-1 (2.11)
u(r) = e .
du
Un %, (212)
Gu =0 on S, (2.13)
on

where v,, is the dimensionless normal velocity of the in-
terface. Equations (2.10)—(2.13) are the governing equa-
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tions of the problem. This is a classical multiparticle
diffusion problem and has been investigated by other
workers. Beenakker and Ross [34] expressed the solution
to this system using a set of irreducible tensors. This
method was extended for nonconstant interfacial concen-
tration by Abinandanan and Johnson [35,36]. Imaeda
and Kawasaki [37] solved this problem for the case of non-
spherical particles using a multipole expansion method.
Here we reformulate the diffusion problem into an inte-
gral form which automatically accounts for the boundary
conditions. Applying Green’s formula for the matrix,

/V [w(q@)V?g(p,q) — V*u(q)g(p,q)] dQ

-y (229 2y )
_ /S (u(Q)agéI;;Q) ~ 6;(;1) g(p’q)) da,
(2.14)

where V,, is the volume of the matrix, S; is the surface
of the particle j, p is a field point, q is an integration
point, g(p, q) is defined as

1

g(p,q) = ——, 2.15
(p,q) p_q] (2.15)
and g(p, q) satisfies Poisson’s equation,

V(p,q) = —475(p - q), (2.16)

where §(p — q) is a Dirac delta function. Using the prop-
erties of the delta function, the first part of the left-hand
side of Eq. (2.14) becomes

/ u(q)V3g(p,q)dQ

= ~47r/v u(q)é(p — q)dQ
—47u(p), p in the matrix,

={ —2nu(p), ponSjorsS,
0, p inside a particle.

(2.17)

Since the concentration in the matrix at the interface is
constant, u;, the value of the double layer potential due
to the particles, the first term on the right-hand side of
Eq. (2.14), becomes [38],

9g(p,q)
/5, u(‘l)“‘an—dq

q

—4muj, p inside particle 7,
=<{ —2muj, ponsS;, (2.18)
0, p in the matrix.

Substituting Egs. (2.10), (2.13), (2.17), and (2.18) into
Eq. (2.14) yields
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1 N
> /5 o(@g(p,a)datuon,  (219)

where o(q) is the single layer density,

Ou(q) ’

2.20
= (2.20)

o(q) =

and ugp is a constant. To arrive at Eq. (2.20), we have
used the asymptotic form for the contribution to the con-
centration from the external surface which is found in the
limit where the radius of the external sphere is infinitely
large [39],

1 99(p, ) )
1 /s u(q)—F— o ——=2dq = ugo + O (R, ) (2.21)
where R, is the radius of the external sphere and p = |p|.
Equation (2.19) is valid when p is in the matrix, on
S; and also inside S;. Equation (2.19) gives the poten-
tial inside S; to be a constant whose value can be chosen
to be given by the Gibbs-Thomson boundary condition,
Eq. (2.11). In reality, the concentration inside a parti-
cle is not constant, as the concentration within a particle
changes with its radius. However, this effect is small
for most systems and thus we shall neglect it. Equation
(2.19) is the integral form of the concentration, or, using
the electrostatic analogy, the potential. The potential at
p is given by the sum of the single layer potentials gen-
erated by the density o(q) on the surface of the particles
and a constant. Now the problem is to find o(q). Us-
ing the definition of o(q), Eq. (2.20), an equation for the
single layer density can be found by taking the surface
normal derivative of Eq. (2.19) on particle j,

ou(p) _

Bn, = Bmy ( 47;2:/ 9)g(p, ) )

p on S;.

(2.22)

When both the field point and the integration point are
located on particle j, g(p,q) is singular. However, the
integral is defined in this case and the normal derivative
is given by the boundary relation [38],

on, on,

—27o(p). (2.23)

Using Eq. (2.23), Eq. (2.22) becomes

Ou(p) _ 1 %P9 ;. oy
o = (fsj"(q)_an,, da-2 (p))
1 < dg(p,q)
—_ ( )—.
™ kz;t] ~[5'A 74 6nP

Rewriting Eq. (2.24) using Eq. (2.20) yields

o(p) — __E/ a’(q) g(pvq)d

dq. (2.24)

(2.25)
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Equation (2.25) is the homogeneous Fredholm integral
equation of the second kind. A solution of this equa-
tion gives a single layer density which yields a constant
potential on the surface of every particle. The adjoint
equation of Eq. (2.25) has N linearly independent so-
lutions [40]. Therefore by the Fredholm theorems, Eq.
(2.25) has N linearly independent solutions. We have
N boundary conditions by Eq. (2.11), so that o(p) can
be obtained by solving Egs. (2.19) and (2.25) with Eq.
(2.11). However, there is a constant in Eq. (2.19), ugo,
which has not been determined, and thus we need one
more equation, which is given by the boundary condition
on the external boundary, Eq. (2.13).

All of the integrals in Egs. (2.19) and (2.25) are de-
fined on spheres so that it is convenient to expand o(p),
9(p,q), and dg(p, q)/dn, in a series of spherical harmon-
ics. We define the spherical harmonics as

Y (r) = P™(cos 9, )e™#r, (2.26)
where 6, and ¢, are the polar and azimuthal angles of
a vector r, and P[*(cos@,) are the associated Legendre
functions. We shall use (r) in the argument of spheri-
cal harmonics as an abbreviation for the angles (6., o).
Note that the spherical harmonics are not normalized, so
the orthogonality integral becomes

27w T
/ / Y (r)Y,;™ (r) sin9,d9,dp,
0 0

_(=1)™an
= oy OOt (227)

where 9§, is the Kronecker delta.
Expanding o(p) in a series of spherical harmonics,

=) Y M(r;) 0k,
nm
ponS;,j=12,...,N, (2.28)

where r; is a vector locating a point on the surfa.ce of
particle j with its origin at the center of particle j, a
are constants, and

ZZZ

n=0m=—n

mn

(2.29)

When the field point is on particle j and the integration
point is on particle k, g(p,q) is given by

1

. E— 2.30
| rj —re — djg | (2:30)

9(p,q) =

where djj is a vector emanating from the center of par-
ticle j to the center of particle k. Equation (2.30) can
be expanded into a series of triple products of spherical
harmonics (see the Appendix),

’l"?‘k

Z Z( 1)™*™ K (n, m; n’ ml)d-n+n 1

nm n'm'

9(p,q) =

Yn:::;*-m (djk)Y,:n(rj)Y".;m (rk), (2.31)
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where 7;, 7, dj are norms of the vectors r;j, ri, dji,
respectively, and

(n+n' +m—m')!
(n+m)l(n' —m/)!"

K(n,m;n',m') = (-1)" (2.32)

Using Egs. (2.28) and (2.31) we can integrate the right-
hand of Eq. (2.19),

/ o(q)g(p,q)dq
Sk

n, n'+2
R | A LI
ZZ 2n’+1 nm’"’m)W
XYn_.Sjm (djr)Y, (r])afn’n”
p on S;, q on Sk. (2.33)

Since the particles are spherical and the surface normal
derivatives are taken outward to the particles, the normal
derivative of the single layer potential on particle j is
given by differentiating Eq. (2.33) with respect to ;,

/ o(q 2929 99(p,q) , dq
Sk

on,

n—1,n'+2
(=1)™4mn roonTi Tk
=22 gy Kwminm)
nmn'm
XY™ (d ) Y (r5)ak e,
p on S;, q on Sk. (2.34)

When both the integration point and the field point
are located on the same particle, g(p,q) is singular and
cannot be expanded into a series of spherical harmonics.
However, the single layer potential due to particle 7 for
all p except on §; is given by

/ o(q)g(p,q)dq

j

4T .
=Y Y (P,
p"/r;.‘ t p inside S,
2 : (2.35)
{ r;-'+ /p™*1,  p outside S;.

Since the single layer potential is continuous across the
boundary, the integral on S; can be evaluated by setting
p = in Eq. (2.35),

4mr;

yq)d .
/SU(Q)QP q)dq = Zz Y
p on Sj.

)amn’
(2.36)

The normal derivative of the single layer potential is
given by differentiating Eq. (2.35) by p. However, the
normal derivative is discontinuous across the boundary.
Using the boundary relation, Eq. (2.23), the outward nor-
mal derivative is given by the limit as p — r;+,

9 n+2
lim [ ——
pori+ (anp nz 2n+1 )2 prl "‘")

=/ a(q)%dq—%w(p). (2.37)
s; P

Thus,

dg(p,q) 2m ;
DY g = - Y™ (p)a?
/s,. o(q) an, q 2oyt (P)atn,

p on S;. (2.38)

All of the integrals in Egs. (2.19) and (2.25) have been
obtained.

Substituting Egs. (2.34) and (2.38) into Eq. (2.25)
yields,

1 .
o(r;) = Z myﬁn r;)ar,,

n—1,n'+2
rrTr
B 3) 3p D AR
e +n'+1
k#j nm n'm! 2n +1 dnkn
XYn—_:Z;*-m (d]k)Ym(r]) Anints
ponS;,j=1,2,...,N. (2.39)

Using Eq. (2.28) and equating both sides of Eq. (2.39)
for the same order of spherical harmonics with respect to
r; yields

N
2 1
_2 § (=)™ nt K(n,m;n',m’)
/ 2n' +1
k;égn’m’
7‘"+1

J k —m+m/’ . k
dn+n'+1 Yn+n’ (dJk)bm’n’

(n>1), (2.40)
where
bl =130l (2.41)

Now the integral equation, Eq. (2.25), has been reduced
to a system of linear equations. Note that Eq. (2.40) is
not valid when n = 0, since both sides of Eq. (2.39) are
equal when n = 0. 7’ in Eq. (2.40) can take the value
0, so this system of equations allows one to determine
all the coefficients of the spherical harmonics once b},
is specified. Substituting Eqgs. (2.33), (2.36), and (2.40)
with the boundary condition, Eq. (2.11), into Eq. (2.19)
gives

1.
7=‘7b30+“°°
1)n n 1
— Y™ (d; ,
gzm T D) )
on S,'. (242)

Since o(r;) has been chosen to satisfy Eq. (2.25), the
concentration is constant at the interface and thus there
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are no terms in Eq. (2.42) which depend on the location
of a point on the interface of a particle. The remaining
unknown constant ugo is given by the boundary condition
on the external boundary, Eq. (2.13), which gives [39],

N .
Zb{,o =0.

This is the well known global mass conservation con-
straint which is used to determine ugo. Thus, Egs. (2.40),
(2.42), and (2.43) yield an oo x oo set of linear equations
for the constants 7,,, and ugo.

The volumetric growth rate of a particle is given by

(2.43)

dv;
_— = n d
0t /Sjv(q)q

where V; is the volume of particle j. Using Egs. (2.12),
(2.20), and (2.28) in Eq. (2.44) yields

(2.44)

av;
dt
From now on bgg, without the factor 4, will be called
the growth rate of the particle. The change in the vector

locating the center of mass of particle j, 6R;, in the time
interval 8t is given by

1 27 £ i +vndt )
= dr sin 6d6d
OR; AT /0 /(; /0 rrdr sin ©

1 /21!’ /ﬂ' /‘I‘j 2 X
—_—— rredrsin 8d@doy, 2.46
V@ o o Jo (246)

where r is a vector emanating from the center of a particle
to a point on the interface at time ¢. Taking the limit
0t — 0 and using Eq. (2.12) yields the migration rate of
a spherical particle due to a non-spherically-symmetric
diffusion field,

= 4nbl,. (2.45)

(2.47)

de 1 2n ki3 2 .

hainie? R ¢ sin 0dOdp.
p V,(t)/o /0 orr; sin I
Using Eq. (2.28) in Eq. (2.47) yields the migration rate

of the particle in terms of the coefficients of the n = 1
spherical harmonics,

dR; 1

Dt R 2.48
dt rf ( )

[b{I — 3600, b, + 3000 b(’n] .
This particle migration is strictly a manifestation of a
non-spherically-symmetric diffusion field. Thus, this ef-
fect is generic to the coarsening process in high volume

fraction systems and is not a result of a flow of the ma-
trix.

III. NUMERICAL SIMULATION

If the expansion for the single layer density is truncated
at n., one obtains an [N(n. + 1)2 + 1] x [N(n. + 1)2 +
1] linear system of equations for the unknown multipole
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moments. In the present simulation, we include only the
n =0 and n = 1 terms in the expansion. The n = 0 term
is the classical monopole term (referred to as M). The
n = 1 terms are the dipole terms (referred to as D) in the
spherical harmonics expansion. Although these dipole
terms lead to a nonuniform concentration gradient along
the surface of the particle, the particle will still remain
spherical. However, the center of the particle will move
with a velocity given by Eq. (2.48). If terms greater than
n = 1 are included, the particle will change its shape
from a sphere. Thus, the inclusion of these higher order
terms is inconsistent with our earlier assumption that
the particles are spherical and we shall therefore only
include monopole and dipole terms in our description of
the diffusion field.

In principle, all the particles in the system interact
with each other, and thus the linear system of equations
for the multipole moments is extremely large. However,
the interaction between particles at large distances of sep-
aration is negligible, since the interparticle interactions
are screened out. This, in turn, greatly reduces the size of
the linear system which needs to be solved to determine
the multipole moments. The screening is due to the mass
conservation constraint. To illustrate, for the monopole
approximation, the growth rate of a particle is given by
the summation of the growth rates of the other parti-
cles divided by the separation distance, as shown in Eq.
(2.42) with n = 0. Thus, the effect of other particles on
the growth rate of an individual particle decreases as the
inverse of the separation distance. However, the number
of particles in a spherical shell at that separation dis-
tance increases as the square of the separation distance.
This suggests that the interaction between particles at
large distances of separation increases linearly with the
distance from a particle. However, since the summation
of the growth rates for the entire system is zero, the sum-
mation of the growth rates of particles in a spherical shell
at a large distance from a particle is expected to approach
zero because the number of particles in that shell becomes
large. Thus, the interaction of a particle with others at
large distances becomes smaller as the distance increases.
The growth rate of a given particle, considering only the
particles within a certain distance, the cutoff distance, is
expected to approach an asymptotic value as this cutoff
distance increases. Figure 1 shows the growth rate of
a particle where only those particles within a spherical
region of radius equal to the cutoff distance from a par-
ticle, z., have been considered at a volume fraction of
0.1. It is clear that the growth rate of the particle ap-
proaches a constant as the cutoff distance increases. To
obtain a 1% accuracy in the growth rate of a particle,
compared to its asymptotic value, within the monopole
approximation about 130, 120, 100, and 80 particles have
to be included within the cutoff distance for volume frac-
tions of 0.05, 0.1, 0.2, and 0.3, respectively, and using the
monopole plus dipole approximation about 60, 50, and
30 particles are necessary for volume fractions of 0.1, 0.2,
and 0.3, respectively. The above numbers are estimates
found by examining the growth rates of large particles.
For small particles, which have growth rates less than ap-
proximately —0.5, the growth rate converges much faster
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FIG. 1. The growth rate of a particle as a function of the
cutoff distance, z., relative to the average radius (r) at a
volume fraction of 0.1.

as the cutoff distance increases than that for large par-
ticles. This is because the effects of the other particles
become small as the radius of a particle becomes small.
Multiplying Eq. (2.42) by r; and rewriting,

bf)o = (uOo’I'i - 1)

—r~iz(_l)n’"? L ymdg)b,. (3.1)
PP TR I

When r; approaches 0, b}, becomes —1 regardless of the
order of the multipole moment kept in the solution to the
diffusion field. For small particles, the term ugor; — 1 is
dominant due to a factor r; before the summations. Inter-
estingly, the convergence rate of the particle growth rate
using the monopole plus dipole approximation is gener-
ally faster than that of the monopole approximation. In
addition, the convergence rates of the dipole moments
are the same as that of the growth rate.

The simulations were performed at volume fractions
of 0.05, 0.1, 0.2, and 0.3. At a volume fraction of 0.05
only the monopole approximation was employed, since
the dipole contributions are expected to be small. At
volume fractions of 0.05, 0.2, and 0.3, the particles were
placed at random locations within a box, but with no
particle overlap. This method of placement is denoted
by d = 0. At a volume fraction of 0.1 two different meth-
ods were used to place particles in the box. The first
method was identical to that used at the other volume
fractions. The second method was to place the particles
at random within the box, except that a small spherical
shell, or depletion zone, surrounding each particle was
created wherein particles could not be placed. In this
case the thickness of the shell or size of the depletion zone
was chosen to be 0.5 times the radius of a particle, and
hence these calculations will be denoted by d = 0.5. In
the Rikvold and Gunton model [28], the depletion zone
is given by ¢~ 1/3 — 1, where ¢ is the volume fraction
of particles. At a volume fraction of 0.1 the depletion
zone is then given by 1.15. However, if a depletion zone
higher than 0.6 is employed, it is very difficult to success-

fully place the particles in the box, and thus we limited
the depletion zone size to 0.5. In two-phase systems cre-
ated by a nucleation and growth process, for example,
the initial spatial distribution of particles is related to
the spatial distribution of nucleation sites, and thus may
be different from either of the two initial spatial distribu-
tions we employed. Nevertheless, if the long-time state of
the system can be made time independent under the scal-
ing of the average particle radius, then any initial spatial
distribution of particles should evolve to a unique scaled
form.

In order to access the long-time behavior of the sys-
tem, we employed 20000 particles at the beginning of
the simulations. Calculations at a volume fraction of 0.1
were also performed with 50 000 particles to ensure that
20 000 particles were sufficient to allow the system to ap-
proach a scaled time independent state. The procedure
of each simulation is as follows,

1. 20000 particles which satisfy the particle size dis-
tribution function found near the end of a previous run
are placed at random locations, with or without deple-
tion zones, in a box. The box is repeated periodically to
fill all space.

2. The growth rates and the migration rates of the
particles are calculated.

3. The particle volume and location are updated using
the simple explicit Euler method.

4. Procedures 2 and 3 are repeated until the number
of particles reaches 100.

The radius and the location of the particles are stored
every 30 time steps. The cutoff distances using the
monopole approximation are chosen to be 15, 10.5, 7.5,
and 6.3 times the average particle radius for volume frac-
tions of 0.05, 0.1, 0.2, and 0.3, respectively. The cutoff
distances using the monopole plus dipole approximation
are 9, 6.4, and 5.3 for volume fractions of 0.1, 0.2, and
0.3, respectively. It is expected that (r)3, where (r) is
the average particle radius, is proportional to time so
that the time step A can be given by A = Cy,(r)® where
C4s is a constant. This method causes the volume frac-
tion to increase during the simulations, so that the value
of C;, has to be chosen carefully. This increase in the vol-
ume fraction is because the volume of a particle can be-
come negative over a time step, since the volume change
of each particle is calculated by multiplying its growth
rate by A. Thus, more mass is transferred from this
shrinking particle to the other particles in the system
than should be possible based upon the actual volume of
this particle. In these simulations, C}, is chosen to be
0.01 for the monopole approximation and 0.0067 for the
monopole plus dipole approximation. Particles smaller
than 0.1(r) are removed from the system before calcu-
lating the growth rates to decrease the change in the
volume fraction. Using this procedure the volume frac-
tion change was typically 5%. Simulations with a smaller
time step, C;, = 0.0033, at a volume fraction of 0.1 were
also performed. In this case the volume fraction change
was less than 0.05%, and produced the same results as
the simulation using C, = 0.01.

Once the form of the scaled time independent parti-
cle size distribution was determined at a particular vol-
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ume fraction, this distribution was used as the initial
size distribution for a number of runs with different ini-
tial random spatial distributions of the particles. For the
monopole approximation, four runs were performed at a
volume fraction of 0.05 and eight runs were performed
at the other volume fractions. Also, four runs were per-
formed with initial depletion zones at a volume fraction
of 0.1. Finally, two runs with 50 000 particles were per-
formed with and without depletion zones at a volume
fraction of 0.1. For the monopole plus dipole approxima-
tion, three runs were performed at each volume fraction.
Unless otherwise mentioned, the results presented have
been averaged over the previously mentioned number of
independent runs.

As pointed out by Beenakker [15], particle overlaps are
frequently found during the simulations. It is nearly im-
possible to avoid some degree of particle overlap, since
the particles in the simulations are not permitted to
change their shape. If the higher order multipole mo-
ments are included in the description of the diffusion
field, and thus the particles can change their shape, over-
laps are not observed [37,41,42]. The effects of particle
overlap can be illustrated by considering the expression
for the growth rate of a particle in a two particle system
using the monopole approximation,

T — T2
ry+ 7y —2rra/d’

by = (3.2)
Thus, if d = 2r1r3/(r1 + 72), by is singular and changes
sign for d less than this value. A similar result can be
obtained for the monopole plus dipole approximation. In
contrast, if all the terms in the multipole expansion are
included, the growth rate becomes singular at the contact
distance, d = r, + ;. Since the growth rate changes con-
tinuously for small overlaps using either the monopole or
monopole plus dipole approximation, the effects of over-
lap are usually neglected. However, in some cases this
overlap introduces major errors in the calculations. For
example, at a volume fraction of 0.4, within the monopole
plus dipole approximation, the magnitude of the parti-
cle overlaps was sufficiently large to cause a very large
change in the volume fraction of the particles and the par-
ticle size distribution to have a long tail at large radius.
Table I shows the fraction of the overlapping particles
and the average over all the overlapping particles of the
overlap length divided by the radius of the particle near
the end of the simulations. At a volume fraction of 0.05

TABLE 1. Fraction of the overlapping particles and average
over all the overlapping particles of the overlap length divided
by the particle radius for various volume fractions near the
end of the simulations.

Volume fraction Fraction Average overlap
0.05 M 0.002 0.10
0.1 M 0.026 0.12
M+ D 0.005 0.025
0.2 M 0.22 0.14
M+ D 0.054 0.061
0.3 M 0.72 0.16
M+D 0.28 0.074

the fraction of the overlapping particles is very small. As
volume fraction increases the fraction and the magnitude
of the overlap increases. However, if the dipole terms are
included, the fraction and magnitude of the overlap de-
creases significantly. This is due to particle migration.
Although at a volume fraction of 0.3, in the monopole
approximation, the overlap length divided by the radius
of the particle can be as large as 0.8, it is difficult to find
a particle where the overlap was sufficient to cause the
particle growth rate to become singular. Clearly, there
may be a large error in the growth rate of this particular
particle which has a relative overlap of 0.8. However, the
fraction of particles with such a large overlap is not large.
Thus, although these overlaps introduce significant error
in the spatial distribution functions, the error introduced
in the temporal behavior of the system is unclear.

IV. RESULTS AND DISCUSSION
A. Particle migration

The inclusion of multipole moments beyond a
monopole in the description of the diffusion field implies
that the centers of mass of particles will not remain fixed
in space. The particle migration is a result of the nonuni-
form concentration gradient over the surface of the parti-
cle. This particle migration can be significant. Figure 2
shows the radius and location of the center of a particle,
scaled by the initial average particle radius (rq) as a func-
tion of time at a volume fraction of 0.1. The initial loca-
tion of the center of the particle is chosen as the origin. At
the beginning of the calculation, this particle grows with
time as most of the particles in the system are smaller
than this particle. However, as the average particle ra-
dius increases with time this particle eventually shrinks
for t > 50. The total migration distance of this particle
is about 1.3(r), or slightly more than the initial radius
of the particle. At early times, ¢ < 10, the trajectory of
the particle is quite convoluted, reflecting the changing
local environment of this particular particle. Thus, dur-

rxy,z/<r,>

0 20 40 60 80 100

FIG. 2. The radius r and location of a particle, in terms
of the Cartesian coordinates z,y, 2z, as a function of time at a
volume fraction of 0.1.
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ing coarsening, both the sizes of the particles and their
locations change with time. This is also the major rea-
son why the fraction of overlapping particles decreases
with the addition of dipole terms in the description of
the diffusion field (see Table I). In an effort to assess the
importance of these particle migrations, simulations were
performed at a volume fraction of 0.3 using the monopole
plus dipole approximation but not allowing the particles
to migrate. In this case the volume fraction shift was
very large due to the large magnitude and fraction of the
particle overlap. This large shift in the volume fraction
is a result of including dipole terms without allowing the
particles to migrate, and thus the description of the diffu-
sion field was not self-consistent. Thus, we can speculate
that if the higher order terms beyond the dipole terms
are included to calculate the growth rates, the particles
must change shape to be self-consistent and avoid large
€rrors.

B. Radial distribution and pair correlation functions

Here we examine the development of spatial correla-
tions in real space. We define the radial distribution func-
tion as a ratio of the number of particles whose centers
lie within the spherical shell of radius  and thickness dz
surrounding a particle, to the number of particles in the
shell expected from the number density of the system,

G(z)=

[No. of particles in the spherical shell (observed)]
[No. of particles in the spherical shell (from density)]’

(4.1)

The radial distribution function is expected to approach
1 as z increases and is zero in the limit z — 0. Our
interest is in the shape of the radial distribution function
at intermediate distances. If the system is in the scaling
region, when the radial distribution function is scaled by

1.5

G(x)

05 +
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x/<r>

FIG. 3. Time evolution of the radial distribution function
without initial depletion zones (d = 0) at a volume fraction
of 0.1 using the monopole approximation.
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FIG. 4. Time evolution of the radial distribution function
with initial depletion zones (d = 0.5) at a volume fraction of
0.1 using the monopole approximation.

the average radius, it must be time independent. The
radial distribution function defined in Eq. (4.1) depends
only on the radius of the shell and the effect of particle
radius is ignored.

Figure 3 shows the time evolution of the radial dis-
tribution function scaled by the average particle radius
without the initial depletion zones (d = 0.0) at a volume
fraction of 0.1 using monopole approximation. There is
a small peak at about z/ (r) = 3 at t = 0. This is
a natural feature of the radial distribution function for
a randomly distributed polydisperse system [43]. Gen-
erally G(z) approaches 1 in an oscillatory manner with
increasing z/(r). The peak position shifts to the larger
x as time increases and the peak height decreases at the
beginning but increases at intermediate times. Figure 4
shows the time evolution of the radial distribution func-
tion at a volume fraction of 0.1 beginning with a spatial
distribution produced using depletion zones (d = 0.5)
and the monopole approximation. There is a large peak
at about z/(r) = 4 at t = 0 and oscillations in the radial
distribution function at larger z are more apparent. The
peak position shifts to smaller z/(r) as time increases,
opposite to the direction when beginning with a random
distribution without depletion zones (see Fig. 3), and the
peak height increases at the beginning but decreases at
intermediate times. Figure 5 shows the radial distribu-
tion function near the end of the simulations. The initial
radial distribution functions, d = 0 and d = 0.5, are also
shown in Fig. 5. As will be mentioned later, the scaled
particle size distribution is time independent within the
scatter of the data during the simulations, so that the
temporal evolution of the radial distribution function is
not due to significant changes in the scaled particle size
distribution. The radial distribution function changes
drastically at early times, but the changes become slower
as time increases, with the radial distribution function
becoming time independent, within our resolution, after
about ¢ = 25. At this time the number of particles in
the system is about 1000, corresponding to about 5% of
the initial number of particles. The results shown in Fig.
5 are an average of twelve different times corresponding
to 1000-100 particles over the noted range in time. It
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1.5 broken lines are the initial radial distribution functions
A of a random spatial distribution without depletion zones.
FARN Generally, the number density of particles near a particle
o\ is less than that of the random distribution and the peak
1.0 | ———— s positions shift to larger distances. As volume fraction
—_ / increases, the differences between the time independent
S/ | —— (=0 (d=0) radial distribution function and the initial random distri-
| ———- t=0(d=0.5) bution decreases. Although the differences between the
05 / —— 23 <t <240 (M, d=0) time independent radial distribution function and the ini-
———- 27 <t <240 (M, d=0.5) tial random distribution at a volume fraction of 0.3 are
—-—-- 25 <t <240 (M+D, d=0) small, this does not mean that the particle spatial corre-
lations in the late stage are close to those of a random
0.0 L . " distribution. This will be shown by examining the pair

0 2 4 6 8 10 correlation functions.

FIG. 5. The radial distribution functions in the late stage
at a volume fraction of 0.1, along with the initial radial dis-
tribution functions.

should be emphasized that the radial distribution func-
tions produced using either an initial depletion zone or
no depletion zone yield nearly the same radial distribu-
tion function near the end of the simulations. The long-
time results fall between the two initial radial distribution
functions. In addition, the similarity of the results shows
that starting with 50 000 particles or 20 000 particles has
no effect on the results. Thus, it appears that the system
chooses a unique scaled time independent spatial distri-
bution of particles. The radial distribution function in
the late stage using the monopole plus dipole approxi-
mation, d = 0, is also shown in Fig. 5. At this volume
fraction, the differences between the two approximations
are small.

Figure 6 shows the radial distribution functions at var-
ious volume fractions. The solid lines are the results near
the end of the simulations using the monopole plus dipole
approximation. The results using the monopole approx-
imation are shown at a volume fraction of 0.05. The

G(x)

x/<r>

FIG. 6. The radial distribution functions at various volume
fractions. The solid lines are the results in the late stage. The
broken lines are the initial radial distribution functions with
d=0.

Since the effect of particle size is not considered in the
radial distribution function, we introduce a pair corre-
lation function G(r,r’,z). The pair correlation function
is defined as the number of particles of radius v’ whose
centers lie within the spherical shell of radius = and thick-
ness dz surrounding a particle of radius r divided by that
expected from the number density of particles of size r’
in the system. G(r,r’,z) approaches 1 as = goes to in-
finity and is zero when = < r + r’. Note that G(r,r', z)
and G(r',r,z) are identical. Although the pair correla-
tion function is defined for every pair of r’s, the number
of particles in the system is not large enough to inves-
tigate all possible pairs. Thus the particles are divided
into three classes, smaller than 0.75(r), between 0.75(r)
and 1.25(r), and larger than 1.25(r); we will refer to each
size range as small, medium, and large, respectively.

Figures 7—-10 show the small-small, small-medium,
small-large, and large-large correlation functions, respec-
tively, at ¢ = 0 and near the end of the simulations at a
volume fraction of 0.1. The late stage results shown in
these figures are an average of twelve different times, in
the same manner as was done for the radial distribution
functions shown in Fig. 5. An important feature evident
in the small-small correlation function shown in Fig. 7
is that near the end of the simulation a large depletion

1.5
small-small
10 b Tl e s
<
T
=
O
05 e 120 (d=0.5)
—— 23 <t <240 (M, d=0)
—— 27<t<240 (M, d=0.5)
—-=-- 25 <t <240 (M+D, d=0)
0.0 : L | .
0 2 4 6 8 10

x/<r>

FIG. 7. The small-small correlation function at a volume
fraction of 0.1. The initial and late-stage correlation functions
are shown. The correlation functions in the late stage were
computed using either the monopole or monopole plus dipole
approximation.



3870 NORIO AKAIWA AND P. W. VOORHEES 49
1.5
15 F small-medium large-large
1/.\
- 10 t :
=10k R = [
w "
= =2
O —— =0 (d=0) o [ — =0 (d=0)
05 | t=0 (d=0.5) 05 F t=0 (d=0.5)
—— 23 <t<240 (M, d=0) ' —— 23 <t<240 (M, d=0)
27 <t <240 (M, d=0.5) F—— 27 <t<240 (M, d=0.5)
——-= 25 < t < 240 (M+D, d=0) ;== 25 <1< 240 (M+D, d=0)
OO L I L 00 L d S L |
0 2 4 6 8 10 0 2 4 6 8 10

x/<r>

FIG. 8. The initial and late-stage small-medium correla-
tion function at a volume fraction of 0.1.

zone with a width of z/(r) = 1.5 is present. This is larger
than the depletion zone of the initial spatial distribution
using d = 0.5. Also, the peak in the long-time corre-
lation function, which is large in the initial distribution
of d = 0.5, is not apparent. Similar trends can be ob-
served in the small-medium correlation function, Fig. 8.
Although a depletion zone exists for small-medium parti-
cles, the size of the depletion zone is now only as large as
that of the initial spatial distribution with d=0.5. Also, a
small peak in the correlation function is apparent in this
case. Although the positions of the peaks in the small-
medium correlation function are the same as that of the
initial spatial distribution with d = 0.5, the heights of the
peaks are much lower. Finally, the large oscillations in
the initial small-medium correlation function produced
using d = 0.5 are not apparent in the late-time results.
As shown in the small-large correlation function for d = 0
using the monopole approximation, Fig. 9, for still larger
particle sizes, there is no depletion zone. In this case,
the density of particles gradually goes to zero at small
z/(r), finally becoming zero where the initial density of
particles with d = 0 is zero. As the particles were placed
at random locations, but without overlaps for d = 0,
the point at which G(r,r’, z) is zero is approximately the
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FIG. 9. The initial and late-stage small-large correlation
function at a volume fraction of 0.1.

x/<r>

FIG. 10. The initial and late-stage large-large correlation
function at a volume fraction of 0.1.

lower limit for the value of z/(r) at which the particle
density can be nonzero. This can be clearly observed
in the large-large correlation function, Fig. 10. In both
of these cases the late-time results fall between the two
initial correlation functions. The medium-medium and
medium-large correlation functions are similar to those
of the large-large correlation function [39]. The correla-
tion functions produced using the monopole plus dipole
approximation are also shown in Figs. 7—10. The re-
sults show similar trends, although the peak heights are
slightly higher than those found with the monopole ap-
proximation. In general, except for the small-small cor-
relation functions, the number density of the particles at
small z/(r) is less than that produced using no depletion
zones, d = 0.0, but higher than that produced using a
depletion zone of d = 0.5.

Although the scaled time independent spatial correla-
tion functions found at a volume fraction of 0.1 for the
monopole and monopole plus dipole approximations are
nearly identical, this is not the case at a volume fraction
of 0.3 (see Fig. 11). For example, the large-large corre-

small-small

small-medium

G(r,r’ ,x)

small-large

large-large

— t=0
...... 20<t< 182 (M)
— 18 <t< 185 (M+D)

0 2 4 6 8
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FIG. 11. The initial and late-stage pair correlation func-
tions at a volume fraction of 0.3.
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lation function found using the monopole approximation
has an extended tail at small distances. This tail implies
that a nonzero density of large particles will exist sur-
rounding another large particle at distances below that
of the random d = 0 initial spatial distribution. In addi-
tion, as shown in Table I, the fraction of overlapping par-
ticles using the monopole approximation is much larger
than that found using the monopole plus dipole approx-
imation at this volume fraction. Thus, the tail at small
distances found using the monopole approximation may
be due to extensive particle overlaps. At a volume frac-
tion of 0.2, this same problem with the monopole approx-
imation is present; however, the differences between the
scaled spatial correlation functions using the two approx-
imations are not as large as those at a volume fraction of
0.3. Therefore, the monopole approximation gives a poor
representation of the diffusion field in a system undergo-
ing coarsening at volume fractions higher than approxi-
mately 0.1. At a volume fraction of 0.3, the large-large
correlation function using the monopole plus dipole ap-
proximation shows a very small tail at small distances.
This suggests that the effects of changes in particle shape
will be important in systems with volume fractions in ex-
cess of 0.3.

In contrast to the similarity in the initial and late-
time radial distribution functions at a volume fraction of
0.3, clear differences exist between the initial and late-
time correlation functions. Specifically, a depletion zone
is present in the small-small correlation function and a
depletion zone is not present in the small-medium, small-
large, and large-large correlation functions. In addition,
the number density of particles near a particle is less
than that of the initial random distribution for the small-
medium and small-large correlation functions. For the
large-large correlation function, the differences between
the initial and late-stage scaled correlation functions are
small. One reason for this may be that the dense pack-
ing of particles at this volume fraction will not allow the
large particles to assume a spatial distribution which is
much different from that of a random spatial distribu-
tion. Thus, the trends in the dependence of the spatial
correlation functions on particle radius observed at a vol-
unie fraction of 0.1 are also evident at a volume fraction
of 0.3.

A general conclusion which can be drawn from these
results is that the size of the depletion zone surrounding a
particle is a function of particle size. A depletion zone ex-
ists in the small-small correlation functions because the
majority of these particles are shrinking, and thus the
spacing between the interfaces of these small particles
increases as they shrink to zero size, even if they hap-
pened to be near one another. In contrast, as most large
particles are growing, if two of these growing particles
are located near one another the distance between the
interfaces of these particles can decrease with time. This
would happen if the two particles are approximately the
same size, so that the tendency of one particle growing
at the expense of the other is small, and if these parti-
cles are surrounded by smaller particles. Thus, the two
particles grow at the expense of the surrounding smaller
particles, instead of one another, and their interfaces can

almost touch. Eventually, however, the size difference be-
tween these large particles becomes important, and one
grows at the expense of the other. This process must
be fairly rare, for it depends on two large particles of
nearly the same size being located near each other. The
rarity of this occurrence is likely the reason why there is
only a small, but nonzero, probability of finding large and
medium particles near each other at very small distances
of separation.

It has been suggested that small particles tend to be
preferentially located near the large particles [17] since
very large particles always grow, resulting in the particles
in their vicinity being small. In addition, experiments in
a two-dimensional system [31] show a strong peak in the
small-large correlation function. As shown in Figs. 9 and
11, the small-large correlation functions also show similar
peaks. However, one must be careful in interpreting such
results. At a volume fraction of 0.1, the small-large cor-
relation function does show a higher peak than that of an
initial distribution without depletion zones, but a much
lower peak than that when the particles are placed in
the system with a depletion zone. In addition, the prob-
ability of finding a small particle near a large particle at
small distances of separation, z/(r) < 3, is smaller than
that of an initial random distribution without depletion
zones. This is because small particles which are located
near large particles disappear rapidly, due to the large
concentration gradient that exists between the two par-
ticles. Thus, at a volume fraction of 0.1, depending on the
distance, the probability of finding a small particle near
a large one can be either greater than or less than that of
a random distribution. At a volume fraction of 0.3, the
peak heights in the small-large correlation functions for
both the initial random and late-time spatial distribu-
tion are nearly the same. However, at smaller distances,
there are fewer smaller particles near large particles than
would be expected from an initial random distribution
(see the more accurate M + D curve). Thus, we find
that at both high and low volume fractions, strong lo-
cal diffusional interactions induce the density of smaller
particles near large particles to be lower than that of a
random distribution without depletion zones.

Attempts have been made to determine the particle
size distribution from the measured structure function
using the Percus-Yevick hard sphere model with deple-
tion zones [29,30]. In this spirit, we tried to reproduce the
late-time spatial correlation functions using a depletion
zone model for various values of d. As might be expected
from examining Figs. 7-11, a simple depletion zone model
was incapable of reproducing the late-time correlation
functions. This may be one reason why the particle size
distributions determined from scattering measurements
are much different from those predicted by theory.

C. The structure function

Particle spatial correlations are also characterized by
the structure function. The structure function is defined
as a spherically averaged Fourier transform of the con-
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centration field,
J S(k,t)dSy
J
1 .
= <I—/ U(x) exp(tk - x)dx
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where € is the solid angle in & space, |---
magnitude of a complex quantity,

S(k,t) =

2> . (4.2)

| denotes the

Ux) = u(x) - W), (4.3)
@) is the volume averaged concentration, and (---)q in
Eq. (4.2) is defined as the spherical average. We shall

assume that the concentration in the particles and in the
matrix are given by constants U, and U,,, respectively.
In reality, the concentration is not constant both in the
particles and in the matrix, but the variations in the
concentration in both phases are much smaller compared
with the difference between U, and U,,. Although both
U, and U,,, depend on the system under consideration and
experimental conditions, different values of U, and U,
only result in a change in the constant factor in Eq. (4.2).
Since our interest is the shape of the structure function
and not its magnitude, we shall choose U,, and U,, to be
1 and 0, respectively, for simplicity. Using the periodic
boundary conditions, and the spherical morphology of
each particle, Eq. (4.2) becomes,
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where N is the number of particles in the unit cell, d; is

a position vector of the center of particle j, and ¥(kr;)

is the form factor of a sphere,
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U(kr;) =3 (4.5)
The structure function was calculated using Eq. (4.4).
Taking the spherical average in Eq. (4.4) yields the spher-
ically averaged structure function for a polydisperse sys-
tem of spherical particles,

N

Sk,ty =3 [gwr?\l’(kfj)]z

J

+ZZ —7rr —71'1',

Jj 3'#3
< (kr;)® (krj: )S———‘n(kd“ ')

EL (4.6)

The first term in Eq. (4.6) represents the scattering in-
tensity from the individual particles. The second term
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FIG. 12. Time evolution of the scaled structure function
using the monopole approximation when the particles were
placed initially at random locations with no depletion zones
(d = 0) at a volume fraction of 0.1.

represents the interference between the particles and is
related to the pair correlation function through the dou-
ble summation. If the system is in the scaling region,
S(k,t) obeys the scaling law,

S(k,t) = (r(t))*s(q),

where ¢ = k(r(t)) and s(q) is the scaled time independent
structure function.

Figure 12 shows the time evolution of the structure
function, scaled by the cube of the average particle radius
using the monopole approximation, for a system where
the particles are placed randomly in the system with no
depletion zones (d = 0) at a volume fraction of 0.1. The
position of the peak increases with time and the peak
height increases initially and then appears to decrease at
intermediate times. The value of the structure function
at small k(r) decreases drastically as time increases. Fig-
ure 13 shows the time evolution of the scaled structure
function using the monopole approximation where the

(4.7)
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FIG. 13. Time evolution of the scaled structure function
using the monopole approximation when the particles were
placed initially at random locations with depletion zones
(d = 0.5) at a volume fraction of 0.1.
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particles are placed in the system at random using de-
pletion zones (d = 0.5) at a volume fraction of 0.1. The
peak position moves to smaller k(r) as time increases
and the peak height decreases initially but increases in
the intermediate stage. It is clear that mixtures created
by placing particles at random using a depletion zone
produces a better approximation to the scaled time inde-
pendent structure function than placing particles in the
system without depletion zones. However, the temporal
evolution of the scaled structure function beginning with
depletion zones is evident. Therefore, as our real space
correlation functions indicate, the depletion zone model
does not reproduce the proper spatial correlations. Since
the scaled particle size distributions did not change, to
within the resolution of our data, during these calcula-
tions, the changes in the structure functions observed in
Figures 12 and 13 are due solely to the development of
particle spatial correlations. Figs. 14 and 15 show the
scaled time independent structure functions, s(g), in the
late stage at volume fractions of 0.1 and 0.3, respectively.
The scaled structure functions become time independent
in the late stage, as expected. At a volume fraction
of 0.1, Fig. 14, all of the results agree reasonably well.
However, at a volume fraction of 0.3, Fig. 15, the differ-
ences between the structure functions using the monopole
and monopole plus dipole approximations are not small.
This difference is consistent with the difference in the
pair correlation functions found using the monopole and
monopole plus dipole approximations shown in Fig. 11.
The arrows in the figures denote the location of a sec-
ondary maximum in the structure function which will
be discussed later. Yao et al. [7] calculated the struc-
ture function using a system which initially had 1000
particles. The scaled structure functions they obtained
during coarsening for systems containing 500, 400, and
300 particles are not time independent. Since their re-
sults appear to correspond to times in the range 1-3 in
the present simulations, it is likely that the scaled spatial
correlations in their calculations have not reached their
time independent form.

The asymptotic behavior of the structure function at
small and large wave numbers has been investigated theo-
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FIG. 14. The scaled time independent structure function in
the late stage using the monopole and monopole plus dipole
approximations at a volume fraction of 0.1.
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FIG. 15. The scaled time independent structure function in
the late stage using the monopole and monopole plus dipole
approximations at a volume fraction of 0.3.

retically. For large wave numbers, the structure function
has the asymptotic form of s(g) ~ ¢~* known as Porod’s
law [44]. This is a result of the sharp interface between
the particle and matrix. For small wave numbers, the
asymptotic behavior of s(g) ~ ¢* has been proposed for
systems undergoing coarsening [33] and spinodal decom-
position [45-49]. This asymptotic dependence is due to
the presence of a certain form of the particle spatial cor-
relations. It is difficult to determine s(g) in these limits
experimentally because the scattering intensity is very
small at small and large q. Figure 16 shows a log-log
plot of the scaled structure function in the late stage.
The solid lines in the figure indicate slopes of 4 and —4,
respectively. As mentioned earlier, the radial distribution
function becomes time independent, to within the scat-
ter in the data, when the number of particles becomes
less than about 1000, or ¢ > 25. The structure function
except at several of the smallest wave numbers becomes
time independent at this point as well. The structure
function at the very lowest wave numbers appears to sys-
tematically decrease as time increases, despite the nearly
time independent correlation functions, when the num-
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FIG. 16. A log-log plot of the scaled structure function at a
volume fraction of 0.1 at various times calculated using both
the monopole and monopole plus dipole approximations.
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ber of particles is below 1000. However, the magnitude of
this change is quite small and can only be observed in a
log-log plot, such as Fig. 16. Nevertheless, the structure
function becomes time independent, to within the scatter
of the data, even when viewed on a log-log plot, when the
number of particles is less than about 300, or ¢ > 100,
corresponding to about 1.5% of the initial number of par-
ticles. The results at longer times using the simulations
beginning with 50 000 particles, are also shown in the fig-
ure. There is no significant difference between the results
with systems beginning with 20000 or 50000 particles.
The slopes of the structure function as a function of g
seems to approach 4 for small q. However, it is difficult
to determine accurately the asymptotic behavior of s(q)
at small wave numbers, since the largest wavelength is re-
stricted to the size of the computational cell. Although
our data have a slope which is nearly 4, at least one order
of magnitude smaller range of wave numbers is necessary
to establish accurately the slope of the structure function
at small wave numbers. Unfortunately, this will require
systems which have approximately 1000 times more par-
ticles than those used in these calculations.

As mentioned above, at large ¢ the structure function
decays as ¢~*. However, it is also evident from Fig.
16 that at large ¢ oscillations about this ¢=* decay are
present. In Figs. 14 and 15, the position of one of these
oscillations is indicated by the arrow; however, the am-
plitude of the oscillation is quite small. The existence of
these oscillations becomes apparent in a log-log plot of
s(g) vs g. A log-log plot of the time dependent structure
functions shown in Figs. 12 and 13 also shows these os-
cillations. In this case, the positions and amplitudes of
the oscillations do not depend on time, while the small
wave number portion of the structure function is time
dependent. For ¢ > 3.5 the scaled structure function was
time independent. This is also the case for both time
dependent and independent structure functions found at
the other volume fractions.

The origin of the oscillations follows from an analysis
of the long wave number limit of the structure function.
Specifically, for sufficiently large wave numbers the sec-
ond term in Eq. (4.6), which is related to the spatial ar-
rangement of the particles, is small compared to the first
term. Thus, in the large wave number limit the structure
function is approximately given by

N

Stk,t) =3 [%wr?\ll(krj)]z.

J

(4.8)

Figure 17 shows the structure function at large wave
numbers at volume fractions of 0.1 and 0.3. The solid
lines are calculated using Eq. (4.8). For ¢ > 3.5 the data
points and the solid lines agree well. This suggests that
the oscillations are simply due to the spherical shape of
the particles and the particle size distribution. This is
also consistent with the observation that the scaled struc-
ture function was time independent for ¢ > 3.5 even when
the scaled structure function at small ¢ was evolving in
time, since the scaled particle size distribution was time
independent during the simulation. At a volume frac-
tion of 0.1, the solid line agrees well with the data points
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FIG. 17. The large wave number behavior of the structure
function at volume fractions of 0.1 and 0.3.

almost all the way to the main peak of the structure func-
tion. However, this does not mean that the interference
term is not important near the main peak.

The existence of the oscillations in the large wave num-
ber portion of the structure function has been suggested
by Fratzl et al. [45]. They showed that the scattering in-
tensity from individual particles, without the interference
term, assuming the classical LSW particle size distribu-
tion approaches ¢g~* with such oscillations. They also
showed that the oscillations should become smaller as
the particle size distribution function becomes broader.
The existence of a secondary maximum in s(q) has also
been suggested theoretically by Tokuyama and Enomoto
[33]. In their theory, the shape of the particles is assumed
to be spherical at all times, but the secondary maximum
is observed only at the late stage. However, the particle
size distribution in their theory is a sharp Gaussian-like
distribution at the intermediate stage and is nearly the
same as our late-time results. Thus, it is unclear why no
oscillations are predicted by their theory in the interme-
diate stage as well. They also suggest that the secondary
maximum becomes more evident as volume fraction in-
creases [50].

In Fig. 17, the amplitude of the oscillations at a vol-
ume fraction of 0.3 is much larger than that at a vol-
ume fraction of 0.1 (remember that Fig. 17 is a log-log
plot). Fratzl [51] examined the particle size distribution
dependence of the oscillations using Eq. (4.8), but fixed
the value of s(q) at ¢ = 0 to be 1 for all distributions.
The results shown in Fig. 17 are not normalized in this
fashion. The values of s(0) for the solid lines in Fig.
17 are about 0.7 and 2.7 at volume fractions of 0.1 and
0.3, respectively. If the results in Fig. 17 are normalized
as Fratzl suggests, the magnitudes of the oscillations at
both volume fractions become quite similar, since the
difference between the two particle size distributions is
small, as will be shown in Fig. 23. The peak heights of
the structure functions in Fig. 17 are about 0.35 and 0.45
at volume fractions of 0.1 and 0.3, respectively. Thus, if
the amplitude of the oscillations is compared with the
peak height, the amplitude of the oscillations becomes
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larger as volume fraction increases. Oscillations in the
structure function are usually not observed experimen-
tally. However, some experiments show the oscillations
clearly [26,52]. Thus, we conclude from our results that
oscillations in the structure function are a generic char-
acteristic of the coarsening process for systems composed
of spherical particles.

Figure 18 shows the structure functions normalized by
$(gm) where g, is the wave number at which s(q) is a
maximum, versus ¢/¢m,. The results using the monopole
plus dipole approximation are shown for volume fractions
of 0.1, 0.2, and 0.3. At a volume fraction of 0.05, the re-
sults using the monopole approximation are shown. Al-
though the differences in the structure function between
the monopole and monopole plus dipole approximations
are small at a volume fraction of 0.1, the differences
become larger as volume fraction increases. Since the
monopole plus dipole approximation provides a much
better description of the diffusion field at volume frac-
tions exceeding 0.1 than does the monopole approxima-
tion, we only display the structure functions determined
using the monopole plus dipole approximation. It is ev-
ident that the structure function becomes narrower as
volume fraction increases. In order to compare the struc-
ture function with experiments and other theories, the
full width at half maximum (FWHM) as a function of
volume fraction is plotted in Fig. 19. The experimental
results shown are Hennion et al. [18] (Al-Zn), Komura et
al. [21] (Al-Zn), Guyot and Simon [19] (Al-Zn), Forouhi
and de Fontaine [22] (Al-Zn), Hoyt and de Fontaine [23]
(Al-Zn), Katano and Izumi [20] (Fe-Cr), Langmayr et al.
[27) (Al-Ag) and Kraitchman et al. (Al-Li) (see Hoyt and
de Fontaine [23]). The data points, except Langmayr et
al., are taken from Hoyt and de Fontaine [23] and Kostorz
[53]. The theoretical curves shown are Rikvold and Gun-
ton (RG) [28], Tokuyama and Enomoto (TE) [50], Hoyt
and de Fontaine (HF) [23], and Fratzl and Lebowitz (FL)
[54]. The RG and HF theories are based on a depletion
zone model with a monodisperse particle system. The TE
results are the solutions of a differential equation they de-
rived for the structure function. FL derived an equation
for the structure function using the asymptotic behavior
of s(q) at large ¢ and assuming the asymptotic behavior
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FIG. 18. The normalized structure function at various vol-
ume fractions.
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FIG. 19. The volume fraction dependence of the full width
at half maximum (FWHM) of the structure function.

of s(q) ~ ¢* at small g. The reason why the FL curve is
not smooth is because they assumed that the morphol-
ogy of the second phase varies with the volume fraction.
Specifically, they assumed that the particles are spheres,
rods, and plates at small, medium, and large volume frac-
tions, respectively. Finally, our results are also shown and
they agree well with the experimental measurement. In
contrast to the FL theory, in our work the morphology of
the second phase does not change with volume fraction.
In addition, it is unlikely that the morphology of the sec-
ond phase in all of the experiments shown in Fig. 19 is
spherical. Nevertheless, the experimental data appear to
agree well with an s(g) determined using a self-consistent
set of spatial correlations and particle size distributions.

V. KINETICS

In the late stage, the cube of the average particle radius

is expected to be proportional to time so that
(r}*+Co = Kt (5.1)

holds, where Cj is a constant and K is the rate constant.
Figure 20 shows the cube of the average particle size ver-
sus time at a volume fraction of 0.1. The large figure
shows that the long-time evolution of (r)® found using
a single run is described well by a straight line. How-
ever, this is not true in the initial stage. Figure 20 also
shows (r)? as a function of time for ¢ < 10 using the two
different initial spatial distributions given by d = 0 and
d = 0.5. The lines shown are not averaged results. Eight
and four independent results for d = 0 and d = 0.5 are
shown. At t > 3, the differences between the results us-
ing two different initial configurations of the system are
clearly evident. If the results at ¢ < 3 are magnified,
slight deviations between the results are also noticeable.
It is also obvious that the data points for ¢ < 6 do not
lie on a straight line. This is because the changes in
the spatial correlation functions are drastic in this time
range. In addition, the differences between the results
with d = 0 and d = 0.5 are due to the different initial
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FIG. 20. The cube of average particle radius versus time at
a volume fraction of 0.1 using the monopole approximation.
Inset shows the short-time behavior of the cube of the aver-
age radius using the random spatial distributions with and
without depletion zones.

spatial distributions. Although the initial form of the
spatial correlations affects the time dependence of (r)
at early times, at long times these differences disappear,
and a rate constant is obtained that is nearly identical
for all the initial spatial distributions at a given volume
fraction.

The rate constant was determined by calculating the
slope of the line given by the cube of the average particle
radius versus time using data in the range 23 < t < 240.
For times in this range, the number of particles in the
system was typically 1000-100. As mentioned earlier the
radial distribution functions become time independent
when the number of particles is less than 1000, while the
structure function at very low wave numbers displays a
small time dependence. This time dependence is likely
due to small changes in the particle spatial correlations.
Nevertheless, this weak time dependence of the structure
function appears to have no effect on the linearity of the
(r)® vs t data, and thus it is possible to use all the data
in the range 23 < t < 240 to determine the rate constant.
This is consistent with the observation that, even when
the structure function is strongly time dependent, the
scaled particle size distribution is nearly time indepen-
dent and the nonlinearity in a plot of (r)3 vs ¢ is difficult
to resolve. In addition, this larger time interval provides
higher quality data, since the number of particles in the
system is larger.

The rate constants of the cubic growth law, divided
by the LSW value of 4/9, are shown in Fig. 21. The
rate constants found through the numerical simulations
of Beenakker [15], Enomoto, Kawasaki, and Tokuyama
(EKT) [16], and Yao et al. [7], the mean-field theories
of Brailsford and Wynblatt (BW) [5], Marsh and Glicks-
man (MG) [6], and Yao et al. [7], and the statistical me-
chanical theories of Marqusee and Ross (MR) [8], and
Tokuyama, Kawasaki and Enomoto (TK) [10] are also
shown in the figure. Beenakker employed a system of
5000 initial particles and the simulation method is sim-
ilar to that used herein, but the number of particles in
the interaction range was smaller. EKT employed a sys-
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FIG. 21. The rate constant of the cubic growth rate K
normalized to the LSW value as a function of volume fraction

é.

tem of 10° initial particles but the simulation method
is based on a one-dimensional model which is quite dif-
ferent from the present method. Yao et al.’s method is
the same as Voorhees and Glicksman’s method [14], but
the initial number of particles was 1000. The monopole
approximation was used in all of the above simulations.
The BW result was obtained by approximating the aver-
age concentration field in a manner such that it satisfies a
modified Helmholtz equation. The MG results are based
on the self-similarity hypothesis and the assumption that
a similar continuity equation holds for an interaction vol-
ume as well as for the particle volume. Yao et al.’s theory
is similar to the BW theory, but a source term is added
in the Helmholtz equation. However, this theory is valid
only for volume fractions less than 0.06. MR and TK
statistically averaged the concentration field, within the
monopole approximation, and obtained results up to or-
der of \/¢. As pointed out by Enomoto et al. [11] particle
correlation effects are not included in the MR theory.
The mean-field approaches give higher rate constants
and the statistical mechanical approaches give lower rate
constants than the present results, except at a volume
fraction of 0.05 where our results are quite close to that
of BW. The simulation results of EKT agree well with the
TK results; however, particle correlations are not taken
into account in the EKT simulation. The rate constants
of Beenakker and Yao et al. are higher than those of the
present simulations. This is because the system size em-
ployed in their simulations was not sufficiently large to
allow the two-phase mixture to reach the scaled time in-
dependent state and the rate constants were determined
by regressing all of the (r)® data obtained for a partic-
ular calculation. In particular, if we determine the rate
constant by employing only the initial 200 values of (r)3
in our calculations, corresponding to t < 5, our results
agree well with those of Beenakker and Yao et al. Also,
if the data points at ¢ < 10 are employed, the rate con-
stants fall between the final and ¢t < 5 values, indicating
that the rate constant slowly decreased with time un-
til the scaled time independent state was reached. As
shown in Fig. 19, the structure function of TE theory is
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much broader than that of the present results. Thus, the
difference in the rate constants predicted by the TK the-
ory and us at high volume fractions may be due to the
differences in the particle spatial correlations predicted
by TK and us. One possible reason for the difference in
the spatial correlations predicted by the TK theory and
those found in our simulations is that the TK theory is
correct only up to the order of the square root of the vol-
ume fraction, and thus at higher volume fractions higher
order terms may have to be included in the theory. In
general the rate constants determined using the dipole
approximation are only slightly higher than that found
using the monopole approximation. Therefore, the addi-
tion of dipole terms appears to have a large effect on the
spatial correlations at high volume fractions, but a com-
paratively small effect on the rate constant despite the
large fraction of overlapping particles when the monopole
approximation is employed. In Fig. 21, Marder’s results
are not shown, because his rate constants are larger than
all those shown by approximately a factor of 10. Unfortu-
nately, a comparison of these theories with experimental
results is not possible. The experiments are usually per-
formed at higher volume fractions, and for many cases
the material constants required to calculate the rate con-
stants are not known.

Consistent with earlier work [42], there is a distribu-
tion of growth rates for a particle of a given size and the
width of this distribution depends on p, where p = r/(r).
At lower values of p, the fluctuations in the growth rate
are smaller than at large p because, as mentioned earlier,
smaller particles do not interact as strongly with their
neighboring particles as do large particles. Although the
presence of fluctuations in the growth rate is well doc-
umented, we now have sufficient data to determine how
these fluctuations are distributed for a given particle size
class. Figure 22 shows the distribution of the growth
rates, h(bgo), in the range 0.95 < p < 1.05 at a volume
fraction of 0.1 which was determined using the monopole
approximation. In this case ffooo h(boo)dboo = 1. The dis-
tribution of growth rates in the scaling region and that
of a random spatial distribution for both d = 0.0 and
d = 0.5 are shown. The particles with negative boo are
particles which are surrounded locally by larger particles,

8.0
---------- 23 <t <240 (d=0)
R 27 <t <240 (d=0.5)
60 | --—-- random (d=0)
random (d=0.5)

S40 ¢
=

20}

0.0 ; ; S

2050 -025 000 025 050 075

Do

FIG. 22. The distribution of the growth rate in the range
0.95 < p < 1.05 at a volume fraction of 0.1.
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and particles with positive bgg are particles which are sur-
rounded by smaller particles. As shown in Fig. 22, the
distributions of the growth rates are almost identical in
the late stage. At ¢t = 0 the initial particle distribution
with d = 0 produces a broader range of growth rates than
that produced with d = 0.5. This is because, as shown in
Figs. 7-10, the particle density near a particle is higher
for a random distribution with d = 0 than that found
with either the distribution produced using d = 0.5 or
in the long-time limit. It is also clear from Fig. 22 that
fluctuations in the growth rate about the mean are not
symmetrically distributed; there are more particles with
large positive growth rates than particles with negative
growth rates of the same magnitude. The asymmetry in
the distribution of growth rates may be due the fact that
in the low volume fraction limit where the monopole ap-
proximation is valid, the effect of a particle on another
particle’s growth rate is simply related to the distance
between the centers of the particles. From geometrical
considerations, it is clear that it is possible to place more
smaller particles around a particle of a given size than it is
to place large particles around this same particle and, in
addition, the centers of these small particles will be closer
to this particle than the centers of the large particles. As
the smaller particles are closer to a given particle and
their number density may be higher, it is easier to obtain
particles with large positive growth rates than particles
with negative growth rates of the same magnitude.

The scaled particle size distribution, f(p), is obtained
by averaging the particle radii at twelve different times
in the late stage. As mentioned earlier, we employed
an initial particle size distribution which was the parti-
cle size distribution of a previous run at the same volume
fraction, and the scaled particle size distribution function
did not change, to within the scatter of the data, as the
spatial correlations were developing. Since the spatial
correlation functions are time dependent at the initial
and intermediate stages, we conclude that the particle
size distribution function is not a strong function of the
particle spatial correlations in this range of volume frac-
tion. Figure 23 shows the volume fraction dependence
of the particle size distribution function. The results us-
ing the monopole plus dipole approximation, except at a
volume fraction of 0.05, are shown. As mentioned ear-
lier, the addition of the dipole terms has a small effect
on the rate constant. This is also the case for the parti-
cle size distribution. The distribution function becomes
broader as volume fraction increases. We find that the
volume fraction dependence of the distribution function
is not strong. However, the difference between the LSW
distribution and the distribution function at a volume
fraction of 0.05 is large. This large change in the distri-
bution function at small volume fractions indicates that
the LSW distribution is quite unrealistic for nonzero vol-
ume fraction systems. Fig. 24 compares the particle size
distribution function at a volume fraction of 0.1 with the
results of other workers. Only the results of MR and TK
are shown so that it is possible to resolve the small dif-
ferences between the distributions. The BW distribution
function has about the same peak height as the MR re-
sult but it occurs at smaller p and is a bit narrower. The
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FIG. 23. Volume fraction dependence of the scaled particle
size distribution function.

MG distribution function lies between the MR and TK
results. Although the TK distribution function is the
closest to the present results, it is difficult to conclude
much via a comparison of distribution functions due to
the large amount of data necessary to produce a smooth
distribution function, and small differences between the
various theoretical predictions. As mentioned earlier the
effect of particle spatial correlations on the rate constant
is small at a volume fraction of 0.1. This is also the case
for the particle size distributions at a volume fraction 0.1,
as the MR theory neglects spatial correlations entirely.

VI. CONCLUSIONS

Large-scale numerical simulations of the coarsening
process in two-phase mixtures were performed. A
method was developed to solve the multiparticle diffu-
sion problem to an arbitrary degree of precision, assum-
ing that the particles are spherical. Using this solution to
the multiparticle diffusion problem, simulations were per-
formed using both monopole and monopole plus dipole
approximations. On the basis of these calculations we
can conclude the following:

(i) The commonly used monopole approximation is

2.0
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FIG. 24. The scaled particle size distribution function at a
volume fraction of 0.1, compared with the TK and MR results.

valid up to a volume fraction of about 0.1. At volume
fractions in excess of 0.1 dipole terms must be employed
to determine the diffusion field in the matrix. These
dipole terms have a small effect on the value of the rate
constant, but a large effect on the structure function and
the spatial correlations. These results also show that at
volume fractions exceeding 0.1 particle migration is an
essential aspect of the coarsening process, and that signif-
icant particle overlap occurs if these particle migrations
are neglected.

(ii) Unique volume fraction dependent spatial correla-
tions will be present in the late stage. These spatial cor-
relations are quite different from those of the random dis-
tributions created either with or without depletion zones
surrounding a particle. In the scaling regime large de-
pletion zones exist between small particles. The size of
the depletion zones becomes smaller as the size of the
particles increases, and depletion zones are not present
between large particles. The probability of finding small
particles in the immediate vicinity of large particles is
lower than that of a random spatial distribution with no
depletion zones. This is due to the strong diffusional in-
teraction between a small and large particle when they
are located near one another.

(iii) The temporal evolution of these spatial correla-
tions, both with and without depletion zones, induced
a significant time dependence in the shape of the scaled
structure function. Nevertheless, after sufficient time,
the scaled structure functions assumed a time indepen-
dent form regardless of the initial spatial arrangement of
the particles employed in the calculation.

(iv) At small wave numbers the slope of the structure

function in a log-log plot appears to approach 4. The
slope of the structure function at very large wave num-
bers is —4, but oscillations in the structure function were
observed at large wave numbers. The shape of the struc-
ture function at large wave numbers, and these oscilla-
tions can be described well by assuming that the struc-
ture function is given by the particle size distribution
function and the form factor for a sphere.

(v) The experimentally observed volume fraction de-
pendence of the full width at half maximum of the scaled
structure function agrees well with our calculations. This
suggests that an accurate description of both the parti-
cle size distribution function and the particle spatial cor-
relation functions is necessary to predict the structure
function.

(vi) The amplitude of the temporal power law for the
average particle radius changes by about a factor of 2 over
a volume fraction range of 0.05-0.3. The monopole plus
dipole approximation yielded slightly higher rate con-
stants than those given by the monopole approximation.

(vii) Fluctuations in the growth rate of a particle of a
given size, which result from variations in the local envi-
ronment of a particle, are not distributed symmetrically
about the average growth rate of particles in this size
class.
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APPENDIX

Spherical harmonics of an argument with a sum of two
vectors can be expanded into a sum of the products of two
spherical harmonics of the vectors in two ways [39,55-58],

|R; + Re " Y (R; + Ry)

=Y > mR (i)

n'=0m'=—n'

XY (R YT

n—n'

'(Ra). (A1)

1

my (R + Rk)

=2 ("

n'm'
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(R; > Ry). (A2)
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The primary difference between these expressions is that
the summation in the right-hand side of Eq. (A1) is trun-
cated at n = n’, but the summation in Eq. (A2) goes to
infinity. Also, there are no restrictions for R; and Ry in
Eq. (A1), but R; > R; in Eq. (A2). Equations (A1) and
(A2) are useful formulas; however, these are not widely
known.

Using Eq. (A2), changing indices in Eq. (A2) m to —m
and m' to —m/, Eq. (2.30) can be expanded into a series
of products of three spherical harmonics,

(pq)= —
9\p;q) = Ir'_rk_djkl
= Z my ™ (et djr) Yo (r5)
. e
= (-1)™™ K (n,m; n’,m')———] .
XY™ (i)Y (0) Y™ (x). (A3)

The variables are separated in Eq. (A3) so that integra-
tion can be performed easily.
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