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The Schrédinger problem of deducing the microscopic dynamics from the input-output statistics data
is known to admit a solution in terms of Markov diffusion processes. The uniqueness of the solution is
found to be linked to the natural boundaries respected by the underlying random motion. By choosing a
reference Smoluchowski diffusion process, we automatically fix the Feynman-Kac potential and the field
of local accelerations it induces. We generate the family of affiliated diffusion processes with the same
local dynamics but different inaccessible boundaries on finite, semi-infinite, and infinite domains. For
each diffusion process a unique Feynman-Kac kernel is obtained by the constrained (Dirichlet boundary
data) Wiener path integration. As a by-product of the discussion, we give an overview of the problem of
inaccessible boundaries for the diffusion and bring together (sometimes viewed from unexpected angles)
results which are little known and dispersed in publications from scarcely communicating areas of

mathematics and physics.

PACS number(s): 05.40.+j, 02.50.—r

I. THE SCHRODINGER PROBLEM:
MICROSCOPIC DYNAMICS
FROM THE INPUT-OUTPUT STATISTICS

According to Kac and Logan [1], any kind of time de-
velopment (be it deterministic or essentially probabilistic)
that is analyzable in terms of probability deserves the
name of the stochastic process. Given a dynamic law of
motion (for a particle, for example), in many cases one
can associate with it (compute or approximate the ob-
served frequency data) a probability distribution and vari-
ous mean values. In fact, it is well known that in-
equivalent finite difference random motion problems may
give rise to the same continuous approximant (e.g., the
diffusion equation representation of discrete processes).
In addition, in the study of nonlinear dynamical systems
[2], given almost any (for the purposes of our discussion,
basically one-dimensional) probability density, it is possi-
ble to construct an infinite number of deterministic finite
difference equations whose iterates are chaotic and which
give rise to this a priori prescribed density.

The inverse operation of deducing the detailed (possi-
bly individual, microscopic) dynamics, which either im-
plies or is consistent with the given probability distribu-
tion (and eventually with its own time evolution), thus
cannot have a unique solution. If we disregard the de-
tailed nature (such as its chaotic, jump, random-walk
process, phase-space process with friction, etc. implemen-
tations) of the given process, it appears [3,4] that the
standard Brownian motion and/or the broad class of
Markovian diffusion processes incorporating the Wiener
noise input provide satisfactory approximations for a
large variety of phenomena. It especially pertains to the
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explicit modeling of any unknown in detail physical pro-
cess in terms of the input-output statistics (conditional
probabilities and averages) of random motions with a
finite time of duration.

From now on we shall confine our attention to continu-
ous Markov processes whose random variable X (), t =0,
takes values on the real line R! and in particular can be
restricted (constrained) to remain within the interval
ACR!, which may be finite or (semi-)infinite but basical-
ly an open set. It boundaries dA (end points) will be
denoted r;,r, with — o0 <r; <r, < .

In the above input-output statistics context, let us in-
voke a probabilistic problem, originally due to
Schrodinger [5-7): Given two strictly positive (on an
open interval) boundary probability distributions py(x),
pr(x) for a process with the time of duration T >0, can
we uniquely identify the stochastic process interpolating
between them? Perhaps unexpectedly in light of our pre-
vious comments, the answer is known [6,7] to be
affirmative if we assume the interpolating process to be
Markovian. In fact, here we get a unique Markovian
diffusion, which is specified by the joint probability distri-
bution

m(A,B)=fAdx deym(x,y) ,
fdym(x,y)=p0(x) , (1)

fdxm (x,y)=pr(y),
where

m(x,y)=0,(x,0)k(x,0,y, T)O(y, T) ()

and the two unknown (not necessarily Lebesgue integra-
ble) functions ®,(x,0),®(y,T) come out as solutions of
the same sign of the integral identities (1). Provided we
have at our disposal a bounded strictly positive integral
kernel k (x,s,y,t),0=<s <t <T, then
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@,(x,0)= [ k(0,y,x,00,(y,0)dy ,
(3)
O(x,5)= [ k(s,x,y, 1Oy, T)dy ,

and the sought for interpolation has a probability distri-
bution p(x,1)=(0,0)x,t),tE[0,T]. The transition
density

O(x,t)

O(y,s) ’
with s <¢, is a fundamental solution [p —8(x —y) as t |s]
of the forward Kolmogorov (i.e., Fokker-Planck) equa-

tion with a diffusion constant D >0 (this choice narrows
slightly the allowed framework):

3,p=DA,p—V,(bp),

p(y,8,x,t)=k(y,s5,x,t) (4)

P(x,t)=fp(y,s,x,t)p(y,s)dy ,
with po(x)=p(x,0) and the drift b (x,¢) given by

b(x,t)=2D-Yé®~(x,t) . ©)

The backward diffusion equation is solved by the same
transition density

o, p=—DA,p—bV,pp, ”
pP=Pp (y,s,x,t) y § St: b=b(y,S) .

Here we deal with a unique diffusion process whose tran-
sition density is a common fundamental solution for both
the backward and forward Kolmogorov equations.

To understand the role of the integral kernel k (y,s,x,t)
in (1)-(7) let us assume that ®(x,¢) is given in the form
(drifts are gradient fields as a consequence)

O(x,t)=texp®P(x,t)==b(x,t)=2DVP(x,t) ,
xE(ry,ry) 9)

and insert (4) to the Fokker-Planck equation (5). Then
[8-10], if p (y,s,x,t) is to solve (5), the kernel k (y,s,x,t)
must be a fundamental solution of the generalized
diffusion equation

- __b
8,k=DAk—>-0(x,0k ,

k(y,5,x,t)>8(x—y) as tls, (10)
Qen=2D |ao+L |22 +vp
’ ¢ 2 | 2D ’

and to guarantee (3) it must display the semigroup com-
position properties.

Notice that (4) and (9) imply that the backward
diffusion equation (7) takes the form of the adjoint to (10):

ask=—DAyk+$ﬂ(y,s)k . k=k(sxn. (D

If the process takes place between boundaries at infinity
r;=—oo and r,=+ 0, the standard restrictions on the
auxiliary potential Q (Rellich class [11,12]), and hence on

the drift potential ®(x,t), yield the familiar Feynman-

Kac representation of the fundamental solution
k (y,s,x,t) common for (10) and (11):
1 t
k y8, X, )= T A s
(5,x,0= [ exp ZDISQ(X(u)u)du
Xduls,ylt,x], (12)

which integrates exp[ —( 1/2D)f;Q(X(u),u )du] weight-
ing factors with respect to the conditional Wiener mea-
sure, i.e., along all sample paths of the Wiener process
which connect y with x in time #—s. See, e.g., Refs.
[13,14]). More elaborate discussion is necessary if at least
one of the boundary points is not at infinity.

Let us notice that the time independence of () is grant-
ed if either ® is independent of time or depends on time
at most linearly. Then the standard expression
exp[ —H (t —s)](y,x) for the kernel k clearly reveals the
involved semigroup properties, with H=—DA
+(1/2D)Q(x) being the essentially self-adjoint operator
on its (Hilbert space) domain.

II. NATURAL BOUNDARIES
MAKE DIFFUSION PROCESSES UNIQUE

We shall make one more step towards narrowing
slightly the scope of our discussion by admitting diffusion
processes (1)-(7) whose drift fields are time independent:
9,b(x,t)=0 for all x. We know [8] that both the free
Brownian motion and the Brownian motion in a field of
force in the Smoluchowski approximation belong to this
class of processes. We know also [15] that the boundary-
value problems for the Smoluchowski equation have a
profound physical significance, albeit the attention paid
to various cases is definitely unbalanced in the literature.
It is then interesting to observe that the situation we en-
counter in connection with (1)-(7) is very specific from
the point of view of Feller’s [15-18] classification of one-
dimensional diffusions encompassing effects of the bound-
ary data. Our case is precisely the Feller diffusion
respecting (confined between) the natural boundaries. An
equivalent statement is that boundary points r,,r, are
inaccessible barriers for the process, i.e., there is no posi-
tive probability that any of them can be reached from the
interior of (r,,r,) within a finite time for all
X(0)=x€E(r,r,); see, e.g., Refs. [16,17] and [18], Chap.
II1.4.

In the mathematical literature [16,17,14] a clear dis-
tinction is made between the backward and forward Kol-
mogorov equations. The backward one defines the transi-
tion density of the process, while the forward (Fokker-
Planck) one determines the probability distribution (den-
sity) of diffusion. With a given backward equation one
can usually associate the whole family of forward
(Fokker-Planck) equations whose explicit form reflects
the particular choice of boundary data. This fundamen-
tal distinction seemingly evaporates in our previous dis-
cussion (1)=(11), but it is by no means incidental. In fact,
according to Feller [16], in order that there exists one and
only one [homogeneous, p(y,s,x,t)=p(t—s;y,x)] pro-
cess satisfying —3,u =DAu+bVu in a finite or infinite
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interval r; <x <r,, it is necessary and sufficient that both
boundaries are inaccessible (the probability of reaching
either of them within a finite time interval must be zero).

A general feature of the inaccessible boundary prob-
lems is that the density of diffusion vanishes [15,19] at the
boundaries p(r,)=0=p(r,). This property is shared
with absorbing barrier processes, which are more familiar
in the realm of the statistical physics. The link is indeed
very close [16]: conventionally the absorbing barrier pro-
cess is defined on the closed interval [R,R, ]; however,
we can always consider it on the open set (R,R,).
Theorem 7 of Ref. [16] states that, if the boundaries
r;<R; <R, <r, are inaccessible for the process, then
transition densities of the absorbing barrier process on
(R,R,)as R,—r,, R,—r, converge to the unique tran-
sition density of the diffusion with unattainable boun-
daries on (r,r,). It implies that locally, the inaccessible
boundary problem in principle can be modeled (approxi-
mated) to an arbitrary degree of accuracy by the absorb-
ing barrier process.

It is interesting to notice that the classification of
Feller’s boundaries in the homogeneous case [time-
independent drifts, continuous but not necessarily bound-
ed in the interval (r},r,)] follows from investigating the
Lebesgue integrability of the Hille functions (see Refs.
[15,17,19] for more details):

L,(x)=exp —%fxb(y)dy
*o

=exp[ _2[(1)(x)—<l>(x0)]] ’

Lz(x)=L1(x)f:;z—:1(Ez—)‘

=-exp| —2<I>(x)]f:exp[2<b(z)]dz y
0

(13)

where x €(r,,7,) and we have used (9) in (13). Apparent-
ly the ®(x,) contribution in L(x) is irrelevant and the
integrability of exp[ +®(x)] matters here.

If L,(x) is not Lebesgue integrable on [xg,R ], where
R=r, or r,, then R stands for the natural repulsive
boundary of the diffusion. If L,(x) is integrable but
L,(x) is not, then R is a natural attractive boundary for
the process, both being inaccessible. As indicated in Ref.
[15], there is no universally established terminology and a
certain discrimination between Feller’s and the Gihman-
Skorohod definition is possible, albeit without conse-
quences for our discussion.

Following Ref. [18] let us denote P, [ < o ] the prob-
ability that a process originating from x €(r,r,) would
hit the point R at the moment 75 for the first time.
Then, the inaccessibility of boundaries can be expressed
by the statements

Py [tg <o ]=0, Vx<R
P [rg<»]=0, Vx>R

for the right and left boundaries, respectively. For the
natural boundary, R is inaccessible from the interior of
(ry,r;) and the interior of (r,,r,) is inaccessible from R.
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Following this terminology (i) an inaccessible boundary is
called attractive if for any €>0 there exists §>0 such
that P, [lim, , X (¢)=R]>1—¢ for all xE(R,R +38) in
case of the left and x €E(R —8,R) in case of the right
boundary and (ii) an inaccessible (left) boundary is called

repelling if for any x>R and y<x we have
P[r, <o ]=1.
Remark 1. The standard (unrestricted) Brownian

motion on R! is the most obvious example of diffusion
with natural boundaries. It is not quite trivial to con-
struct explicit examples if one of the boundaries is not at
infinity. The classic example of diffusion on the half-line
with natural boundaries at 0 and + « is provided by the
so-called Bessel process [17,20], with the diffusion (back-
ward) generator L, =A,+(1+2a)/xV, (we absorb the
diffusion constant D in the rescaled time parameter). The
point r, =0 is never reached with probability one if a >0.
In the case of a =0 the transition density reads [20]

—(x24+x32)
py

XXq
2t

b

p(t;xg,x)=const X %exp 0

(14)

where the modified Bessel function (Ref. [21], Chap. 7) is
given by Iy(a)=3 " ,a*/[2%(j!)*]. Another (less expli-
cit, as given in the form of estimates for the transition
density) example pertains [22] to the diffusion equation
with the one-dimensional harmonic oscillator potential
on the half-line x 2a >0. The related constrained path
integrals are considered in Refs. [23,24].

As mentioned before, diffusions with inaccessible bar-
riers might have drifts which are unbounded on (r,,r7,).
Hence our discussion definitely falls into the framework
of diffusion processes with singular drift fields [25,26]; see
also Refs. [27-32], which are not covered by standard
monographs on stochastic processes. Particularly il-
luminating in this respect is the analysis of Ref. [25],
where for quite general diffusions, the unattainability of
nodal sets (on which the probability density vanishes) in a
finite time was demonstrated in the sense that
P [rg=wo]=1. This crucial property (valid for
diffusions with natural boundaries as well) allows us to
extend the theory of stochastic differential equations and
integrals to diffusions whose drifts produce a bad (un-
boundedness or divergence to infinity) behavior when ap-
proaching the boundaries.

We skip the standard details concerning the probabili-
ty space, filtration, and the process adapted to this filtra-
tion (see, however, Refs. [21,33,34]) and notice that a
continuous random process X(¢),z €[0,T] with a proba-
bility measure P is called a process of the diffusion type if
its drift b (x) obeys

Pl [TIbxldr<w |=1, (15)
0

and, given the standard Wiener process (Brownian
motion) W (t), the integral identity (D constant and posi-
tive)

x(0= [ b(X())ds +V2D W(1) (16)
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holds true for the measure P almost surely, although
mathematically the original phrase is unambiguous. It
means that W(1)=(1/V2D [X(1)— [{b(X(s))ds] is a
standard Wiener process with respect to the probability
measure P of the process X (¢).

For diffusion processes with natural boundaries, we
remain within the regularity interval of b(X (¢)) for all
(finite) times, and (15) apparently is valid. Therefore the
standard rules of the stochastic It6 calculus [19] can be
adopted to relate the Fokker-Planck equation (7) with the
natural boundaries to the diffusion process X (), which
[34] “admits the stochastic differential”

dX ()=b(X())dt +V2DdW (1) ,
X(0)=x,,t€[0,T] (17

for all (finite) times. The weak [in view of assigning the
density py(x) to the random variable X(0)] solution of
(17) is thus well defined.

For stochastic differential equations of the form (17),
the explicit Wiener noise input, because of (9), implies
that, irrespective of whether natural boundaries are at
infinity or not, the Cameron-Martin-Girsanov [35-37]
method of measure substitutions which parallel transfor-
mations of drifts is applicable. Even though the drifts are
generally unbounded on (r,,r,), the original theory
[35-37] is essentially based on the boundedness demand.
It is basically due to the fact that the probabilistic
Cameron-Martin formula relating the probability mea-
sure Py of X(t) with the Wiener measure Py, (strictly
speaking it is the Radon-Nikodym derivative of one mea-
sure with respect to another) reduces to the familiar
Feynman-Kac formula [10,14,8,29,38] (with the multipli-
cative normalization). The problem of the existence of
the Radon-Nikodym derivative (and this of the absolute
continuity of Py with respect to Py, which implies that
sets of Py, equal to zero are of Py equal to zero as well) is
then replaced by the standard functional analytic prob-
lem [11,12] of representing the semigroup operator kernel
via the Feynman-Kac integral with respect to the condi-
tional Wiener measure.

The Feynman-Kac formula is casually viewed to en-
compass the unrestricted (the whole of R") motions;
however, it is known to be localizable and its validity ex-
tends also to finite and semi-infinite subsets of R! (R"
more generally), as demonstrated in the context of the
statistical mechanics of continuous quantum systems
[12,22,39-43]. More specifically, it refers to the Diri-
chlet boundary conditions for self-adjoint Hamiltonians,
which ensure their essential self-adjointness (to yield the
Trotter formula).

Remark 2. Tt is perhaps worthwhile to say a few words
about the situation when the process in principle can
reach or cross the boundary (nodal surface of the proba-
bility density in higher dimensions) in a finite time. As
before we limit our discussion to the stationary Markov
diffusion process and assume that the drift b is a gradient
~Vp/p. If p=exp®, where p'/? is not an element of the
Sobolev space H}..(R?) (i.e., is not integrable on bounded
sets, with its first derivative), then it is known [44] that
the process can reach or cross the set N,
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=[x ER%p=0]. It is possible [45] to formulate a useful
criterion (easy to generalize to higher dimensions) for a
“tunneling” (transmission) through a chosen point in R ';
let it be the origin x =0. Let us take » ~V®/0@. The dy-
namics is given by the energy form on L? (R,dx), i.e.,
E(f.f,)= fo1Vf2p(x)dx, where obviously
p=00,=0% compare, e.g., (1)=(7). If p(x)< 4|x| in
the close vicinity of the origin, at least on one side, then
there is no tunneling through x =0. The process cannot
cross this point, but may be absorbed or reflected. One
needs a bit stronger restriction to prevent the diffusion
from hitting the node: nontransmission and nonhitting
are not equivalent concepts, although there is no com-
munication between diffusions on the positive and nega-
tive semiaxes, respectively. On the other hand, if
p(x)> A|x|* with 0<a <1 in a neighborhood of the ori-
gin, then there is a particle transmission (tunneling)
through x =0. As observed in Ref. [45], according to
Feller’s classification of boundaries, O stands for the regu-
lar boundary in this case.

III. HYDRODYNAMIC REPRESENTATION:
LOCAL CONSERVATION LAWS AND THE
NEWTONIAN DYNAMICS IN MEAN

Let us emphasize the importance of (17) and of the It6
differential formula induced by (17) for smooth functions
of the random variable X (¢). Its first consequence is that,
given p (y,s,x,t), for any smooth function of the random
variable the forward time derivative in the conditional
mean can be introduced [4,7,19,26] (we bypass in this way
the inherent nondifferentiability of sample paths of the
process)

. 1
11311‘% A7 [fp(x,t,y,t+At)f(y,t+At)dy fx,1)

=D X (1),t)=(3,+bV+DA)f(X(1),t),
X(t)=x (18)

so that the second forward derivative associates with our
diffusion the local field of accelerations:

(DAX)(t)=(D . b)X(t),t)
=(9,b+bVb+DAb)X(2),t)=VQUX(2),t)
(19)

with the auxiliary potential Q(x,?) introduced before in
the formula (10). Since we have given p(x,t) for all
t €[0,T], the notion of the backward transition density
P+ (»,8,x,t) can be introduced as well

p(x,t)p,(y,5,x,t)=p(y,s,x,t)p(y,s) , (20)

which allows to define the backward derivative of the
process in the conditional mean (cf. Refs. [8,46—48] for a
discussion of these concepts in the case of the most tradi-
tional Brownian motion)
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1
— |x— —At,x,t
il o U

=(D_X)t)=b,(X(1),t)
=[b—2DVInpl(X(2),t) ,
(D_fUX(2),t)=(3,+b,V—DA)f(X(1),2) .

Apparently, the validity of (19) (cf. Refs. [7,10,26] for re-
lated considerations) extends to (D2 X)(¢) as well

(DA X)(t)=(DLX)t)=3,v+vVv+VQ=VQ,

(21)

v(x,t)= 3(b +b,)(x,t),u(x,t)
(22)

b—b,)x,)=DVInp(x,1),
172
Q(x, t)—2D2—% )
P
Clearly, if b and p are time independent, then (22) reduces
to the identity

vWVv=vV(Q—Q), (23)

while in case of constant (or vanishing) current velocity v,
the acceleration formula (22) reduces to

0=vQ—-9Q), (24)

which establishes a very restrictive relationship
[49,44,50-52] between the auxiliary potential Q(x) [and
hence the drift b(x)] and the probability distribution
p(x) of the stationary diffusion. The pertinent random
motions have their place in the mathematically oriented
literature [49,44,50-53].

Let us notice that (22) allows us to transform the
Fokker-Planck equation (7) into the familiar continuity
equation, so that the diffusion process X (¢) admits a re-
casting in terms of the manifestly hydrodynamical local
conservation laws (we adopt here the kinetic theory lore)

9,p=—V(pv),
d,v+vVv=V(Q—Q), (25)
po(x)=p(x,0), vy(x)=v(x,0),

which form a closed (in fact, Cauchy) nonlinearly coupled
system of differential equations, strictly equivalent to (7)
and (19).

In view of the natural boundaries [where the density
p(x,t) vanishes], the diffusion respects a specific (“Eu-
clidean looking”) version of the Ehrenfest theorem [10]:

—n 4>
E[VQ]=0—-~SE[X(1)]

=4
= Elbx®0),n]

=E[(3,v +vVu)(X(£,0))]=E[VQUX(2),2)] .
(26)

Notice that the auxiliary potential of the form

3819

Q=20 —V, where V is any Rellich class representative,
defines drifts of Nelson’s diffusion processes [10,48] for
which E[VQ]=0=E[VQ]=—E[VV], i.., the “stan-
dard looking” form of the second Newton law in the
mean arises.

At this point it seems instructive to comment on the
essentially hydrodynamical features (compressible fluid or
gas case) of the problem (25), where the “pressure” term
VQ is quite disturbing from the traditional kinetic theory
perspective [54,55]. Although (25) has a conspicuous
Euler form, one should notice that if the starting point of
our discussion would be a typical Smoluchowski diffusion
[8] (7) and (17) whose drift is given by the Stokes formula
(i.e., is proportional to the external force F=—VV acting
on diffusing molecules), then its external force factor is
precisely the one retained from the original Kramers
phase-space formulation [3,4,15] of the high friction
affected random motion. In the Euler description of
fluids and gases, the very same force which is present in
the Kramers (or Boltzmann in the traditional discussion)
equation should reappear on the right-hand side of the lo-
cal conservation law (momentum balance formula) (25).
Except for the harmonic oscillator example, in view of
(10) it is generally not the case in application to diffusion
processes.

Following the hydrodynamic tradition let us analyze
the issue in more detail. We consider a reference volume
(control interval) [a,8] in R! (or ACR!), which at time
t€[0,T] comprises a certain fraction of particles (fluid
constituents), for an instant of course. Since we might
deal with a flow [proportional to the current velocity
v(x,t), (22)] the time rate of particles loss by the volume
[a,B] at time ¢ is equal to the flow outgoing through the
boundaries, i.e.,

—3, [Fptx,0Mdx =p(B,110(B,1

which is a consequence of the continuity equation. To
analyze the momentum balance, let us allow [56] for an
infinitesimal deformation of the boundaries of [a,B] to
have entirely compensated the mass (particle) loss (27)

)—pla,thv(a,t) , 27)

[a,B]—[a+v(a,t)At,B+v(B,t)AL] .

Effectively, we pass then to the locally comoving frame.
It implies

1 Lo ot + A d

1 a7 [ Lovoragptot + 8005 — [ Tt |
. 1 a B
_zlslztﬁ)_At faﬂamp(x,t)dx +At fa(a,p)dx

ﬁ+v At
+ f plx,t)dx ] =0. (28)

Let us investigate what happens to the local flows
(pv)(x,t) if we proceed in the same way (only leading
terms are retained):
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BtuvAt
? (pv)x,t+Andx — [“(pv)(x, dt

Joros
~—(pv})a,t)At +(pv?)(B,t)At
+At faﬂ[a,(pv)]dx . (29)
Because of (25) we have
3,(pv)=—V(pv})+pV(Q—Q) (30)

and the rate of change of momentum associated with the
control volume [a,B] is

BtuvgAt ﬂ
fa+,,aBA’ (pv)(x,t+At)— fa (pv)(x,t) ]

= [Povi@—Qidx . (1)

a

lim 1
Atlo At

However [46],

vQ=Xp£ , P=DZ%Alnp , (32)

and consequently

[Povia—0idx = [pvadx— [vpix
=E[VQ)+P(a,t)—P(B,t) . (33)

Clearly, VQ refers to the Euler-type volume force, while
VQ (or more correctly P) refers to the pressure effects en-
tirely due to the particle transfer rate through the bound-
aries of the considered volume. The latter property can
be consistently attributed to the Wiener noise proper: it
sends particles away from the areas of larger concentra-
tion. See, e.g., Refs. [10,46-48] for a discussion of the
Brownian recoil principle, which reverses the original
Wiener flows.

As it appears, the validity of the stochastic differential
representation (17) of the diffusion (5) implies the validity
of the hydrodynamical representation (25) of the process.
It in turn gives a distinguished status to the auxiliary po-
tential Q(x,?) of (10)-(12). We encounter here [8,10] a
fundamental problem of what is to be interpreted by a
physicist (observer) as the external force field manifesta-
tion in the diffusion process. Should it be dictated by the
drift form [3,4,15,57] following Smoluchowski and Kra-
mers or rather by VQ entering the evident (albeit “Eu-
clidean looking”) second Newton law, respected by the
diffusion? In the standard derivations of the Smolu-
chowski equation, the deterministic part (force and fric-
tion terms) of the Langevin equation is postulated. How-
ever, what if the experimental data pertain to the local
conservation laws such as (25) and (27) and there is no
direct (experimental) access to the microscopic dynamics?

If the field of accelerations V() is taken as the primary
defining characteristics of diffusion we deal with, then we
face the problem of deducing all drifts and hence
diffusion processes, which give rise to the same accelera-
tion field and thus form a class of dynamically equivalent
diffusion processes.

IV. FEYNMAN-KAC KERNELS ON FINITE
AND SEMI-INFINITE DOMAINS
WITH INACCESSIBLE BOUNDARIES:
DYNAMICALLY EQUIVALENT DIFFUSION PROCESSES

Let us analyze the second consequence of the unattain-
ability of the boundaries, which via (15) gives rise to (17).
On the same footing as in the case of (15), we have
satisfied another probabilistic identity:

P|[TbAx(tdr <o |=1. (34)
0

For a diffusion process X(¢) with the differential (17),
Theorem 6 of Ref. [34] states that (34) is a sufficient and
necessary condition for the absolute continuity of the
measure P =Py with respect to the Wiener measure Py,.
Since, for any (Borel) set A4, Py(A)=0 implies
Py (4)=0, the Radon-Nikodym theorem applies [33] and
densities of these measures can be related. It is
worthwhile to mention the demonstration due to
Fukushima [44] that the mutual absolute continuity (the
previous implication can be reversed) holds true for most
measures we are interested in.

In the notation (12), the conditional Wiener measure
du[s,y|t,x] gives rise to the familiar heat kernel if we set
Q=0 identically. It in turn induces the Wiener measure
Py, of the set of all sample paths, which originate from y
at times s and terminate (can be located) in the Borel set
A after time t —s:

Pyld]=[ dx [dplsyltx]=[ du, (35)

where, for simplicity of notation, the (y,z —s) labels are
omitted and [du[s,y|t,x] stands for the standard [12]

path-integral expression for the heat kernel.

Having defined an It6 diffusion X (¢), (5) and (17), with
the natural boundaries, we are interested in the analogous
[with respect to (35)] path measure Py,

PX[A]=fAdx fd/.tx[s,ylt,x]=fAd;LX . (36)

The absolute continuity Py << Py, implies the existence of
the strictly positive Radon-Nikodym density, which we
give in the Cameron-Martin-Girsanov form [33,34]

duy
du

[s,y|t,x]=exp fsl—z%b(X(u))dX(u)

_ 1 1 2
[ Sy X @)Y | . 6D

Notice that the standard normalization appears if we set
D=1/2, which implies DA— 1A in the Fokker-Planck
equation. On account of our demand (9) and the It6 for-
mula for ®(X (z),¢) we have

1 t _ _
55 J P X aX (=X (1))~ DX (5),5)

— [ au[3,®0+1VbI(X (u),u)
(38)

so that apparently
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d
2y (59 16X =expl @K (1,)—B(X (5)5)]

Xexp —Tlﬁftﬂ(X(u),u)du ,  (39)

with Q=2D3,®+DVb+(1/2)b? introduced before in
(10) by means of the substitution of (4) in the Fokker-
Planck equation.

In the case of natural boundaries at infinity, the con-
nection with the Feynman-Kac formula (12) is obvious,
and we have

dpy

4 du
dpy
d

= a2

where the second integral refers to the path integration of
the Radon-Nikodym density with respect to the
conditional Wiener measure; see, e.g., Refs.
[10,14,49,44,50-53,58]. In the context of (40) and (12) we
can safely assert that the pertinent processes [X (¢#) and
W (t)] have coinciding sets of sample paths. The stochas-
tic process ‘“realizes” them merely (via sampling) with a
probability distribution (frequency) different from this for
the Wiener process W (t).

The situation drastically changes if we wish to exploit
the “likelihood ratio” formulas (37) and (39) for diffusion
processes confined between the unattainable (natural)
boundaries, at least one of which is not at infinity. In
view of the absolute continuity of Py with respect to Py,
we must be able to select a subset of Wiener paths which
coincide with these admitted by the process X (¢), except
on sets of measure zero (both with respect to Py and Py,).

We face here a nontrivial problem of the existence of
integral kernels for (Schrodinger) semigroup operators on
a bounded or semibounded domain. The constrained ver-
sion of the formulas (40) and (12) should then integrate
over a restricted set of Wiener paths: some of them must
be totally excluded and some must “avoid” certain areas
(Wiener exclusion of Ref. [41]). This problem was solved
in the context of the quantum statistical mechanics
[39-42,12] where the Dirichlet boundary data for self-
adjoint Hamiltonian are casually associated with the
completely absorptive boundaries (cf. also Refs.
[29-32,38]). The reason is clear if one leads priority to
the Brownian motion proper since there is no natural way
for the standard Brownian motion (Wiener process) to
prohibit it from reaching or passing any conceivable
boundary, except for stopping the process when it is go-
ing to happen.

The most transparent way towards the localized
Feynman-Kac representation of the Dirichlet
(Schrédinger) semigroup on the (originally [38] bounded)
domain A is by introducing the first exit time T, for the
Brownian path started inside A (a concrete sample path is
labeled by w):

Py[4]= dp

[s,ylt,x]duls,ylt,x],  (40)

Th(0)=inf[t >0;X,(0)EA] . (41)

Then the integral kernel of the (essentially self-adjoint on
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A, with the Dirichlet boundary data) Hamiltonian
H,=(—DA+(1/2D)Q), is to be given by the condition-
al expectation

exp(—tH , )(s,,t,x)

=E

y,t —s

exp [—f‘ﬂ(Xu)du] ;8 <TL|X,

=X{®)=x(, (42)

which is an integration (40) restricted to these Brownian
paths which, while originating from y € A at times s, are
conditioned to reach x EA at time ¢, without crossing
(but possibly touching) the boundary 3A of A.

Another way to write down (42) is possible if we define
a function a,(w) on the event set (event=sample path):

1 if X,(w)EA for all t€[0,T]

= |0 otherwise . @3)

a\
Here a, is measurable with respect to the conditional
Wiener measure and then, e.g., (35) can be replaced by
the constrained path integral [22,39-42]:

PA[A]=fAdx faA(w)dyw[s,ylt,x]=fAduA, (44)

where A CA and o is the sample path label [omitted in
(35) to simplify notation].

The analysis [22,39,40] of special sets of Wiener mea-
sure zero is quite illuminating at this point. Namely, the
integral (44) in addition to paths which are strictly interi-
or to A admits also paths which do touch the boundary
O0A of A for at least one instant ¢ €[0,T]. Fortunately
[22,39,40], the P, measure of the set of such (unwanted)
trajectories is equal to zero.

Let us now consider a diffusion process X (¢), which ex-
ists in A and for which 3A is a natural boundary. Obvi-
ously no sample path of X (¢) can reach (touch) dA in a
finite time. By the absolute continuity Py <<Py, argu-
ment, we know that sets of Py, measure zero are the Py
measure zero sets as well. Hence (44) implies an apparent
modification of (36):

d
PrlAl= [ dx | aA(w)dL:[s,y|t,x]dy,,,[s,y,t,x] 5)

applicable to the diffusion X (#) with the natural bound-
ary dA. The Radon-Nikodym density is given by (39)
and the path-integral representation (42) is apparently
valid for the involved [compare, e.g., (4) again]
Feynman-Kac kernel. Except for the set of measure zero,
the process X (¢) is characterized by the standard Browni-
an motion W(t¢) ensemble of sample trajectories whose
“realizations” by X(t) are appropriately (Cameron-
Martin or Feynman-Kac) weighted.

Although for each choice of the natural boundary oA
there is a unique diffusion which respects it, we can dev-
ise a method of foliating the set of all considered diffusion
processes into dynamically equivalent classes. We shall
call diffusion processes dynamically equivalent if they
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generate the same a priori given field of local accelera-
tions bVb+DAb =V in their domain of definition. It
amounts to making a definite functional choice for
VQ(x), x ER!, and then classifying all natural boun-
daries which are consistent with this choice (let us em-
phasize that %b2+DVb =) is to hold true modulo a con-
stant).

Following Ref. [8] we can always consider a given,
unrestricted in R! Smoluchowski diffusion, as the refer-
ence one. Let {(x) be its auxiliary potential and VQ the
induced field of local accelerations. What are the
diffusion processes with natural boundaries which are
dynamically equivalent to this reference one?

On purely technical grounds, the answer is simultane-
ously provided in the framework of Nelson’s stochastic
mechanics [4,7,8,10,14,25-29,49,44,50-53,58] and
Zambrini’s Euclidean quantum mechanics [7,8,50-
53,58,59]. The pertinent homogeneous diffusion process-
es belong to the overlap of these two theoretical schemes
and are uniquely specified by the nodal structure of sta-
tionary solutions of the Schrodinger-type equation: with
D replacing #/2m in the original quantum evolution
problem and the Schrodinger potential being equal to
Q(x) modulo, an additive (renormalization) constant.
The ground-state process would correspond to the chosen
Smoluchowski diffusion.

Example: The notorious (albeit exceptional) harmonic
attraction. Let us consider the Sturm-Liouville problem
on LXR")

w?x?

4D

The substitutions a*=w?/4D?* A=€/w, and x =& /a give
rise to the equivalent eigenvalue problem

— DAY+ V=€ . (46)

I Y P
Lo+ £ lo=—ns,
47
H(E)=1 {% —9(x)

with the well-known solution (normalized relative to x)
=ntlieoe,=(n+3io, n=0,12,...

_ &
2

172
exp

a

Un(X)=¢,(6)= | "= H,(&),

(48)

Hy=1, H,=2¢,
H,=226>—1), H,=4£(2£%—=3),... .

Except for n =0 the solutions ¢,(§) are not positive
definite and change sign at nodes. We have

n=0, $(x)>0, xE(—o0,+);

n=1, ¥(x)>0, x€(0,+x);

P(x)<0, xE(—,0);

n=2, h(x)>0, xE(—ow,—1/V2)U(1/V2,+x);
Uy(x) <0, xE(—1/V2,+1/V2);

n=3, ¥3(x)>0, xE(—V3/2,00U(V3/2,»);
P(x)<0, xE(—o,—V3/2)U(0,V3/2);

and so on. It is convenient to continue further considera-
tions with respect to the rescaled £ =ax variables, in view
of the form —1A,+£*/2=H of the Hamiltonian
predominantly used in the mathematical physics litera-
ture [12]. To proceed in this notational convention it is
enough to set x —& and D — 7 in the formulas (1)-(12)
and thus utilize b»=VO/0O, Q2=1(b*+Vb), and
VQ=bVb+1Ab.

Although in (1)-(12) we need @, ®, of the same sign
and p(x) to be strictly positive, we can first make a for-

mal identification ®=0,=¢,, n=0,1,2, ..., and notice
that
2
1
n=0, b0=—g_>no=52—~3;
1 23
n=1, b1=E—§—+QI=%——2— ;
4 £ 5
:2 N =_L._ Q = —_ = .
n b2 252_1 g—) 2 2 5’
2
n=3 s b3=i+__ji.__>03=i_l .
& 283 2 2

Obviously VQ, =& for all n. Irrespective of the fact that
each b,, n >0, shows singularities, the auxiliary poten-
tials are well defined for all x and for different values of n
they acquire an additive renormalization —A,
=—(n+1).

The case of n =0 is a canonical [12,22] example of the
Feynman-Kac integration and the classic Mehler formula
involves the Cameron-Martin-Girsanov density (39) as
well. Indeed [12] the integral kernel [exp(—Ht)](y,x)
=k(y,0,x,t) for H= —%A-H%xz—%) is known to be
given by the formula

k(p,0,x,t)=m7"VH1—e %) 12

2_ 2 —t 2
—y (e 'y—x)
X pa— p—
exp 2 > , (49)
(e H@)(x)= [ k(,0,x,)0(y)dy ,
where the integrability property
x2—y?
Jkp0x,nexp | =2 |dy=1 (50)

is simply a statement [cf. (39)] pertaining to the transition
density (4) of the homogeneous diffusion, which pre-
serves _the Gaussian distribution p(x)=(00,)(x)
=a/V'mexp(—E&?).

The case n =1 automatically induces the (ergodic ac-
cording to Ref. [53]) decomposition of the diffusion pro-
cess into two independent noncommunicating com-
ponents, each being confined between the natural boun-
daries (— «,0) and (0, « ), respectively. The pertinent
processes have the same Feynman-Kac weight in the gen-



49 NATURAL BOUNDARIES FOR THE SMOLUCHOWSKI EQUATION . ..

eral expression (45) for their probability measures. No-
tice that we deal here with processes on the half-line
whose drift b, =1/£—¢& has a singularity of the Bessel
type when the diffusion is to approach the point 0; see,
e.g., Ref. [60] for a related discussion. It suggests that
the construction of the probability measure on the half-
line can be accomplished by directly starting from the
Bessel process with natural boundaries at 0 and <.
Namely, the rescaled form of the backward Bessel gen-
erator

1+2a
28

with x =\/§§, a =0, corresponds to the transition density
of the diffusion with inaccessible boundaries

£+ &
2t t

_1
Ly=>Ag+ Ve (51)

a

p(t;§0,§)=constxé-—exp ] , (52)

where I,(a) is the modified Bessel function. A particular
choice of a=1/2, i.e., I, ,(a)=V2/masinha, provides
us [in the notational convention (47)] with a conservative
diffusion whose field of drifts is b(£)=1/§. This diffusion
process can be directly compared (in the sense of Gir-
sanov; see [10,14,35,36,58,60,61]) to the unrestricted har-
monic diffusion considered previously: the drift transfor-
mation from 1/ to 1/£—§& induces a corresponding
transformation of probability measures. Effectively it
amounts to replacing in (45) the restricted (to the
semiaxis) conditional Wiener measure by the conditional
Bessel measure, which automatically respects the boun-
daries, and next evaluating the Radon-Nikodym deriva-
tive of the harmonic measure with respect to the Bessel
measure. The corresponding Cameron-Martin-Girsanov
(likelihood ratio) formula can be found in Ref. [10].

The decomposition into noncommunicating diffusions
with natural boundaries is characteristic of all n > 0 solu-
tions of (47). However, all of them induce the same local
field of accelerations VQ(&)=E.
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Although the existence of the Feynman-Kac kernels
(and thus of the transition densities and the diffusions
themselves) is granted here, it is generally not easy to give
analytic expressions for them. However, in view of (44),
the numerical simulation of each diffusion problem en-
countered before is definitely in reach. Our discussion
was basically one dimensional and restricted to stationary
cases; nevertheless extensions to time-dependent (nonsta-
tionary) processes and to higher dimensions (much of the
outlined structure is preserved) are available.

Remark 3. Let us stress that the original analysis of
Schrodinger and Jamison to evaluate the stochastic pro-
cess from the input and output statistics data (as revived
by Zambrini [6,62,63]), referred to the case without nodal
surface of the input and output probability distribution
function. Zambrini himself gave [6] a construction of the
solution of the corresponding Schrédinger problem with
nodal surface, hence effectively with the natural bound-
ary. Our aim was to present a new standpoint towards a
better understanding of such a “singular” Schrédinger
problem by limiting the discussion to time-independent
drifts (cf., however, Ref. [10] for a discussion of the time-
dependent case along the similar lines). The key point is
then to introduce the Feynman-Kac potential, closely
linked to the Onsager-Machlup potential (cf. Yasue’s [64]
attempt to fix a class of stochastic processes correspond-
ing to the same OM potential, in case of nonsingular
drifts). In connection with the singular drift problems,
which were the main topic of the present paper, let us no-
tice that in Ref. [65] the formalism based on the
Cameron-Martin formula was developed for nonsingular
Markov-Bernstein diffusion processes and the “interest-
ing open problem...when ® or ®, have zeros” was men-
tioned.
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