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In this paper, a general formulation for a model of market-based agent-resource systems is proposed,
building on the computational ecosystem model of Huberman and Hogg [in The Ecology of Computation,
edited by B.A. Huberman (North-Holland, Amsterdam, 1988)]. Our approach, based on one-step Mar-
kov processes and Van Kampen's large-system-size expansion, allows the effects of fluctuations to be ex-
plored, particularly in finite systems where stochastic processes assume increasing importance.
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I. INTRODUCTION

With the increasing complexity of telecommunication
and computational systems, an urgent requirement is de-
veloping for theoretical frameworks for addressing basic
principles of distributed systems [1]. At present there is
insufKicient understanding of principles required to pre-
dict performance, to explain behavior, and to establish
design methodologies. There are also insufficient frame-
works to describe such distributed systems [2]. The sub-
stantial vacuum in theoretical bases for distributed com-
munication and computational systems stems largely
from the historical preoccupation of computer and
telecommunication science with uniprocessor systems [3].

The emergence of large decentralized systems is giving
rise to the need for a general theoretic guide to the
behavior of large collections of locally controlled, asyn-
chronous, and concurrent processes interacting with an
unpredictable environment. In particular this requires
understanding the relation between the overall behavior
of the computational system and that of its constituents,
whose decisions are based upon local, imperfect, delayed,
and conflicting information. In many other systetns, par-
ticularly in nature and societies, distributed systems with
very complex behavior and modes of operation have
evolved. There is a growing awareness that many of the
theoretical tools which have been developed with consid-
erable success to describe physical systems [4-7], partic-
ularly in condensed matter physics, may be exploited in
other fields, such as biology and economics [8-11].

An economic approach to open communications and
computational systems [1]has some intuitive appeal since
market mechanisms have evolved to facilitate resource
management in social systems and appear on the whole to
work reasonably well under certain conditions. In the
case of converging communication, computational,
broadcasting, and financial systems, it has been proposed
that market-consistent platforms may have implications
well beyond merely architectural and processing con-
siderations [12].

A theoretical framework has been formulated for
describing a self-organizing open computational system
with resources, free agents, and payofF mediated interac-
tions; the model overcomes the limitations inherent in

previous work [13,14]. The theory, encompassing the
large-system-size expansion due to Van Kampen [15,16],
allows a master equation for the evolution of the system
to be written in which deterministic and stochastic com-
ponents are clearly separable. The dominant contribu-
tion of the fluctuations is given by the first-order term in
the expansion and corresponds to a linear Fokker-Planck
equation (FPE). The theory allows for the effects of fluc-
tuations to be explored, particularly in finite systems
where such processes assume increasing importance.

II. MODEL

A central feature of open systems is the nonlinear na-
ture of their dynamics, which gives rise to a rich reper-
toire of behavioral regimes ranging from stable equilibri-
um to oscillations and chaotic states. The possible
behavioral regimes in an open system are called attrac-
tors. Nonlinear systems allow in general for multiple
solutions and phenomena such as instability and transi-
tion from one attractor of the system to another are ex-
pected to happen when the system is driven away from
equilibrium. A crucial element in understanding how
these phenomena take place is the role of fluctuations,
generated by the many degrees of freedom constituting
the system. One has therefore to construct a theory
which integrates both the deterministic evolution equa-
tion, describing the macroscopic behavior of the system,
and the stochastic part which deals with fluctuations
within the system.

Huberman and Hogg [13] considered a model for a
computational ecosystem which incorporates the basic
features of open nonhierarchical systems. The model is
marketlike and consists of a set of computational agents
capable of choosing among a given number of possible
resources or strategies in order to carry out various com-
putational tasks. Because of the lack of central control in
such systems, each computational agent makes freely its
choice according to its perceived payo8's of the available
resources. Various features such as asynchrony in execu-
tion, competition and/or cooperation among agents, in-
complete knowledge and delayed information can be
modeled through the payofF function. These features
generally lead to nonlinear dynamics, characteristic of in-
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teracting systems, resulting in a multitude of possible
behaviors in the computational ecosystem. One would
like to be able to identify the different regimes in order to
avoid nonoptimal strategies and chaotic behavior.

Kephart, Hogg, and Huberman [14] studied this mod-

el, including some of the above-mentioned features and
carried out detailed calculations in the case of a computa-
tional system with two resources. Their approach in
solving the dynamical equations of the system is based
mainly on computer simulations, compared with some
theoretical results. Their theoretical analysis is essential-

ly to treat the system in the mean-field approximation.
As argued by Kephart, Hogg, and Huberman, the mean-
field approach is certainly justifiable in systems consisting
of a large number of agents and indeed becomes exact
when this number is infinite. For systems with a relative-

ly small number of agents, however, the mean-field ap-
proximation cannot be relied on for an adequate descrip-
tion of the system's behavior and fluctuations have to be
taken into account.

In this paper we propose to build on the model for the
computational ecosystem of Huberman et al. and formu-
late a general theory of a market-based agent-resource
system consisting of free agents sharing the utilization of
available resources. Our approach allows the effects of
fluctuations to be investigated systematically in the form
of a large-system size expansion due to Van Kampen
[15,16].

In this section we write down a master equation for a
general agent-resource system, in analogy to Huberrnan
and Hogg s probabilistic evolution equation for a compu-
tational ecosystem with two resources. We look at the
master equation obtained as describing a Markovian
jump process, originally studied in physics and chemistry.
We then go on to apply Van Kampen's system size ex-

pansion in the case of an agent-resource system with two
resources, The deterministic equation for the behavior of
the system arises as the lowest-order term in the expan-
sion and is seen to coincide with the mean-field equation
which Kephart, Hogg, and Huberman derived. The main
contribution of the fluctuations comes in the form of a
linear Fokker-Planck equation. Up to this order the
noise in the system is linear and the solution of the rnas-

ter equation is given by a Gaussian (normal) distribution.
Nonlinear effects of fluctuations are then included as
small perturbations to the linear noise approximation.

In Sec. III some results for a two resource system in a
time-independent state are presented and discussed. Fi-
nally, Sec. IV summarizes the main points and suggests
directions for further work.

A. The master equation

In its simplest form, the model consists of X agents
sharing M resources in a distributed environment with no
central controller. The way this is achieved is by allow-

ing agents to bid for the available resources, based on the
evaluation of the payoff that each agent performs at any
given time in the operation. This evaluation is made
from the agent's point of view and may not necessarily be
correct or accurate, if incomplete knowledge or delayed

representing the probability that n, agents are using

resource 1, n2 agents are using resource 2, etc. at time t.
Conservation of the number of agents in the system im-

plies

M

g n, =N.

Moreover, the normalization condition requires

QP(n, t)=1, (3)

where the sum extends over all vectors n which satisfy re-

lation (2). Following Huberman and Hogg [13],we now

suppose that the probability distribution P at time t +ht
is related to the probability at time t through

P(n, t +At ) =g P(n:n')P(n', t ), (4)

where P(n:n') is the probability for a transition from a

distribution n to a distribution n occurring in the inter-

val ht. The sum is over all initial distributions n' which

are compatible with the constraint (2}. We make the fur-

ther assumption that, for a small enough time interval b t,
either no change occurs at all or there is a single change
from some resource j to some resource i performed by an

agent. This means that all the components of the vector
n are identical with the components of the vector n' ex-

cept when there is a single change in which case we have

n,'=n; —1, n' =n +1, n/, =. n& for kWi,j
meaning that resource i has one more user and resource j
one less at time t+ht. Separating off the term corre-

sponding to n' =n (no change) in Eq. (4), we have

P(n, t+ht}=P(n:n)P(n, t)+ g P( :n'nP}( 'nt .}
n'&n

The transition probability P(n:n') is proportional to At,

the initial number of agents using resource j, n', and the

probability that resource i is perceived to be better. This
latter probability is denoted by p, (n') where, in the gen-

eral case, it depends on the initial distribution n'. For

information are taken into account. In this paper, how-

ever, we are not concerned with giving well-defined

payoff functions as the exact form of these functions is ir-

relevant to the general formalism which is being present-
ed here [1]. For example, in the case of a computational
system the payoff may be related to computational rnea-

sures of system performance such as memory allocation,
execution time, computing accuracy, operating cost, etc.

At various times, agents will evaluate the perceived

payoffs corresponding to the available resources and a

fraction of these agents will switch to the resource with

the highest payoff. Because the process of payoff evalua-

tion does not happen continuously for all agents, a proba-
bilistic description seems suited to model the dynamics of
the system. One therefore defines the joint probability
distribution

P(n, t)=P(n „nz, . . . , nM, t)
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n'An we thus have

P(n:n') =anJp;(n')ht,

where the constant a represents the average number of
choices made by an agent in the time interval ht. The
probability for there to be no change (n'=n), P(n:n), is
given by one minus all the single changes with the initial
distribution n. Equation (6) is now written as

P(n, t+bt) P(n-, t)

~ ~ ~

~ ~ ~ ~
~ ~ ~ agents

JUmp

=ah, t —g g n, p;(n)P(n, t)

+g g n,'p;(n')P(n', t)

and the dynamical equation for the probability distribu-
tion P(n, t) is obtained by taking the limit ht ~0

P(n, t—)=a+ g [n 'p;(n')P(n', t ) —nj p;(n)P(n, t )],
i jxi

FIG. 1. Schematic diagram of a decentralized agent-resource
system made of computational agents sharing two resources.
The system's behavior is determined by the agents' evaluation of
the payoff associated with each resource.

(9)
where

which is interpreted as the master equation governing the
dynamics of the distributed agent-resource system withI resources and N agents, the components of the vector
n constituting the dynamic variables.

The two assumptions made above [(4) and (5)] confer
two important properties to systems whose dynamics is
governed by a master equation of the form given in (9).
The first one is the Markovian property which states that
the probability describing the system at time t is uniquely
determined by the state of the systetn at the previous time
t b, t, if ht represe—nts a unit time interval. The second
assumption restricts the master equation (9) to a subclass
of Markov processes known as one-step processes. Such
processes, going under a variety of names (birth and
death, nearest-neighbor interaction, generation and
recombination) are very common in physics and chemis-
try and have also been used more recently in fields such
as evolutionary biology and economics (eg. , see [11]).

+g(f —s )P(f—e, t)
—[r (f)+g(f)]P(f,t)], (10)

B. The large-system-size expansion

For simplicity, from now on we shall restrict the num-
ber of resources in the agent-resource system to two.
This will also allow us to compare some of our results
with those of Kephart, Hogg, and Huberman. With
M =2, the number of independent variables is reduced to
one by virtue of Eq. (2). Let us then consider n =n, as
the independent variable and scale it as f= n IN, so thatf now refers to the fraction of agents using resource 1.
By taking M =2 in Eq. (9) and N '=s, we obtain the
following master equation for a system with two
resources (Fig. 1):

P(f, t)=ae [r(f—+e )P(f+e, t)
a
at

ps(f) g(f s )g(f s ) ' ' 'g( ) ps(0)
r(f)r(f —s ) r(e')

(12)

where P'( f) is the time-independent solution of Eq. (10).
Relation (12) determines all the P'(n) in terms of P'(0),
which itself can be determined with the help of the nor-
malization condition (3). The one-step formulation al-
lows us therefore to find the exact stationary state of the
system simply by knowing the explicit expression of the
coefficients r and g. Since the latter are functions of p(f),
the knowledge of the transition probability function p is
all that is needed to determine the time-independent solu-
tion, provided a stationary state exists.

In general, however, the master equation (10) can be
solved exactly only when the r and g functions are linear.
For nonlinear processes, which are relevant to open sys-
tems, there is a need for approximation methods for deal-
ing with fluctuations. On the other hand, any approxi-
mation scheme must be based on an expansion of relevant
quantities in powers of a small parameter. Among the
various methods which have been developed for dealing
with stochasticity in the physical sciences, we shall apply
one such scheme due to Van Kampen [15,16] to the
agent-resource system described by the master equation
(10). Van Kampen devised a general method for deriving
such an expansion for Markov processes where the ap-
propriate expansion parameter is the inverse of the size of
the system. The basic idea is that fiuctuations are caused
by the discrete nature of systems which are made of a

r(f)=f [1—p(f)], g(f)=(1—f)p(f) .

The coefficients r and g are called, respectively, the
recombination and generation coefficients. Although
solutions of Eq. (10) are in general very hard or even im-
possible to find in the nonlinear case, the stationary
(time-independent) probability distribution (if it exists) is
readily obtained [16] in terms of the generation and
recombination coeScients r and g, as a recurrent relation:
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P(f, t =0)=5(f—fo) . (13)

At later times the distribution P(f, t) is expected to
remain approximately sharply peaked at some macro-
scopic position P(t) while its width, defined by the stan-

large number of individuals (particles in physical systems
and agents in distributed agent-resource systems). Con-
trasting with the microscopic origin of fluctuations, the
deterministic features of the system depend on all the in-
dividual agents together and are therefore macroscopic in
nature. One then expects that fluctuations become less
important as the size of the system increases. In fact they
turn out to be proportional to the square root of the size
and are thus of order N ' with respect to macroscopic
variables (the number of agents N taken as a measure for
the size of the system).

In order to proceed with the expansion, the initial
probability distribution (at t =0) is normally taken as a
sharp distribution peaked at some macroscopic value of
f, which is formally given by

dard deviation, will be of order N ' =c.. The stochastic
variable f can then be expressed as

f=p(t)+Eg, (14)

p(f, t)=n(g, t), (15)

while the transformation of the derivatives gives

aP aII 1 d(t( aII
at at E dt ag

(16)

Similarly, the functions r (f ) and g (f) will transform into
the functions r(g) and g(g), respectively. We can now re-
cast the master equation (10) into the new form

where the deterministic part P(t) is a function to be fixed
and g is the new (purely stochastic) variable, representing
fluctuations in the system. As a result of the time-
dependent transformation (14), P (f, t) will transform into
a new distribution depending on g,

an 1 d(( an
at e dt ag

=as [r(g+e)n(g+e)+g(g —e)n(g —e) —[r(g)+g(g)]n(g)] . (17)

1 dp an =a ge dt ag „, n! (18}

Now by expanding the functions r, g, and II in powers of the small parameter e, we arrive at the following expression:
'2

at ag
[( —1) "t(g)+g(g)]n(g, t) .

an
at

We further expand r and g around the macroscopic value (}) and obtain

00 k n

&k
—2 y &(k —

n)(y) [g(k
—n)n(g t )]dt ag k, „,n!(k —n)! "

ag
(19)

where

, [(—1)"r(0+a(4)] . (20}

I

a global minimum then all time-dependent solutions of
Eq. (21), regardless of the initial value $0, will tend to-
wards the stable solution asymptotically.

There is one divergent term (proportional to e ) on ei-
ther side of Eq. (20). We can make these terms cancel
each other by choosing the function P(t) (so far arbitrary)
such that it obeys the equation

a =a, (p) =p(y) —p, (21)

which is a nonlinear differential equation independent of
fluctuations. This is how the macroscopic or determinis-
tic law for the evolution of the system emerges from the
master equation. Its solution P(t) with initial condition
Po gives the deterministic component of the original vari-
able f. It also provides the function to be used in the
change of variable (14). As expected, Eq. (21) is identical
with the mean-field equation given by Kephart, Hogg,
and Huberman for a computational ecosystem with two
resources [14]. The time-independent solutions of Eq.
(21}are given by the roots of

(22)

If we assume that there is only one such solution which is

C. The fluctuations equation

1. The linear Fokker-Planck equation

Once the deterministic part P(t) of the variable f has
been fixed through Eq. (21), we insert this function into
the master equation (19), so that the coefficients (2„are
now determined, and end up with an equation governing
the fluctuations in the system,

k—n(g, t)=a y e"-' y
k=2 =1

)( (k —n)(y)
Pg

x [g("-"'n(g, t)] .

Note that Eq. (23) does not contain any divergent terms
(in e). As the right-hand side in Eq. (23) is effectively an
expansion in powers of c, the efFects of fluctuations
around the macroscopic value P can be determined per-
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turbatively round a=0. The lowest-order approximation
is given by taking the limit a=0 in (23) and results in a
linear Fokker-Planck equation with time-dependent
coefficients [through P(t}]

a ' I—I(g, t) = —a', (P) ($11)+—a2(P) II . (24),a, a 1 a'
Bt Bg 2

The solutions to this well-known equation are given by
normal or Gaussian distributions, whose only nonzero
moments are the first two moments: ( g ) and ( g ). In-
stead of dealing directly with Eq. (24), it is easier to solve
the associated moment equations

(25)

subject to the appropriate initial conditions for the fluc-
tuation variable g. In this case, the initial fluctuation (at
t =0} is taken to be zero in accordance with Eq. (13),
leading to ( g)0= (P)0=0. The original probability dis-

tribution P(f, t) is also a normal distribution by virtue of
Eq. (15) with mean and variance given by [taking account
of the transformation (14)]

(f (i) ) =p(r)+s(g(r) ),
(26)

« f'(i) &) =e'(& g'(i) »,
where the variance ((f )) = (f )—(f ) . This gives us
the solution to the master equation (10) in the Fokker-
Planck equation of linear-noise approximation.

order terms in the fluctuation equation (23) should be in-

cluded. This corresponds to "discrete" systems or gen-
erally systems with a relatively small number of agents.
There is further reason for including these terms when
the coefficients r and g are themselves nonlinear in f.

In this section we calculate the nonlinear effects of fluc-

tuations beyond the FPE approximation by keeping
terms of order s and s in Eq. (23) and ignoring higher-
order terms. These terms add fluctuation effects of order
N ', that is, the dynamics (to this order) is made sensi-

tive to random events due to a single agent in the system.
We shall see that the average value of f will also be
affected by a term of the same order. In order to solve
the fluctuation equation (23) including higher-order terms
in s, we treat the additional terms as perturbations to the
FPE (24) (which is independent of e}. Therefore, and
keeping in the spirit of the large N expansion, the solu-
tion of (23) will be approximated by a Gaussian distribu-
tion except that it no longer obeys the FPE since it is
modified by the higher-order terms added to Eq. (24). In
view of this, it is easier to solve the first and second mo-
ment equations (25) by adding the appropriate correction
terms, rather than attempting to tackle Eq. (23) directly.
In Appendix A we derive the general moment equation
from Eq. (23).

Expanding the moment equation (A4) for the first two
moments (g) and (g ) up to order s we find

2~-' —,&g& =.', &g)+ —,
'a"

, &g'&+ —', a',"& g'&,
(27)

2

a '—(g ) =saz(g)+ 2a', +—az' (g )

2. Higher order correc-tions to the FPE: nonlinear sects

In general, the linear-noise approximation is adequate
for dealing with fluctuations in most systems provided
these have a large number of agents since, as we saw
above, the FPE (24) does not depend on the size parame-
ter c. There is one situation, however, where higher-

2
+sa", &g'&+ —', a',"&g'&+a, .

These equations involve the .third and the fourth mo-
ments as well and it is therefore necessary to take into ac-
count the equations for (g ) and ( g ), up to order s and

1, respectively. We thus have to solve the resulting sys-
tem of four coupled linear diff'erential equations

I
Q&

—a 1

2—a"'
1

EQ2

Q2

2
2a' +—a"

3a 2

tlca,

3Q )

2

a 1

&g')

(g'&

Q2

FQ3
(28}

6a2 4a)

The results obtained for (g) and (g ) are then used in
(26} to give the solution to the master equation (10) with
the leading or first-order nonlinear contribution to Quc-
tuations included.

At the next level of the approximation (the second-
order nonlinear effects), one goes further and keeps all

terms in Eq. (23}up to order c, . In this case fluctuation
effects due to a fraction (1/Nth) of an agent are taken
into account. This only makes sense if agents themselves
are seen not as elementary processes but rather as groups
of agents or collections of tasks to be performed. As in
the previous case, the solution of (g) and ( g ) to order
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will involve two additional moment equations (for
(g ) and (g )) besides those for (g ) and (g ). Conse-
quently, the corresponding system to be solved will con-
sist of six coupled linear difFerential equations, which can
be derived in a similar way by expanding the first six mo-
ment equations to the required order. We shall also cal-
culate the effects due to the s and e terms in the follow-
ing section.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present some numerical results based
on the theoretical analysis given in the preceding section.
Our main objective is to investigate the approximation
scheme for fluctuations based on the large-system-size ex-
pansion of Van Kampen. We already saw that the one-
step Markovian formulation of the problem allowed us,
in particular, to calculate the exact probability distribu-
tion for time-independent solutions [see Eq. (12)]. We
shall therefore restrict our numerical calculations to sta-
tionary solutions of the system in order to make a direct
comparison with exact results and test the validity of the
approximation over a range of parameter values. As a re-
sult of considering time-independent solutions only, the
equations for the deterministic law (21) and the linear
FPE fiuctuations (25) reduce to static nonlinear equa-
tions, while the differential system (28) giving the first
nonlinear corrections from fluctuations reduces to a sim-

ple linear system of equations [where the left-hand side of
(28} is zero].

Numerical values for the input parameters (coming
into the transition probability function p) will be taken as
in Ref. [14] to provide a further comparison with some
results that these authors obtained in their numerical
simulations. In general, the exact form of p is not known
and wi11 depend on several features of the problem at
hand, like incomplete, uncertain, or delayed information
on the available resources, as well as other factors
influencing the choice that agents make. We will follow
the authors in Ref. [14] and make p a function of the
fractional number of agents f using resource 1, through
the payoffs G& and G2 for using resources 1 and 2, respec-
tively,

6, =7 f, , 62=7 3—f2 . — (29)

Figure 2 shows the payoffs 6, and G2 as a function of f.
They model a simple competitive behavior between
agents so that the payoff for using each resource de-
creases with the number of agents already using the same
resource. An agent will therefore choose to switch to the
other resource if its payoff is larger. The system reaches
a stability point when the two payoffs are equal so agents
wi11 prefer staying with the resource they are using. For
6, and 62 given in (29) the optimal behavior of the sys-
tem occurs for f =0.75, that is, 75%%uo of all agents using
resource 1. The decision region can be made less sharply
defined by introducing an uncertainty element in the
payoff evaluation of agents. This can be achieved by in-
troducing Gaussian noise with standard deviation o.

round the true value of the payoff. The resulting transi-
tion probability p is given by [13]

4
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FIG. 2. The linear payoff functions G, =7 f, an—d
Gq=7 —3f, associated with resource 1 and resource 2, respec-

tively. The system is in equilibrium when the two payoffs are

equal, i.e., at the crossing point between the two lines.

1 Gi —G
p= —1+erf

2 20'
(30)

1.0
0
0

0.8—
Q)

U)

0V)

0
O
0 0.4—

JD
+ 0.2—
0

CL

0.0-
0.0

a=0

0.2 04 0.6 0.8

Fraction of agents using resource 1

.125—

1.0

FKJ. 3. The transition probability (from resource 2 to
resource 1), p(f), corresponding to the payoffs shown in Fig. 2,
for two values of the uncertainty parameter o.. The intersection
with the line p=f gives the solution to the time-independent
macroscopic equation (22).

and shown in Fig. 3 for a value o.=0.125. The two limit-

ing cases of o =0 and o.= ~ correspond respectively to
perfect knowledge (f =0.7S) and complete lack of infor-
mation on payoffs, leading to the uniform distribution of
agents (f =0.5). In fact, by approximating f with its
deterministic contribution P, we obtain a graphical solu-
tion of the macroscopic equation (20} represented in Fig.
3 by the crossing point between the curves p(P) and P.
This point gives the equilibrium solution which now, due
to a nonzero value of o., is slightly offset from the optimal
value (f =0.75). The macroscopic value of f for
0 =0.12S is /=0. 724.

In Fig. 4 we show the mean or average (fractional)
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FIG. 4. Average (fractional) number of agents using resource
1 as a function of the total number of agents in the system N for
0 =0.125, in three orders of the large-system-size expansion.
Curve 1 represents the mean-field value (unaltered by the linear
noise), curve 2 includes the first nonlinear corrections due to
fluctuations, and curve 3 represents the exact result (full effects
of fluctuations included).

FIG. 5. Standard deviation of the time-independent distribu-

tion (for the number of agents using resource 1) as a function of
the total number of agents in the system N for 0 =0.125, in

three orders of the large-system-size expansion. Curve 1

represents the FPE (linear-noise) approximation, curve 2 in-

cludes the first nonlinear corrections due to fluctuations, and

curve 3 represents the exact result (full effects of fluctuations in-

cluded).

number of agents f using resource 1 for various orders in
the Van Kampen approximation, as well as the exact
value calculated from (12), as a function of the total num-
ber of agents N, for o =0.125. Curve 1 represents the
mean-field value (unaltered by the linear noise), curve 2
includes the first nanlinear corrections due to fluctua-
tions, and curve 3 represents the exact result (full effects
of fluctuations included). The exact curve shows a rather
strong dependence on N in the region of small number of
agents, increasing from f=0.5 for N=l towards the
macroscopic value /=0. 724 asymptotically. As can be
seen in the figure, the macroscopic approximation (no
fluctuations) and the FPE approximation show no depen-
dence of the average on N. One needs to include the first
nonlinear corrections from fluctuations [obtained by solv-

ing the time-independent linear system fram (25)] to ob-
serve a nontrivial dependence. We see that the first-order
nonlinear corrections approximate well the exact result,
not only for large values of N, as expected since the ap-
proximation becomes exact in the limit of large N, but
also down to the low values of N characterizing systems
with a small number of agents. The same conclusions are
reached by considering the standard deviation as a func-
tion of N for different orders of the approximation in Fig.
5. We should also note at this point that aur exact results
in Figs. 4 and 5 [obtained from the theoretical prediction
of the probability distribution (12)] confirm the Monte
Carlo simulations of Kephart, Hogg, and Huberman [14].

In order to see how the Van Kampen approximation
depends on the uncertainty parameter cr, we have plotted
the time-independent probability distributions for
different orders in the approximation as well as the exact
distribution, for three values of o: 0.125, 0.5, and 1 (vert-
ically) and three values of N: 3, 5, and 10 (horizontally)
in Fig. 6. As expected the approximation works better
for larger 1V, as we see all approximating distributions
converging towards the exact curve. However, for a fixed

value of N we notice that the approximation somewhat
worsens with decreasing o. The second-order nonlinear
corrections apparently become larger for small o, result-

ing in a shift in the peak of the distribution of the same
order as the one caused by the first-arder corrections.
This shift gradually disappears when cr increases. More-
over, for increasing o it seems that the role of nonlinear
fluctuations (in shifting the mean and spreading slightly
the distribution) is suppressed. These observations can be
explained by noting the relationship between internal
noise (modeled by the stochastic variable g), inherent in
systems with a finite number of agents, and the noise deli-

berately introduced by adding a random element in the
agents' decision making process (modeled by o ). The re-
sult is that, in systems with agents with (almost) perfect
knowledge (small o), nonlinear fluctuations are prom-
inent (especially in the region of small N); a larger uncer-
tainty in this knowledge (large o ) blurs the region of op-
timal decisions made by the agents and suppresses the
nonlinear effects of internal fluctuations. This latter fact
was noticed by Kephart, Hogg, and Huberman [14] and
used in systems with delayed information to reduce the
effects of persistent oscillations and chaos, which are,
after all, manifestations of nonlinearities in the fluctua-
tions.

We can draw the following conclusions: the approxi-
rnation works reasonably well for all values of o con-
sidered and the first-order nonlinear corrections are
sufhcient for correctly estimating fluctuation effects in the
system, especially if the uncertainty parameter is not too
small. Furthermore it seems that the approximation is
best suited for systems with a moderate value of the glo-
bal uncertainty parameter o (=0.5), where nonlinear
effects of fluctuations, although significant, converge rap-
idly in the expansion. This may be the range of 0. to look
for in realistic systems, where agents are neither expected
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distribution P for three different values of N
and three different values of 0., in three orders
of the large-system-size expansion; full line:
mean-field (including linear-noise) result, long
dash: first-order nonlinear corrections includ-

ed, long dash —short dash: second-order non-
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solution. For a discussion of these figures see

Sec. III.

B n —1

g P'(m),
+, r(n)P'(n)

(31)

to have perfect knowledge nor be completely ignorant
about the payoffs of their transactions. In more complex
systems, uncertainty in the system may be represented by
more than one 0..

So far in our analysis we have only looked at systems
with a single macroscopic stable behavior, a consequence
of the unique (stable) fixed point occurring at the inter-
section between the linear payoff functions 6& and 62 in

Fig. 2. The simple competitive behavior displayed in Fig.
2 can be changed by making the payoff functions non-
linear, i.e., introducing cooperation as well as competi-
tion between agents in the system. Whereas competition
meant that agents would favor a resource if it had less
agents using it, cooperation is expressed by an increased
payoff when a resource is used by more agents. The in-

terplay of these two tendencies through nonlinear payoffs
leads to a richer range of possible behaviors in the sys-
tem. The example of a nonlinear (cubic) payoff for
resource 1, G, =0.5 —10(f—0.1)(f—0.5)(f —0.9), and
a constant payoff for resource 2, 62=0.5, in Fig. 7(a) il-

lustrates the case of a bistable system where the two pos-
sible macroscopic states are equally probable. The roots
of the time-independent macroscopic equation are
represented by the intersection points between the transi-
tion probability p and the bisectrice, as seen in Fig. 7(b)
(for 0 =0.35). The outer points are stable equilibria
whereas the middle point leads to an unstable state. De-
pending on which side of this point the initial resource
market share is, the system will eventually settle in one of
the macroscopic states characterized by the two peaks in
the time-independent probability distribution (see Fig. 8).
However, this situation will not stay unchanged forever;
internal fluctuations will cause the system to (macroscop-
ically) flip into the other macroscopic state given enough
time. Here again, the one-step Markov formulation a1-
lows us to find an explicit expression for the average time
for such a transition to happen [16]

where n „and ns represent the sites of the peaks in the

distribution of the bistable system. This expression de-

pends on the total number of agents N and the uncertain-

ty parameter cr through P' and p. It is valid for any
number of agents (since it includes full fluctuation effects)
and in the thermodynamic limit we recover the exponen-
tial growth of rzs in N and 1/tr (e.g., Ref. [17]).

As can also be seen from Fig. 8, the system's dynamics
depends notably on the uncertainty parameter o.. By in-
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FIG. 7. (a) System with nonlinear payoff functions. In this

example resource 1 incorporates both competitive and coopera-
tive behaviors, G, =0.5 —10(f—0. 1)(f—0.5)(f —0.9), and

resource 2 keeps a constant payoff, G&=0.5, leading to a bi-

stable system. (b) The corresponding transition probability p( f)
(full line), for cr=0.35. The intersection with the line p=f
gives the equilibrium points (two stable points and one unsta-

ble jj.
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FIG. 8. The (exact) time-independent probability distribution
for the bistable system arising from the payoff functions shown
in Fig. 7(a), as a function of the market share of resource 1, f,
and the uncertainty parameter, 0, both varying from 0 to 1.

creasing o the two peaks are seen to gradually get closer
to each other and merge into a single (symmetric) peak
for a critical value of o. The critical value of o can be
found by inspection of the time-independent macroscopic
equation. Thus cr plays the role of a control parameter
which can change qualitatively the dynamical phase
space of the system, in this case from a system with two
attractors to a system with a single one. This is reminis-
cent to phase transitions in physical systems such as the
spontaneous magnetization of a ferromagnetic system
which happens by lowering the temperature below a criti-
cal value (Curie temperature). Above this value the
overall magnetization is zero and symmetric while below
it there are two possible states of opposite magnetization.
By choosing one state or the other, the system breaks its
spatial symmetry, just like by decreasing o below its criti-
cal value in the agent-resource system we see a sudden
transition from an equal distribution of agents on the two
resources to a definite bias towards one or the other.

IV. CONCLUSION

In this paper, we have taken 'and further developed
Huberman and Hogg's model for computational ecosys-
tems [13], and formulated a framework for a general
marketlike agent-resource system in terms of a one-step
Markovian master equation. Our approach enables us to
analyze fluctuation effects within the system by making
use of the large system-size expansion. A deterministic
equation governing the dynamics of the system in the
limit of large numbers of agents arises as the lowest-order
contribution in the expansion, and coincides with the
equation obtained in the mean-field approach [14]. The
next order term gives the main contribution of the fluc-
tuations and turns out to be a linear Fokker-Planck equa-
tion. The probability distribution describing the dynam-
ics of the system is therefore a Gaussian distribution to
this order in the expansion, providing a linear-noise ap-
proximation. Higher-order terms are included to provide
nonlinear corrections to the FPE in two stages: the first-
order nonlinear corrections representing fluctuations due

to individual agents in the system and the second-order
ones which are proportional to a fraction of an agent.
These higher-order corrections are crucial when the num-

ber of agents is relatively small and the mean-field theory
inadequate.

To test the approximation in the case of our agent-
resource system, we have taken a system with two
resources and considered time-independent states for
which an analytical expression giving the exact. probabili-
ty distribution is available. The payoff functions associat-
ed with the two resources were taken to model a simple
competitive strategy between agents with an uncertainty
parameter monitoring the accuracy of information avail-
able. Our exact theoretical results agree with the corre-
sponding numerical simulations in Ref. [14], using the
same values for input parameters. We find that the in-
clusion of nonlinear fluctuation terms is necessary to ob-
serve the shift in the market share value of resource 1

which appears for a system with a small number of
agents. Furthermore, we find that the first nonlinear
corrections are generally sufficient for mimicking the full

effects of fluctuations, for practically any number of
agents. We also studied the sensitivity to accuracy of the
information available to agents and the main observation
is that higher uncertainty leads to the suppressing of non-
linear noise effects. This is compatible with the con-
clusion in [14] that an increase in the uncertainty param-
eter lowers the threshold for persistent oscillations and
chaos in systems with time delay, since these nonoptimal
behaviors are the result of nonlinearities taking over in
the dynamical equations. In view of the results obtained
we conclude that the approximation works generally well
and can therefore be reliably used for time-dependent
solutions, for which no exact analytical treatment of fluc-
tuations is available, as well as generalizations to systems
with more than two resources and with more marketlike
features (time-delay, inhomogeneous agents, etc.} includ-
ed.

Finally, we saw how the one-step Markov formulation
also enables us to find the exact time-independent distri-
bution in the case of a bistable system, which results from
nonlinear payoff' functions. This allows us in particular
to calculate the average time that a system takes for leav-
ing the stable state it is in and "flipping" into the other
one. This effect is essentially due to fluctuations within
the system.

We should note, however, that Van Kampen's approxi-
mation scheme is not suited for the treatment of fluctua-
tions in situations involving instabilities or critical
behavior. In other words, the large-system-size expan-
sion is only valid when there is one globally stable macro-
scopic solution (like the simple competitive system con-
sidered above} or in the immediate vicinity of any locally
stable solution (near each peak of the bistable system in
Fig. 8). Information on the multiplicity of solutions and
their stability is obtained by studying the macroscopic
equation (21). In general, however, a system with multi-
ple minima, such as the bistable system considered in the
preceding section, requires a different treatment of fluc-
tuations near instability points. This interesting issue will
be addressed in a separate work. Bearing in mind these
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limitations, we can conclude that Van Kampen's approxi-
mation method provides a powerful way to sort out the
main properties of fluctuations in distributed agent-
resource systems.

We can easily show by induction that the integral appear-
ing in the right-hand side is equal to

n

APPENDIX: THE GENERAL MOMENT EQUATION

An alternative and usually more practical way for solv-
ing the master equation (23) is to solve the moment equa-
tions associated with it, since knowledge of the moments
uniquely de6ne the probability distribution. The ith mo-
ment of II(g, t ) is given by

(g'(t)) = Jdgg'll(g, t) (A 1)

and its evolution equation is obtained by multiplying
both sides of Eq. (23) by g' and integrating over the sto-
chastic variable g,

X f ding'

'n

X [g(k
—

n)II(g t )] (A2)
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(A3)

This expression is zero if the power i is strictly smaller
than the index n. We then obtain an evolution equation
for ( g') as a power series in the size parameter e,

X ((i+ n) (A4)

with all terms satisfying i (n identically zero. It is now
easy to see that, if the series is truncated at a given order
k in the expansion, the equation for the moment ( g') will
involve all moments up to the (i +k —2)th moment. In
other words, moments of order i +k —1 and above will
not be required for solving the evolution equation. As a
special case, the Fokker-Planck equation approximation
is obtained by taking k =2, which eliminates all moments
of third and higher order.
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