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Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series
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We propose here a local exponential divergence plot which is capable of providing an alternative
means of characterizing a complex time series. The suggested plot de6nes a time-dependent exponent
and a "plus" exponent. Based on their changes with the embedding dimension and delay time, a cri-
terion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay
time, and the largest Lyapunov exponent has been obtained. When rede6ning the time-dependent ex-
ponent A(k) curves on a series of shells, we have found that whether a linear envelope to the A{k) curves
exists can serve as a direct dynamical method of distinguishing chaos from noise.

PACS number(s}: 02.50.—r, 05.45.+b, 02.70.—c

I. INTRODUCrxON

Complex time series are ubiquitous in nature and in
man-made systems, and a variety of measures have been
proposed to characterize them. Among the most widely
used approaches today are state space reconstruction by
the time delay embedding [1,2], calculation of the corre-
lation dimension and of the E2 entropy [3,4], and estima-
tion of the Lyapunov exponents [5-7), for characterizing
strange attractors. Since low-dimensional strange attrac-
tors produce a small and usually noninteger value of the
dimension and a converging entropy, and a positive larg-
est Lyapunov exponent, in practice these have often been
taken as proof" of the presence of a strange attractor.
However, there exist some stochastic processes which
generate time series with finite correlation dimension and
converging E2 entropy estimates [8-11]. These signify
that under certain circumstances one may not understand
very much by routine calculations. Therefore it is very
important to develop a method for distinguishing chaos
from noise in an observed time series and develop a
means of characterizing chaotic time series to gain an in-
sight into the system under investigation.

In this paper we present a means of characterizing
chaotic time series. We de6ne a local exponential diver-
gence plot [12] which enables one to view the dynamics
on an attractor constructed from a time series. If the
time series is indeed chaotic, then the plot provides a cri-
terion for the selection of the minimal acceptable embed-
ding dimension and an optimal delay time. When the un-
stable motion on the chaotic attractor only is extracted, a
proper estimation of the largest positive Lyapunov ex-
ponent can also be obtained. The unstable motion on the
attractor enables one to develop a direct dynamical
method of distinguishing low-dimensional deterministic
chaos from stochastic processes.

II. LOCAL EXPONENTIAL DIVERGENCE PLOT
AND OPTIMAL EMBEDDING

Assume we have a time series x&,x2, . . . , with sam-
pling time 5t and construct vectors of this form:

X;=(x;,x;+L, , . . . , x;+i &~L, ), with ttt the embedding
dimension and L the delay time. Hence a dynamics F:
X;~X,+, is defined, which is assumed to be representa-
tive of the original system. The distance between X, and

X, IIX;
—X, ll is mapped « IIX;+ —X,+kll a««k I«ra-

tions of F. The local exponential divergence plot is
de"ned by pi«ting ln(IIX+k Xj+kll~llX —Xjll) vs

ln()(X, —Xj ))) when ((X;—Xj )( is smaller than a prescribed
small distance r' As t.ypically done, we assume that
most of these suSciently small distances ~~X;

—X)~ can be
regarded as distances between orbits, then if the motion is
t«ly chaotic, points with IIXi+k Xj+kll ~ IIX' XJ II will
dominate and lie above the zero level line in the plot.

Figures 1(a)-1(e) show divergence plots with difFerent
m and I. for the Rossler attractor constructed from the x
component of the flow. For comparison, a divergence
plot constructed from the original (x,y, z) system is also
plotted in Fig. 1(f). The zero level line is added to Figs.
1(c), 1(e), and 1(f) for a clear view of the divergence-
dominated behavior. We notice that Fig. 1(c) is represen-
tative of that constructed from the original system [Fig.
1(f)] and does not change much when m is further in-
creased [Fig. 1(e)]. We will show below that the
difi'erence between these plots gives a hint to proper
embedding, and m =3, 1.=8 correspond to optimal pa-
rameter values.

A problem of significant practical importance is to
determine the minimum acceptable embedding dimension
m, . A basic idea is that in the passage from dimension m
to m +1 one can differentiate between points on the orbit
X(n) that are "true" neighbors and points which are
"false" neighbors —points which appear to be neighbors
because the orbit is being viewed in too small an embed-
ding space. Based on this basic idea, several methods are
now available [13-16],which dilfer in implementations
either by way of graphic display or by defining some ap-
propriate statistical quantity. When the embedding di-
mension is increased from m, —1 to m„ the structure of
the graphic representation and/or the value of the statist-
ical quantity will undergo a radical change while further
increasing m causes little change. Our divergence plot
implements this basic idea dynamically. When the
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embedding space is too small, the ill-defined dynamics I
and the false neighbors will generate many points of
ln( I IX;+k X, +k II/IIX, —X, II ) with excessively large pos-
itive values in the plot. This is clearly shown by the
diff'erence between Figs. 1(a) and 2(c).

Figure 1 also points out how to select a proper delay
time L. Dynamically, when L is either too small or too
large the dynamics I will not be very well defined,
in the sense that excessively large values of
»(IIX+k Xj+kll/IIX' Xjll) «equently ~pp~~~.
key to selecting a proper delay time L is that the orbital
motion should be as uniform as possible, and distortion
be small. This can be achieved by requiring that the
numbe«f pot«»n(IIX +k Xj+kll/IIX —X, II) with ex-
cessively large positive values in the plot be as small as
possible and the structure of the plot be as compact as
possible. This is the reason that the structure of Fig. 1(c)
is preferred to that of Fig. 1(b) or 1(d).

For a quantitative description, we define the time-
dependent exponent A by

with IIX,
—

Xjll ~r' The. evolution time corresponding
to k is k5t and the angle brackets denote ensemble aver-

age of all possible pairs of (X;,X ). Since we are more
point»n(IIX +k Xj+k II/IIX —Xjll)

with excessively large positive values, we also define the
"plus" exponent A+ by

A+(k, m, L)= &»(IIX;+k —X,
where + simply denotes that points with positive values
of 1 (IIX;+k Xj+kll/IIX; —X, II) o»y «e»«aged. ln
the following discussion, when only one variable is con-
sidered, we will simply write A(k), A(L), and A+(L) for
convenience.

Now the problem of properly reconstructing the state
space can be stated as follows. It is required that I' be a
continuous mapping preserving neighborhood relations.
The minimal acceptable embedding dimension m, is
determined by requiring that the structure of the diver-
gence plot no longer changes radically, or equivalently,
that A and A+ do not decrease significantly by further in-
creasing m. When m is thus selected, for a series of L,
the minima of A+(L) and A(L) determine an optimal de-
lay time.

The physical significance of the quantity A is obvious.
When the evolution time k5t is very small, A/k5t is the
mean value of the largest local Lyapunov exponent
[17,18]. After several iterations, the separation vector be-
tween X; and X~ will align with the eigendirection for the
largest positive Lyapunov exponent, and A/k5t is
equivalent to the standard estimation of this exponent.
Hence when the proper reconstruction of the state space
has been achieved, we can expect that the A(k) curve for
k5t not very small will be a straight line which passes
through the origin when extrapolated. This should be,
otherwise, di8'erent values of the largest Lyapunov ex-

(a) xn=2, L=9 (b) m=3, L=2

(c) m=s, r=8 (d) m=3, L=16

='-k
r

FIG. 1. Local exponential divergence plots
for the Rossler attractor, k =9. IIX,

—X, ll
has

been rewritten as dis(X; —I,}.

(e) m=+.L-S

in [dis(Q, x&)]
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FIG. 2. The A(L) and A+(L) curves with
different m for the Rossler attractor, k =9.
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ponent will be obtained with diFerent selections of k.
The largest I.yapunov exponent can be objectively es-
timated by the slope of the linear A(k) curve, i.e.,
[A(k, )

—A(k2)]/(k1 —k2}5t, with k, , kz G(k;„,k,„).
Let us continue to discuss the Rossler system. Figure 2

shows the A(L} and A+(L) curves, and we see that the
combination of m =3 and I.=8 is an optimal choice.
Note that improper embedding (underestimated rn or im-

proper L) always results in overestimated positive ex-
ponent. Figure 3 gives the A(k) curves for diS'erent m

and L. We see that when m =3, the A(k) curve for L =8

shows a clear linear dependence, while curves for the
smaller value of L =6 or the larger value of L =12 (ap-
proximately the optimal value suggested by [19])are less
satisfactory. Figure 3 also shows two curves for m =4,
L =6 and m =8, L =4, with improved linearity. Note
that the degree of the linearity is "saturated" when m is
increased to 4, while the minimum acceptable value of m
is 3. The estimated value of the largest Lyapunov ex-
ponent from the slope of the A(k) curve of m =3 and

TABLE I. Simultaneous minimal embedding dimension m and optical delay time L, and the largest
Lyapunov exponent A,. The total number of points N is given in the table for different model systems.

Optimal embedding parameters A, value

Systems Others Ours (N =2000) Others Ours

Henon [20]

(a =1.4, b =0.3)
X„+l=1—aX„+Y„
Y„+l=bX„

Rossler [21]

(5t =m f25, a =0.15,
'

b =0.20, c =10.0)

X=—( Y+Z)
Y=X+aY
Z=b+Z(X —c)

Lorenz [22]

(5t =0.03,o =10,
b =8/3, r =45.92)

X=o.( Y —X)
Y=X(r —Z) —Y
Z=XY —bZ

Mackey-Glass [23]

(5t =1.5,a =0.2,
b =0.1,c =10,I =30)

~ aX(t+I )
b (1+[X(t+I )]'

m =2 [14]
N =5000

m =3,L =7

[15]

N =10000

m=4,

L5t =0.3I

[15]

N =9000

m =2,
L=1

m=3,

L=8

m =3,
L=3

L5t =0.3l"

0.418
[5]

0.09

1.497

0.0071

0.421
%0.003

N =2000

0.067
+0.006

1.48

+0.03

N =3000

0.0072
+0.0006

N =4000



3810 JIANBO GAO AND ZHEMIN ZHENG 49

1.6

1.2 — +

0.8—

0.4—

m=3,L=8 (solid line)
m=3, 1.=6

tain small distances like ~~X;
—X;+ (~, with w very small,

and their kth iterations can also be very small. These
points obviously correspond to the orbital motion, and
cannot be regarded as small distances between orbits.
Points in the divergence plot corresponding to these
points merely reflect changes of the phase velocity along
the orbit, and such points will increase if 5t is decreased.
Let us call this part of the motion tangential motion. The
tangential motion contributes a dimension nearly one,
corresponding to a Lyapunov exponent equal to zero
[24]. Hence this motion should be excluded when calcu-
lating the fractal dimension and estimating the largest
Lyapunov exponent. A possible way of doing this is to
add an additional condition to expression (1), namely,

0.0 j —i~a . (3)

40 80 &20

Evolution time k
l60

FIG. 3. The A(k) curves with difFerent m and I. for the
Rossler attractor.

L =8 is 0.067. These results, together with results for
other model chaotic systems, are summarized in Table I.

We note that, with regard to the proper reconstruction
of the state space, results of [14,15] can be easily obtained
by our method with a very small data set. Our method
has the additional advantage that the approach is
simpler, more natural, and easier to understand and im-
plement, and capable of providing more information.

III. TANGENTIAL MOTION
AND UNSTABLE MOTION

In this section we examine the assumption that most
sufficiently small distances ~~X;

—X
~~

can be regarded as
distances between orbits. A problem related to this is
whether and how the divergence plot for a continuous
system changes with the sampling time 5t. Let us discuss
the Lorenz system with a much smaller 5t of 0.003 than
the one taken in Table I. Figure 4(a) shows the diver-

gence plot for m =3, L =27. We see that the plot con-
sists of two parts, a dotted curvelike part and a heavy
black part. Do they have the same origin? Figure 5(a)
shows the A(k) curve, which is by no means linear.
Hence we should conclude that each part has its distinct
origin, and that the above assumption does not hold in
this case.

The answer is rather simple, however. There are cer-

The expression (1) corresponds to w = 1. Theiler [25] has

proposed a similar improvement to the calculation of the
correlation dimension, and suggests that w be selected as
the autocorrelation time. In our case, theoretically, the
larger the w, the safer the assumption holds. However,
we have tested numerically that putting w equal to the
embedding window (m —1)L already does the job.

Figure 4(b} is a modified divergence plot. We see that
the curvelike part of Fig. 4(a}, especially the part corre-
sponding to very small distances where statistics is poor,
is largely suppressed. Figure 5(b) is the modified A(k)
curve. It is now nearly linear. Actually the slope of the
modified A(k} curve gives the correct Lyapunov ex-

ponent. Thus we know that the heavy black part in the
divergence plot originates from the unstable motion, and
a linear A(k} curve is a property of the unstable motion
and characteristic of chaotic motions.

Let us summarize. Two kinds of motion, tangential
motion and unstable motion, can be discerned from the
structure of the divergence plot. The former is irrelevant
in the calculation of the fractal dimension and estimation
of the largest positive Lyapunov exponent. Hence the
former should be removed as much as possible in these
calculations. Since the damaging effect of the tangential
motion is enhanced when 5t is decreased, too small a
sampling time is not recommended. Also 5t is suggested
not to exceed the optimal delay time.

A note on the Lorenz system needs to be made. This
system is very complicated in that, even when 5t is not
small (for example, 5t =0.009}, the tangential motion
still occupies a large fraction in the divergence plot, and
the A(k) curve is not linear by expression (1},if condition

(b) w=54

FIG. 4. Original ( w = 1) and modified

(w =54} local exponential divergence plots for
the Lorenz system constructed from the x
component of the flow, I =3,1.=27,
k =30,5t =0.003.
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FIG. 5. A(k) curves corresponding to Fig. 4.

(3} is not imposed. This was probably the reason that
Wolf et al. [5] used a very large 5t to estimate the largest
Lyapunov exponent for this attractor. Hence, whenever
one calculates the A(k) curves for a continuous system, it
is recommended that condition (3) always be imposed.

Another important note should also be made. The op-
timal values of m and L5t do not change with the sam-

pling time 5t. Though condition (3) is suggested when
calculating the A(k} curve to estimate the Lyapunov ex-
ponent, it is not needed when reconstructing a state
space, since the tangential motion is an integral part of
the motion on the attractor.

IV. DYNAMICAL TEST
FOR DETERMINISTIC CHAOS

In the last section, we have identified two kinds of
motion, the tangential motion and the unstable motion,
from the structure of the divergence plot. The former
corresponds to the vector field, and is a characteristic of
deterministic processes. By employing this property,
Kaplan and Glass [26] have used a coarse-grained direc-
tional vector to determine whether the motion is deter-
ministic or not. The unstable motion is a characteristic
of chaotic motions, which permits short-term prediction
but denies long-term forecasting. Sugihara and May [27],
and recently Kennel and Isabelle [28], have used predic-
tion as a means of distinguishing chaos from noise. In
this section we extend the above formulations to develop
a direct and dynamical test for deterministic chaos.

when k &m,

[P(er)] /[P(r )]k, y &lnr'

[P(e~)] ", y &lnr', (6)

P(»llx+k xj+k II
&y lllx —xj II

& r'&= [P«'}]

Further considerations lead to the following functional
forms:

f(k, m, r ), 1&k&m —1

g(m, r~}, k&m . (8)

Hence we see that A(k) as a whole cannot be linear in

As can be imagined easily, a quantity like A(k)/k5t
calculated from expression (1) for a noise may also be
positive. However, a stochastic process has no such
motions as tangential or unstable, hence, a linear A(k)
curve cannot be expected. Figure 6 shows two diver-
gence plots for a Gaussian white noise. %e see that the
smaller the r', the larger the A. In this respect, diver-
gence plots for a chaotic system with underestimated rn

or too small and too large L also look noisy [Figs. 1(a},
1(b), 1(d)].

Let us first discuss how the A(k) curve of an IID (in-

dependent with identical distribution) random variable
series behaves. Formally we construct vectors X,.

=(x;,x;+„.. . ,x;+,), with m as the embedding di-
mension (the delay time L is taken to be 1 in accordance
with the independency assumption). Take the norm

IIX —Fll =max;Ix; —y; I and assume the probability dis-

tribution function of lx; —
x~ I to be P(x). Rewriting ex-

pression (1}as

A(k&= &»IIX; —X, k II &
—&»IIX; —XJ II &,

IIX;
—X, ll

&r' (4)

we see that A(k} is well defined if we have enough pairs
of (i,j). Denoting P( &ylllX; —Xjll&r') as the condi-
tional probability, we have

P(»IIX; —X, II -y IIIX;
—X, II —r'

&

[P(er)/P (r ')], y lnr '
1, y &lnr',

and when 1&k &m —1,

P(»llx+k +j+kll &ylllx; —x, ll
&r'&

m=6, L=i

FIG. 6. Divergence plots for Gaussian
white noise.
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FIG. 7. The A(k) curves for (a) the Lorenz
system (rn =4,L =2), and (b) Mackey-Glass
equation (m =5,L =1). Time series is nor-
malized to (0.1). 5000 data points are used.
Curves (1)—{9) correspond to shells
{2 ' ', 2 '), with (a) Lorenz system,
i =5,6, . . . , 13, and (b) Mackey-Glass equa-
tion, i =3,4, . . . , 11.
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k. Rather, A depends on r' and m. We also note that
A(k) is always positive if r' is very stnall, because
~~X, +k

—X +k~~ has greater probability to be larger than

~~X;
—XJ(~. By the same reasoning we also know that

A(k) increases with increasing of k when 1(k (m —l.
When k )m, however, we conclude that the A(k) curve
is a horizontal line when there are many pairs of (X;,Xj )

to well define the probabilities.
For a white noise, the Ez entropy also depends on r*.

Actually, we have the following expression [4]:

1 Cm(r) 1
Ez ——ln = ——lnP(r) .

5t C + (r) 5t
(9)

Since the correlation integral C (r) is equal to [P(r)]
the probability that two randomly chosen points, X; and
X, is less than r apart when the size of the data set is big
enough [3].

An implication is that if we calculate the largest
Lyapunov exponent or the Ez entropy from a white
noise, we would always have a positive number. Howev-
er, this number does not imply chaos since it depends on
r' and m, and probably also on L for a colored noise.
Actually this number can become as large as one desires
provided that the data size is so large that r' can be very
small.

To gain an insight into the dependence of the A(k)
curve on r ' for a noise and to deal with noise-
contaminated data with unknown noise level, we extend
the formulation (1) by defining A(k) on a series of shells,
r, +, (~~X, —X ~~(rI, and calculate the corresponding
A(k) curves. We take the Lorenz equations (5t =0.06)
and Mackey-Glass equation (5t =6) as two examples to

illustrate some typical results. We notice from Fig. 7 that
there exists a linear envelope to the A(k) curves. Actual-
ly the slope of the envelope estimates the largest
Lyapunov exponent. Also we see that a time scale of
dynamical correlation [corresponding to the linear in-
creasing segment of the A(k) curves] is associated with
each of the shells, which is important for prediction.
Beyond that time scale, the chaotic motion is indistin-
guishable from a stochastic process.

%'e now turn to a discussion of stochastic processes.
Figure 8 gives a typical result for a white noise of uni-
form distribution, which shows all the features obtained
by the qualitative analysis given above. Figure 9 shows
the result for the surrogate data of the Lorenz system,
i.e., a data set with the same spectrum but randomized
Fourier phases. The qualitative features of Fig. 9 are
similar to those of Fig. 8. This is in accordance with the
fact that a divergence plot for surrogate data looks quite
similar to that of a white noise (Fig. 6). The new charac-
teristics are that A(k) depends on I. and a time scale cor-
responding to the increasing of A(k) is slightly larger
than the embedding window (m —1)L due to the condi-
tional probability caused by the embedding procedure
and the color of the noise. However, this time scale is of
the magnitude of the embedding window. The most im-
portant fact is that due to the dependence of the A(k)
curves on the radii of the shells, an envelope to the A(k)
curves no longer exists, and the largest positive Lyapunov
exponent cannot be defined. Another important fact is
that if the time scale corresponding to the increasing of
A(k) is taken as the prediction time, then it is
signi6cantly smaller than the time scale of dynamical
correlation given by Fig. 7.

3.0— xn= 5

~ 1.5-
lD

Q
C4
IU

I

8
~ 0.0,

0 io 20

(B)

(5)
(4)

1.5-

0.0
30 0 10

Evolution Tixne k
20 $0

(4)

(2)

(1)

FIG. 8. The A(k) curves for a normalized
uniformly distributed white noise. 6000 data
points are used. Curves (1)—(6) correspond to
shells(2 ' ', 2 '), i =4, 5, . . . , 9.
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F&G. 9. The A(k) curves for the surrogate
data of the Lorenz system. Time series is nor-
malized to (0,1) and 6000 data points are
used. Curves (1)—{9) correspond to shells
(2 ' ',2 '), ' =4, 5, . . . , 12.

Having distinguished clean chaotic signal from pure
noise, we now discuss time series of this type,
{x;] +a [g;]. Ix; I is a clean chaotic signal and [g; I is a
pure noise, both of which are normalized to (0,1},and a is
the noise level. Intuitively one can imagine that the A(k}
curves for shells of smaller radii will take the characteris-
tics of Figs. 8 and 9, while for shells of larger radii, the
characteristics of Fig. 7 will be preserved, i.e., there will
only exist a kind of envelope to A(k) curves of larger ra-
dii shells. The higher the noise level, the more the en-
velope is destroyed. When the noise level is too high, it
may be difficult to extract the characteristic of the chaot-
ic motion, since the largest acceptable radius of the shell
is bounded by the upper bound r,„,which is meaningful
for the calculation of the fractal dimension, as pointed
out by Eckmann and Ruelle [6]. Figure 10 shows typical
results for the Lorenz system supplemented with its sur-
rogate data, which confirm the qualitative features de-
scribed above. We also nate that when a)0.2, the
characteristics of the chaotic motion are already very
diScult to identify. The characteristics of Fig. 10 remain
similar when a white noise of Gaussian distribution or
uniform distribution is added.

U. DISCUSSION AND CONCLUSION

In this work, we have proposed a local exponential
divergence plot to characterize complex time series. Two
quantities, A and A+, are defined from the divergence
plot. Based on their changes with m and L, a criterion
for the selection of the minimal acceptable embedding di-
mension and optimal delay time has been obtained. A

chaotic motion is characterized by a linear A(k) curve,
the slope of the curve yields an estimate of the largest
Lyapunov exponent. Hence there exists an envelope,
which is linear or nearly linear, to the A(k} curves
defined on a series of shells. For stochastic processes,
A(k) cannot be linear in k, and the value of A depends on
the radii of the shells. Therefore there no longer exists an
envelope to the A(k) curves. This clear difFerence pro-
vides a direct and dynamical method of distinguishing
chaos from stochastic processes. When a noise is added
to a chaotic signal, the envelope to the A(k) curves of
smaller radii for the underlying chaotic system is des-
troyed. The higher the noise level, the more the envelope
is destroyed.

A point on what a minimal acceptable embedding di-
mension means should be made clear. Mathematically,
the reconstructed dynamics F should have no self-
intersections, or physically, the "false neighbors" should
drop to zero. However, if anly statistical quantities such
as Lyapunov exponents are concerned, we may permit
very few "false neighbors" to exist. In the case of the
Rossler attractor, we conclude that when m reaches 3,
some, though very few, false neighbors still exist. This is
reflected in the divergence plot of Fig. 1(c}that there ex-
ist some excessively large positive points in the plot when
compared with Figs. 1(e) and 1(f), and that the A(k)
curves for m =3 do not pass thraugh the origin when ex-
trapolated. However, when m reaches 4, the false neigh-
bars have probably dropped to zero (Fig. 3). Liebert,
Pawelzik, and Schuster [15]have pointed out a particular
difhculty related to this attractor, that most methads be-
fore theirs only obtain a minimal embedding dimension
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of 2 or 4, while their method obtains 3. It is quite clear
that m =2 should be rejected. However, to select m to be
3 or 4 may depend on whether one permits very few false
neighbors to exist and what one's purpose is. We regard
m =3 as acceptable, since the A(k) curve for tn =3 and
1.=8 is quite linear, and the estimation of the largest
Lyapuov exponent is objective. We may regard a linear
A(k) curve as a practical "safety" test for proper embed-
ding.

However, what Liebert, Pawelzik, and Schuster [15]
call a particular problem to the Rossler attractor is not so
unique. We have numerically found that when m is
selected as the minimal value listed in Table I, the A(k)
curves for the Lorenz system and the Mackey-Glass
equation also do not pass through the origin, though this
is less serious than in the case of the Rossler attractor.

The issue of determining an optimal delay time is inti-
mately related to the determination of the minimal ac-
ceptable embedding dimension. Theoretically [2], when
m is large enough, for a large data set, a range of time de-

lays ought to work well. This is reflected in A(k) curves
such as are shown in Fig. 2 where the A(L) curve around
the minima is quite Hat. Since the minimal acceptable
embedding dimension may frequently be less than the
theoretically required value of the embedding dimension,
the determination of the delay time may turn out to be
quite critical. For example, in the case of the Rossler at-
tractor, when m =3, only the A(k) curve of L =8 has a
satisfactory linearity, while when m is larger, more values
of L are workable. Anyway, the selection of the minima
of A(L) and A+(L) curves as an optimal delay time will

always guarantee us that the selection is safe.
Sato, Sano, and Sawada [29] have proposed a quantity

similar to our expression (1) based on the ensemble aver-
age of nearest neighbors. However, the concept of
nearest neighbors will not work when there is noise. The
idea of introducing r „which is determined by the noise
level, to form a shell (r„r') and calculate the Lyapunov
exponents has been proposed by Zeng, Eykholt, and
Picke [30]. However, they have reported a situation
equivalent to that of the A(k) curve being not linear. We
should emphasize the importance of a linear A(k) curve
or a linear envelope to the A(k) curves. Only when this
is the case can we calculate the Lyapunov exponents in a
shell objectively.

We have not explored the potentiality of using the
significant difference between the dynamical time scale of
Fig. 7 and that of the embedding time scale of Figs. 8 and
9. When the noise level is high, up to 20%, the envelope
to the A(k) curves is destroyed (Fig. 10); however, the
time scale corresponding to the dynamical one of Fig. 7 is
nearly preserved. We expect that an appropriate statistic
incorporating this can be worked out to deal with noise-
contaminated data with much higher noise level.
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