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Period-doubling bifurcations in the presence of colored noise
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%'e study the effects of colored noise on period-doubling bifurcations. Using the Feigenbaum map as a
model, the technique of cumulant equations is applied to analyze the bifurcation behavior. %e find that
the universal properties of the period-doubling sequences are preserved in the case of colored noise.
Moreover, the resonancelike response of the period-doubling cascade to the colored noise forcing is ob-
served, while the noise correlation time is varied. This response is re6ected in both power spectra and
bifurcation diagrams.
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I. INTRODUCTION AND A MODEL

Period-doubling bifurcations (PDB s) are typical for a
wide range of dissipative dynamical systems. There are a
lot of examples of dynamical systems in physics, chemis-
try, biology, etc. , which demonstrate PDB (see Refs.
[1,2]). The infinite sequence of such bifurcations is one of
the scenarios leading to chaos that have universal scaling
properties [3].

Since in real physical systems noise already exists and
is naturally inevitable due to dissipation [4], the investiga-
tion of the influence of noise on the bifurcation behavior
is important. There are several basic studies that deal
with the influence of noise on the PDB [5]. The main re-
sults of these works is that the sequence of PDB becomes
finite under the influence of noise and that there exists a
universal law which connects the maximal noise intensity
trk and the possibility of resolving a cycle of period 2,

from reality. For real physical systems we typically find
that external random perturbations have time scales com-
parable with those of the dynamical systems, i.e., finite
correlation time of noise has to be taken into considera-
tion. In view of colored noise in nonlinear systems it is
possible to observe phenomena which do not occur in the
case of white noise [7-9].The purpose of this paper is to
study the efFects of colored noise on a rather simple sys-
tem: the quadratic map.

A traditional model for the investigation of PDB is the
family of discrete maps x„+&=f (x„,a), where f (x,a) is
a function with a quadratic maximum and a is a bifurca-
tion parameter. This tnap can be considered as a Poin-
care map of a flow system. Despite its simplicity, such a
one-dimensional map generates a rich dynamical
behavior, as is often observed in real flow systems [1,10].
In the following we will use a special form of f (x), i.e.,
the Feigenbaum map,

where p, t, is the universal constant isn't,
=6.557. . .

However, in these papers only white noise was con-
sidered. The concept of white noise is a suitable
mathematical abstraction which a11ows us to use the
powerful techniques developed for Markovian processes
[6]. This concept is suitable for internal fluctuations (for
instance, thermal fluctuations). However, in real physics
external noise from an environment of a system
influences it stronger than an internal one. For external
fluctuations, this restriction to white noise means that the
interactions between a system and its environment are ab-
solutely uneorrelated. This assumption, however, is far

'To whom correspondence should be addressed.

In Eq. (2), a is the bifurcation parameter. The bifurcation
sequence of the fixed point with the period 2" takes place
for the parameter values ak. a, =0.75, a z

= l.25,
a3 =1.368099, . . . . The critical point a„=1.401 15. . .
corresponds to the accumulation of the PDB and to the
transition to chaos.

To investigate noise effects we have to introduce a
noise source into Eq. (2),

x„+,=f(x„)+g(x„)g„, (3)

where g (x) is a function of the state variable and g„ is a
random process with zero mean value symmetrically dis-
tributed on the region [—e, +e], e((1. (Note that the
procedure of a correct introduction of the noise source
into a Poincare map of a real dynamical system is very
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C.+i=1 4+v. (4)

complicated [11]. Here, we use only a model approxima-
tion to obtain qualitative results. ) In the case of additive
white noise g(x)=o (where o is the noise intensity) with

(g„g„+ ) =5(m) [5(m) is the 5 function], the stochastic
process x„ is a Markov one. Then, it is possible to use
the technique based on the Frobenius-Perron equation
[12]. In the case of colored noise, the situation is more
diScult, since we cannot use the technique of Markov
processes directly. A theory of the influence of colored
noise has been developed recently [13]. A promising ap-
proach is based on the extension of the stochastic system
(3) by introducing additional stochastic equations which
describe the colored noise. For example, an exponential-
ly correlated Gaussian noise can be modeled by the one-
dimensional Ornstein-Uhlenbeck process [6]. For our
discrete map we can use a discrete analogue of the
Ornstein-Uhlenbeck process, i.e., the autoregressive pro-
cess of first order

is a bifurcation of the fixed point in the origin at the mul-
tiplier value p& =0, if p& )0 then the fixed point is a stable
node and for p& & 0 it is a stable focus.

The power spectrum of the linearized map (7) can be
easily obtained:

Sy '(~) =S((co)/(1 —2p, cos(co)+p, ) . (9)

From Eq. (9) it follows that the power spectrum has a
broadband peak at the basic frequency co =0 (or co =2~) if
the multiplier p, is positive. For negative values of p, the
power spectrum has a broadband peak at the subharmon-
ic frequency co=a. Thus, the influence of noise gives rise
to the fact that the power spectrum refiects a structure,
which is typical for a fixed point of period 2, long before
the occurrence of the bifurcation point in the appropriate
deterministic system. It corresponds to noisy precursors
of bifurcation as described by Wiesenfeld [15].

In the same way we can obtain the power spectrum of
a 2 period fixed point,

where I is the parameter which determines the correla-
tion time ~„,= —1/in~ I ~, ~I ~

(1, and g„denotes white
noise (rl„g„+ ) =(1—I )o 5(m). The intensity of the
colored noise g„ is ( g„)=o, i.e., it is independent of I".
The power spectrum S&(co) of the colored noise has the
form

o'(1 —r')
Sg co

1 —21"cosco+ I'z

S'"'(co)=S'-"'(co)/(1 —
2pl, cos(2"co)+pI, ),

where

k2 —1

S'="'(co)=S&(co) g pk
' ' cos(leo)

1 =0

2k
2' —I —i .+ g p'„' ' sin(lcm)

1=0

(10)

The power spectrum S&(co) takes its maximum at co=0 if
I &Oand at co=a if I &0.

Thus, we have a two-dimensional stochastic map,

The shapes of the power spectra for k =2 are shown in
Fig. 1 for p2=0. 1 and for P2= —0. 1. If pk &0 then the
power spectrum S'"'(co) has broadband peaks at the

x„+,=f(x„)+g(x„g'„, g„+,=rg„+q„. (6)

The organization of the paper is as follows. In Sec. II
we present the linear analysis. Section III is devoted to
the bifurcation analysis of the cumulant map. The con-
clusions are presented in Sec. IV.

II. LINEAR ANALYSIS

To understand the properties of the map (6), we first
perform a linear analysis in the vicinity of period-
doubling bifurcations for additive noise [g(x)=1]. I.et
us consider the fixed point of period 1 [xo '=f (xo ')]
and linearize the map (6) near this point [14],

&»+i Pi3'»+(» ~

whe«y„+ i =x„—x o
'. pi =f '(xo '

) is the characteristic
multiplier at the fixed point xp '. For a fixed point of
period 2 one can analogously write

2 —1
k

(k) -(k) ~ 2 —I —1pPkyn+ n & n ~ Pk Sn+I
l=O

0'6 I I I I

0.0

1.6—
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(b)

where yn now is a small disturbance around the fixed
point xo"' =f"(xo ') of period 2" and pk is the charac-
teristic multiplier of the k-iterated map at the fixed point
~ (k)xo

Note that in the noiseless linear map yn+, =p,yn, there

0.6
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 1. Power spectrum {10)of the linearized map (8) for
k =2 {period 4 Sxed point): (a) p& =0.1; (b) p2= —0. 1-
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I'",'„=[1—sin(cok )]/cos(cok ) .

Especially, it gives for k =1 (period 2 fixed point), r0, =ir
and I",'„=—1; for k =2, co2=ir/2 and I','„=0; for
k =3 (period 8 fixed point) r03=n/4 (or 3m/4) andI','„=—0.41 (or 0.41) (see Fig. 2). Thus, the dependence
of the subharmonics intensity of 2" cycles on the colored
noise parameter I exhibits a resonancelike shape. In oth-
er words, the linear response of the system demonstrates
resonancelike sensitivity to the variations of the charac-
teristic time scale of noise.

10.0-

5.0-

—1.0 —d.5 0.0 0.5 &.0

1.5-

1.0—

0.5-

—1.0 -6.5 0.0 0.5 1.0

15- (c)

1.0—

subharmonics cok =(2n +1)ir/2" ', (n =0, 1,2, . . .).
Let us consider the dependence of the intensity of these

subharmonics I' '(I )=S» '(cu=cok, I') of the 2 fixed
point on the parameter I of colored noise. It is easy to
see that such a dependence takes its maximal value at the
parameter I =I ','„, determined by the expression

III. BIFURCATION ANALYSIS
OF CUMULANT EQUATIONS

We now pass over to the nonlinear bifurcation analysis
of the two-dimensional stochastic map (6). When the
noise is added to a nonlinear dynamical system, we are
forced to consider an averaged stationary characteristics
of the appropriate stochastic process instead of limit sets
of a dynamical system. Such characteristics may be sta-
tionary probability density, power spectrum, correlation
function, etc. [16]. One approach to the bifurcation
analysis of stochastic systems is using the cumulant ex-
pansion of a probability density [17,18,9]. As is well
known, a stochastic process can be determined both in
terms of probability densities and in terms of cumulants.
The evolution of probability density is described by kinet-
ic equations (in our case, the Frobenius-Perron equation).
$uch equations are of integral or partial-differential (or
both) types. The bifurcation analysis of such a type of
equations is a very difficult problem. The evolution of cu-
mulants is generally described by the ordinary equations
(ordinary difFerential equations in the case of fiow systems
or diff'erence equations in the case of systems with
discrete time) [19]. Thus it is possible to make a transi-
tion from stochastic equations (or from a corresponding
kinetic equation) to dynamical ones which describe the
evolution of cumulants of a stochastic process. However,
due to the nonlinearity of the system, the chain of cumu-
lant equations is unclosed. To close it one can use ap-
proximations which take into account only a finite num-
ber of cumulants [19].Thus, we can carry out an ordi-
nary bifurcation analysis [20] of the dynamical systems
which describes the evolution of cumulants. The bifurca-
tions of the equilibrium states of a system of cumulant
equations correspond to the qualitative changes in the
stationary probability density of the appropriate stochas-
tic system. A rather simple procedure is the one-moment
approximation which involves only the first-order cumu-
lants (i.e., mean values). In our case this approximation
corresponds to the noiseless system. The second-order
approximation is the Gaussian one which includes first-
and second-order cumulants. This Gaussian approxima-
tion describes correctly the behavior in the limit of weak
noise, as shown for the bifurcation analysis of a phase
transition induced by colored noise [9] and for the
analysis of period-doubling bifurcations in the presence of
white noise [21]. In addition to the last paper, we will use
here a two parametrical bifurcation analysis and take into
account colored noise.

First, the notions for cumulants are introduced,

0.5— (12)

—1.0 —d.5 0.0 0.5 1.0

FIG. 2. The dependence of the intensity of subharmonics I
at the frequency cok =m/2 ' versus I: (a) k =1; (b) k =2; (c)
k =3.

where the brackets ( ) mean the averaging over the reali-
zations of noise g„. X„ is the mean value of the state
variable x„, Y„ is the mean square displacement of x„,
and Z„ is the mutual moment of x„and g„.

Consider at first the case of additive noise ['g(x)=1].
We derive the equations for the cumulants in the Gauss-
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ian approximation directly from the stochastic map (6).
Especially for the Feigenbaum map (2) it follows a three-
dimensional map,

10

10

X„+,= 1 —a (X„+Y„),

Y„+,=4aX„(aX„Y„—Z„)+cJ

Z„+,=I (cr —2aX„Z„) . (13)

10

+10

1 . 80

t . 60

": .00

I

I

I

I

I

I

I

tl
I

/

Here, the terms of an order higher than F„are neglected,
since we will analyze the case of weak noise. The initial
conditions for the cumulant map (13) are Xo =xo, Yo =0,
Zo =0, where xo is the fixed point of the corresponding
deterministic map.

First in the case of white noise (I =0), the cumulant
map (13}is reduced to a two-dimensional one [21]. In the
corresponding bifurcation diagram in the parameter
plane (a,a} the bifurcation lines of the birth of fixed
point of periods 2', 2', 2, 2, and 2 are shown (Fig. 3).
These lines correspond to the condition p = + 1, where p
is the characteristic multiplier of the fixed point (other
multipliers are less than unity). From this diagram, we
first conclude that the sequence of period doubling is
bounded. There exists boundary values of noise intensity
IrI, after which we cannot observe the fixed point of
period 2" (these points are marked by squares). These
values refer to the bifurcations of codimension 2 at which
the second multiplier of the fixed points becomes equal to"—1". It is essential that the sequence of o I, satisfies the
scaling law ak ~ p, ", @=6.592 (cf. Fig. 4, in which the
dependence of ok versus k is shown). The theoretical
value is IM,„=6.557. . . . Thus, the technique of cumu-
lant equations allows the correct description of the quali-
tative picture of the noise in6uence on the PDB and, in
addition, a quantitative description of the universal scal-
ing behavior.

Next, let us take into account the more general case of
colored noise. %e 6rst consider the bifurcation lines in
the parameter plane (I',a) of system (13}. The results are
shown in Fig. 5, where the bifurcation lines correspond-
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FIG. 4. The dependence of o I, versus k (asterisk} and a fit by
the law p (line), @=6.592.
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FIG. 3. Bifurcation diagram of the cumulant map (13) in the
case of white noise. The bifurcation lines of birth of the fixed
points of period 2" for k = 1,2,3,4, 5 are sho~n.

FIG. 5. Bifurcation diagram of the cumulant map {13}in the
case of colored noise for the fixed point of period: {a) k = 1; (b)

k =2; (c}k =3.
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6.94—

6.74—

achieves a maximal value. Such a situation takes place
when the characteristic time scale of the noise coincides
with that of the dynamical system.

IV. CONCLUSIONS

6.54—

—100 -050 0 00 050 1 00

FIG. 6. The dependence of the scaling constant p versus
colored noise parameter I .

ing to the condition p=+ 1 are plotted for fixed points of
periods 2' [Fig. 5(a)], 2 [Fig. 5(b)], and 2 [Fig. 5(c)].
These figures show that the bifurcation lines have maxi-
mal values at the parameter I' strictly corresponding to
those obtained from the linear analysis of the power spec-
trum [cf. Fig. 2 and Eq. (11)]. The bifurcation diagram
in the parameter plane (cr,a) looks similar to that of
white noise. Although the scaling dependence (1) is
preserved, we find that the scaling parameter p, develops
depending on the colored noise parameter I (Fig. 6). Ob-
serve from this figure that this dependence p(I ) is maxi-
mal at the parameter I value, which corresponds to the
fixed point of high period (k ~ 3), and is minimal at I =0,
which is related to the case of white noise. (In our calcu-
lations we are able to analyze fixed points up to the
period 2 . Probably in the limit k —+~ we cannot ob-
serve such a dependence, since the period of the fixed
point becomes greater than the noise correlation time. )

Therefore, the response of PDB to the influence of
colored noise demonstrates a resonancelike behavior
when the noise correlation time is varied. These results
testify that there exists an optimal value of the noise
correlation time at which the strength of the interaction
between the fluctuating environment and the system

In this study we have shown that the universal scaling
is preserved in the case of colored noise forcing and that
there exists a resonancelike response of the system to the
colored noise influence both in the linear sense and in the
bifurcation behavior. This efl'ect can be interpreted as
another type of the phenomenon of stochastic resonance
which has been intensively studied recently [22]. The
phenomenon of stochastic resonance takes place in non-
linear stochastic systems excited by external periodic
force. When the intensity of external noise provides a
characteristic time scale of the system, which coincides
with the period of external signal, then the stochastic res-
onance occurs and it is possibly an amplification of signal
at the output of the system. In our case we have quite
another situation. The system has characteristic time
scales, which are present in the absent of noise, and reso-
nancelike phenomena take place when the characteristic
time scale of the external noise is varied. %e expect that
such behavior is typical for a wide class of dynamical sys-
tems that exhibit PDB sequences. For example, in a pre-
vious study [23] we have investigated the influence of
colored noise on the chaotic regimes of the Lorenz sys-
tem. We have shown that in the case of a Feigenbaum-
type attractor the Lorenz system becomes sensitive to the
variation of the noise correlation time. Moreover, the
response (we calculated the maximal Lyapunov exponent)
demonstrated the saine resonancelike behavior as in our
case here.
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