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A self-consistent theory for the dynamics and rheology of suspensions of Brownian colloids is

presented completely in terms of physicochemical suspensions properties. The theory uses the
Rogers-Young closure [Phys. Rev. A 30, 999 (1984)] of the Ornstein-Zernike equation for the equi-

librium structure and the generalized hydrodynamics theory developed by Hess and Klein [Adv.
Phys. $3, 173 (1983)] for the dynamic properties. Direct hydrodynamic interactions are neglected.
Mode-mode coupling is used to close the generalized hydrodynamics equations and provide a self-

consistent set of equations for the dynamics. Two closures for the three-particle vertex function,
a two-body approximation and convolution, are derived and compared. All accessible linear vis-

coelastic properties of the suspension are then calculated from the dynamics of the intermediate-
scattering function. Numerical solutions are obtained for Yukawa particles through the viscoelastic
approximation. Comparisons with dynamic-light-scattering measurements of the cumulants and
the intermediate-scattering function of dilute but strongly correlated suspensions demonstrate the
accuracy of the self-consistent solution with the two-body approximation for low particle concentra-
tions. Comparisons of the mechanical properties of concentrated, strongly correlated suspensions
demonstrate the accuracy of the self-consistent solutions with the convolution approximation. The
results are interpreted in terms of the cage-melting model for colloid dynamics.

PACS number(s): 66.20.+d, 82.70.Dd, 05.60.+w, 82.70.Kj

I. INTRODUCTION

One important aim of applying statistical mechanics
to describe the dynamics of Brownian suspensions has
been to predict the measurable dynamic and rheologi-
cal properties, such as the dynamic relaxation of density
fluctuations and the frequency-dependent shear viscosity,
solely in terms of the fundamental interparticle interac-
tions. Understanding the macroscopic ramifications of
changing the nature of the microscopic forces acting on
the colloidal level is a challenging problem with a rich
history and is of obvious technological importance. As
with molecular fluids, it is the collective, many-body in-

teractions that provide the wealth of interesting behavior
one hopes to explain in terms of the microscopic forces
between the individual Brownian particles. The advent
of larger computers and the application of methods de-
signed to tackle many-body interactions in statistical me-

chanics make a direct comparison of predicted and mea-
sured dynamics now feasible. Because of the long time
and length scales involved in probing macromolecular flu-

ids (versus molecular fluids), there is relatively easy ex-
perimental access to both macroscopic and colloidal level
properties for comparison with theory. Further, from an
engineering, modeling standpoint, it is important to have
a fundamental theoretical foundation to judge the appli-
cability of more phenomenological approaches. It is the
goal of this paper to provide a self-consistent statistical
mechanical description of dense fluid dynamics and rhe-
ology valid for colloidal suspensions that connects the

colloidal level interactions to the macroscopic properties
and to test the validity of this theory directly against
experiments on a model colloidal suspension.

The method for describing the dynamics of Brownian
suspensions is based on the mode-coupling closure of a
system of generalized hydrodynamic equations [1—10]. lt
should be noted that a similar approach has had marked
success in elucidating the dynamics of molecular fluids,
in contrast to the macromotecujtar fluids considered herc,
for over a decade [11—16]. The theory yields a set of
self-consistent equations for the collective dynamics of a
fluid composed of Brownian particles completely in t, crowns

of the static structure of the suspension. Since there
are now accurate solutions for the structure of charge~),
Brownian particles in terms of the intercolloidal poteii-
tials [17—19], a direct link between the underlying ini-

croscopic forces and the dynamics of Brownian suspen-
sions is possible. In this paper, these two developments
are combined and a method for numerically calculating
a self-consistent solution for the dynamics, starting only
from the basic physicochemical properties of the Brow-
nian particles and the solvent, is derived. Further, the
linear viscoelastic rheological properties are derived iii

terms of the collective dynamics of density relaxation».
Thus the viscosity of the suspension in the limit of linear
response is also calculated directly from the physicocherii-
ical colloidal properties.

Significant comparisons have been made between pre-
dictions of the generalized hydrodynamics approach for
dilute, weakly interacting polystyrene colloid suspensions

[1,10,20], concentrated suspension self-diffusion [21,22],
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and for hard-sphere colloidal glasses [16,23—26]. Al-

though mechanical measurements of collective dynam-
ics are quite prevalent in the literature, actual quantita-
tive comparison of theories based on generalized hydro-
dynamics against rheological measurements on concen-
trated, fluid systems are absent. As will also be shown
here, dynamic-light-scattering (DLS) measurements of
collective structure relaxations provide quantitative tests
of the detailed predictions of this theory. In the concen-
trated regime, DLS measurements are difBcult for all but
a few index matched systems; however, rheological mea-
surements become feasible and provide quantitative tests
of the theoretical predictions.

This theory can be contrasted with an alternative, but
complementary, approach based on solving a nonequilib-
rium Smoluchowski equation for an applied shear field
[27—36]. The necessary inputs include the equilibrium
microstructure, the microscopic interaction forces, and
closure relations for many-body distribution functions.
By ensemble averaging the microscopic stresses result-
ing &om the interactions between the Brownian particles
over this nonequilibrium microstructure, the theory pre-
dicts the bulk stresses in the deforming suspension (prin-
cipally the low shear limiting viscosity). Again, rheo-
logical measurements of the low shear limiting viscosity
provide quantitative tests. Further, static light and neu-
tron scattering measurements of the nonequilibrium mi-
crostructure provide quantitative tests of the predictions
for the steady nonequilibrium microstructure [30,37—42].
In comparison, one advantage of using the generalized hy-
drodynamics approach employed here is the formulation
of a self-consistent set of equations for the full dynam-
ics of the suspension through the mode-mode-coupling
ansatz. Further, generalized hydrodynamics yields the
full time dependence of all measurable quantities, such
as densities and fluxes, as part of the self-consistent so-
lution.

In what follows, the theoretical approach is reviewed
and solutions for a model system of charged, Brownian
particles are presented. The effect of polydispersity on
suspension properties is included in the cumulant and
equilibrium structure calculations, along with an exami-
nation of the primary electroviscous effect. The general-
ized hydrodynamics equations are defined and the mode-
mode-coupling closure invoked. Two different closures
for the resultant three-body vertex functions are derived
and compared. A tractable numerical solution of the self-
consistent equations is obtained through the use of the
viscoelastic approximation. This also enables asymptotic
examination of the strong-coupling limit and the glass
transition. Numerical calculation of the self-consistent
equations and comparison to DLS and rheological exper-
iments for a well-characterized model system are made to
test the validity of the theory. As will be demonstrated
by quantitative comparison with experiment, the theory
captures the basic physics of concentrated suspensions,
including the divergence of the Maxwell relaxation time
associated with the shear viscosity as an ideal-glass tran-
sition is approached. Finally, a physical picture of the
generalized hydrodynamic theory with mode-mode cou-

pling is presented through the cage-melting model and a
possible criterion for the ideal-glass transition discussed.

II. EQUILIBRIUM SUSPENSION PROPERTIES

A. Microstructure

To define the model systems of interest in this study
and to connect the physicochemical properties of the sus-
pension to the equilibrium structure, an integral equa-
tion approach is defined as follows. The equilibrium mi-
crostructure of a suspension is characterized by the ra-
dial distribution function g(r), which is proportional to
the probability of finding a particle at the relative dis-
tance r from the origin given that a particle is centered
at this origin. This function can be calculated from the
Ornstein-Zernike equation (OZ) [17]

h(sss) = g(sss) I = cd(sss) + cf s(dss)s(tsss)sd x,s

where cg(r) is the direct correlation function and C is
the number density of the colloidal particles. A closure
relation is needed to connect h(r) and cg(r) with the
interaction potential. The Rogers-Young scheme (RY)
[18],which mixes the well known Percus-Yevick (PY) and
hypernetted chain (HNC) closures, is appropriate for the
colloids considered in this work. Defining v(r) = h(r)—
c~(r) the RY closure can be written as

(„) „[@(„)]~~1+ "P["(")~(")]
(2)

with C'(r) the dimensionless pair interaction potential
and A(r) = 1 —exp( —(r), with ( the RY mixing param-
eter. When ( = 0 the closure reduces to the PY closure
and when ( = oo it reduces to the HNC closure. This pa-
rameter is determined by requiring thermodynamic con-
sistency in matching the bulk modulus predicted by the
compressibility equation

=1 —C cgr dr (3)

and the pressure equation

(kT) = 1 —C r g(r)dr.
BP 84(r)

. T BT
(4)

As the HNC and PY equations bracket the compress-
ibility and microstructure for repulsive and hard-sphere
potentials [17,18], xnixing these two integral equations
generates an equilibrium structure yielding equal com-
pressibilities &om both of the above equations. The ac-
curacy of this scheme has been demonstrated previously
by comparison with Monte Carlo simulations and struc-
ture measurements [18,19] .

Given the pair distribution function, the static struc-
ture factor is the Fourier transform as (with r dimension-
less with particle radius a):
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S(k) = 1+3$ [g(r) —1]rzdr,

where P = 4vrCos/3 is the volume fraction.

B. Interaction potential

(5)
under consideration, the simple Yukawa interaction will

dominate the other thermodynamic and hydrodynamic
interactions between the particles. A more complete dis-
cussion of the role of colloidal forces in suspension rheol-

ogy can be found in [48].

The model systems treated here are suspensions of
charged Brownian particles, typically realized as suspen-
sions of polystyrene latex particles in water. The dissoci-
ated chemical charge groups on the particle surfaces lead
to an electrostatic repulsion that stabilizes the suspen-
sion. The dissociated and added salt ions are generally
treated as point charges and the fluid properties, such as
viscosity (go), dielectric constant (e), and the ionic mo-
bilities are taken to be uniform as the ion concentration
is usually millimolar or less.

Solution of the linearized Poisson-Boltzmann equation
for the distribution of the small ions around a macroion
yield the Debye-Hiickel electrostatic potential around a
spherical particle [43]. This potential depends on the
screening length K, which is related to the concentration
of all small ions nI, with charge zy, including both added
salt ions and the counterions from the colloids them-
selves, as

K = AA. ZI,
ekbT

k

Superposition of two such interactions between spherical
particles leads to an interaction potential of Yukawa form

[43] (with r and K made dimensionless with the particle
radius a and the potential scaled on kbT )

C, ( )
& —~(r-2)U

r

The dimensionless prefactor U is given in terms of the
colloid charge Q, and the dielectric constant of the rna-

terial e as [44]

(e)'
kbTe(1+ Ka)2

(8)

This potential is density dependent as the screening

length varies with the counterion concentration, which

itself is given by electroneutrality as the particle concen-

tration times Q. Corrections for the nonlinear Poisson-

Boltzmann equation based on a renormalized charge have

been presented [45]. As recently demonstrated by Lowen

[46,47], the Yukawa form provides an accurate represen-
tation of suspension microstructure if the surface charge
is determined by 6tting to structure measurements. In
what follows, the charge is determined directly from its
of the equilibrium structure factor (when available) and
this charge is used consistently throughout the formalism

to calculate the dynamics and mechanical behavior of the
suspension.

In this and previous work, the other coiioidal forces,
such as van der Waals attractions, have been neglected
based on simple calculations of their relative magnitude
[31]. It is straightforward to include other pairwise ad-
ditive potentials within the formalism. For the systems

C. Polydispersity

As most colloidal suspensions have an appreciable
amount of polydispersity, it is important to consider
the effects of polydispersity within the framework of the
above theory. Significant work has been done to investi-

gate the effects of polydispersity on the equilibrium prop-
erties of Yukawa suspensions through the OZ-RY formal-

ism, with comparable investigations of the self-diffusion
dynamics [10,19,49—52]. Comparing the results to DLS
and Monte Carlo simulations demonstrates the validity
of the treatment. For the work considered here, polydis-
persity will be explicitly accounted for in the calculation
of the inputs to the generalized hydrodynamics theory,
i.e. , the structure factor, the cumulants, and the elastic
constants. These inputs will then define the eff'ective Huid

properties necessary for the calculation of the dynamics.
No explicit treatment of the dynamics of multicomponent
mixtures will be considered; however, as the generalized
hydrodynamic description is derived in terms of a hydro-

dynamic level description of an effective one-component
Huid (OCF) model, this approximation should be correct
to Erst order.

The central quantity that must be considered is the
equilibrium structure factor S(k). Previous work [19,49]
has derived the correct form of the structure factor within
the OZ-RY scheme using the Schulz distribution as a
model for the polydispersity [53], and demonstrated its
accuracy [51]. The intensity measured from a scattering

experiment (I(k)) is typically analyzed within the frame-
work of an effective Huid (to within an instrument factor)
as

(I(k)) = Cf2 P(k) S (k),

where f P(k) is the form factor for the mixture as de-

termined from the scattering from dilute suspensions and
S (k) is the measured structure factor. This structure
factor is a convolution of both single particle and inter-

particle scattering and does not correspond to a ther-
modynamic property except in the limit of monodisperse
suspensions:

S (k)= ) ) f fpB BpSp
f2 P(k)
4+a

3
3j) (ka )

ka
S p(k) = x 6 p+ nx xph p(k)
h n(r) = «, n(r)

+&) *if & i(~i)«.i, (l~ —~|l)~.~|
%=1

(10)



49 SELF-CONSISTENT SOLUTION FOR THE GENERALIZED. . . 379

In the above jq is the spherical Bessel function and the
particles are assumed to be of similar chemical constitu-
tion.

The structure factor that corresponds to the general-
ized compressibility S+(k) can be constructed from the
partial structure factors as

IS(k) I

) ) x zp/S(k)/ p

= CksTKT (k),

S (k) =

where the numerator is the determinant of the S p(k)
elements, the denominator contains the cofactor of the
o;P element, and KT (k) is the wave vector dependent
compressibility. It is this thermodynamic structure factor
that is to be used in the calculation of the generalized
hydrodynamics equations for polydisperse suspensions in
place of S(k).

The first cumulant, as it is extracted &om the inten-
sity autocorrelation function, will contain a mixture of
single and interparticle scattering for a polydisperse sus-
pension. Using the same methodology that lead to the
above relations, it is can be shown that [54]

) ) f fpB BpD p
c k m k2

f' P(k) SM(k)

ksT (1 1)
D p

——
3vr pc (a~ ap )

(12)

The second cumulant is a more complicated convolution
of single and interparticle scattering, defined as

8
(p2(k)) = —lim, ln S (k, t).

Aside &om investigation of the dilute limit and experi-
mental determination for the self-intermediate-scattering
function [55—57], there is a scarcity of information on
how to calculate this quantity for polydisperse suspen-
sions. As previous investigations [56] have determined
that polydispersity has itself only a small inHuence on
the second cumulant (in comparison with the elasticity
due to strong interparticle interaction, but again for the
self-intermediate-scattering function), a different tack is
taken here. In keeping with the effective Huid concept,
the quantities appearing in the expression for the sec-
ond cumulant for a monodisperse sample are replaced by
their polydisperse equivalents; namely,

k2
(A(k)) = —(& (k)) l

(E-'(k))—

(14)

where g is the hydrodynamic friction coeKcient for a
bare particle. This relation essentially represents a de-
coupling approximation, which is expected to be very
reasonable for the systems considered here. These cumu-
lants can be directly compared with DLS measurements
of the cumulants.

For input into the generalized hydrodynamics equa-
tions, thermodynamic cumulants are defined as

):):D-p
(S l(k)) = k'

ST(k)
ksT f1'1 iD p

—— —+-
3npc pa~ ap)

k2
(~i(k))' = -(~l(k))'

l

(&' (k)) —
I (16)

where the same decoupling approximation is used for the
second cumulant as for the measured second cumulant.

The high frequency elastic constants are generalized
&om the Zwanzig-Mountain formulation [58] as

G' (a)s 3 — 3 ).
kgT 4x 8z . , (n~a )i2 '2

d2C;~ (s) 1 —cos(ks, )
d2 ' k2S~

E' (a)s 9 — 9 ).
k~T 4m 8x . . (n;o'~ )

~&2

d 4,, (s) 1 —cos(ks, )

4~C'( )'
, 4;, is the Yukawa potential

between particles of type i and j, g;~ is the partial radial
distribution function, and s = " . In the above equa-G~+Gp
tion, all hydrodynamic interactions have been neglected
but can be readily included in the pairwise additive ap-
proximation (see [30,59]).

III. GENERALIZED HYDRODYNAMICS AND
THE MODE-MODE-COUPLING CLOSURE

Generalized hydrodynamics provides a frequency and
wave-vector generalization of the linear continuum hy-
drodynamic equations describing the suspension. It nat-
urally arises when considering nonlocal relationships for
the fundamental properties of molecular and complex flu-
ids [13,1,10]. Here it is desired to obtain transport co-
eKcients expressed entirely in terms of equilibrium sus-
pension properties, i.e., physicochemical parameters and
the structure factor. Significant development in this re-
gard has evolved a self-consistent set of equations that
express suspension dynamics entirely in terms of equi-
librium properties. Coupled with the above theory for
predicting the equilibrium structure in terms of funda-
mental parameters of the system, this program leads to
a complete and consistent treatment of complex fluids in
equilibrium and in the linear response regime. In what
follows, the basic relations are presented and some ap-
proximate solutions discussed.

The concentration fluctuations that give rise to the
time dependent diffusion and structure can be used as a
basis to understand the generalized force fluctuations in
suspensions. These fluctuations in stress give rise to the
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viscosity, defined as the ratio of a response function for
correlations in the stress fluctuations to correlations in
the current fluctuations. This viscosity controls the rate
of decay of the concentration fluctuations in the suspen-
sion. Mode-mode coupling projects the stress Auctua-
tions onto the space defined in terms of bilinear products
of concentration fluctuations, thus closing the equations.
Thus projection operator techniques relating the stress
fluctuations to the concentration and current fluctuations
yield expressions for the viscosity functions in terms of
the time dependent structure factor of the suspension.
This approximation is expected to work if the concentra-
tion fluctuations are the slowest relaxing of the fast vari-

ables in the system. These equations are self-consistent,
although they may not always yield the correct dilute
limiting behavior. In what follows, hydrodynamic cou-

pling will be neglected as the dominant eÃect will arise
from interparticle interactions.

The correlation function of interest is the dynamic
structure factor

pled solution of the ordinary Pick's law. In the time
domain, Eq. (24) above has the form of a memory equa-
tion,

OS(k, t)
Ot

dt'D(k, t —t') S(k, t'), (25)

with the collective diffusion coefficient as the memory
function.

The mass diff'usion coefficient is directly related to the
wave vector dependent, longitudinal friction coefficient
via the generalized hydrodynamic relation [1]

kT/[mS(k)]
z + ((((k, z)/m

(26)

This equation represents the generalized Stokes-Einstein
relation (GSE), with (~~ (k, z) playing the role of the mem-

ory function (to be called the second memory function).
The longitudinal friction coefficient is de6ned as

N

S(k, t) = —) (exp [ik (r, (0) —r, (t))]). (19)
k ((k, z) k

C(r, t) = ) b(r —r, (t))
i=1

(20)

as

This can be expressed in terms of the Fourier components
of the macroparticle density

k~

(ii (k, z) = ( (k) + —
ilia (k, z). (27)

The hydrodynamic contribution ( is taken to be time
independent on the time scales of interest here. Again
if the longitudinal friction coefficient is assumed to be
constant [i.e., (~~(k, z) = ( ] and in the noninteracting
limit [S(k) i 1] the Stokes-Einstein relation is recovered
as

S(k, t) = —(C(k, t)C( —k, o))
1

1-= —(c(k, t) c(—k, 0)),

c(k, t)= C(k, t) —(C). (21)

kbT
0 (28)

In the hydrodynamic limit (k i 0, z ~ 0) the GSE
relation reduces to

(22)

This current density satisfies a nonlocal (in both space
and time) generalization of Fick's law:

j(r, t) = dt' dr'D(r —r', t —t') V'„C(r', t'). (23)

The particle density must satisfy a continuity equation,
written in terms of the particle current density j(r, t) as

OC(r, t)
Ot

= —7' jr, t.

kbT Om

Here vr represents the osmotic pressure.
For systems without hydrodynamic interactions, the

longitudinal dynamic viscosity is entirely due to potential
interactions. Projection-operator techniques lead to the
following relation for the longitudinal viscosity in terms
of the interparticle stress tensor [1]:

Using Eqs. (21) and (23) to calculate the dynamic struc-
ture factor and Laplace transforming yields the general-
ized di8'usion equation (GDE)

S(k, z) =

D(k, z) =

S(k)
z+ D(k, z)k'

k - D(k, z) k
k2

(24)

where D(k, z) plays the role of the memory function for

the dynamic structure factor. Setting D(k, z) = D„ the
collective di8'usion coefficient, recovers the local, decou-

g~~ (k, z) = —(a.„(k)[z —OQ] '&., (—k)), (30)

A. Overdamped limit

For times large relative to the momentum relaxation
time for the Brownian particle —,the fluid of Brown-

with 0 the Fokker-Planck operator and Q the orthogonal
projection operator (orthogonal to the subspace spanned

by current and concentration fluctuations). Closure of
this set of relations requires a relationship between the
interparticle contribution to the stress and the density
fluctuations in the suspension.
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ian particles is overdamped. As demonstrated by Hess
and Klein, all Brownian systems are overdamped in the
hydrodynamic limit. For such times, the generalized
Stokes-Einstein relation can be reduced to

kTl [mS(k)]

(()(k, z)/m

which can be conveniently expressed in the following
form. Defining

lim S(k) = 1 —C4(k).
4(k)((1

(38)

f (k) = (2x) f dk'g (k, k')2(kq)B(kq),

The WCA enables a direct reduction of the Green-Kubo
form for the generalized viscosity tensor to a nonlinear
integral over the dynamic structure factor. Use of Eq.
(38) in (37) above yields

b, D(k, t) = D(k, t) —D(k, 0)
where

32)

leads to the following memory equation in the time do-
main:

/ k /

k~2 = —Pk)
t

g(k, k') = —[k~4(k~) + kzC)(kz)] . (40)
D k pic(k, t)

bD(k, t) =

t
q ~k, t~—k dt'AD(k, t —t')

0 C(

Here
g~~ (k, t) plays the role of the memory function. Also,

the generalized diffusion equation (24) becomes

BS(k, t) D k2

Bt S(k)
t

+k' dt'b, D(k, t —t') S(k, t').
0

(34)

Again, these equations are valid for times longer than
the relaxation time of the Brownian particle's momen-
tum. Alternately, one can start directly &om the Smolu-
chowski dynamics and arrive at the same result [8,9].

Thus substitution of relation (39) into the friction coef-
ficient yields

6( p(k t) = 1

~kT(2~)'

x dk'dk"g k, k' gp —k, —k//

x c ky c k2 e 'c —k~ c —k2 8 t

(41)

Now, the WCA enables replacing the projected opera-
tor with the full operator, to within neglecting the first
terms of order 4(k). Further, the four-point correlation
function is approximated by the lowest order products of
two-point correlation functions as

ck& ck2e c —k& c —k2

B. Weak-coupling approximation

Before turning to the full mode-coupling approxima-
tion, it is useful to examine the exact, weak-coupling limit
of this correlation function. The definition of the projec-
tion operator results in the following expression for the
generalized friction coefficient [1]:

= ck/1 e tc-kii/ ck/2 e t c-k/2/

+ c k& e c —k2 c k2 e c —k& . 42

Using translational invariance and the definition
16( p(k, t) = k~kgg ~pg(—k, t)

Uk AALU kg) (35)
S(k, t) = —(i(k)e 'c(—k)), (43)

P

The generalized force due to potential interactions f+(k)
is given explicitly in terms of the direct force

results in the final form for the longitudinal and shear
viscosities as

F;(r) = kTV;Crv(r) = k—T ) * —', (36)
. 84(r; —r, )

~ (w')

and the local Buctuations in concentration as

f (k) = ) F;e *"'+kT S(k) —1 ikc(k). (37)

2C2
))~~(k, t) =

s dk'S(k~, t)S(kz, t)

g(k„k')g( —k, —k,')
2k

2C2
)).(k, t) = dk'S(ki, t)S(kz, t)

(44)

In the weak-coupling approximation (WCA) the direct
correlation function is replaced by the pair potential, as

g(k, k' )g( —k„—k,')
k

(45)
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Results for the weak-coupling limit have been given pre-
viously for charged suspensions [1]. This result gives an
exact limiting value for the strong-coupling expressions
that follow.

C. Mode-mode-coupling approximation

The Anal step needed to close the system of equations
is to express the second memory function, which has been
identified as a transport coefficient [4,5,8], in terms of the
dynamic structure factor. A critical part of this work
involves analyzing the approximations used in formulat-
ing the mode-mode-coupling closure. This procedure in-
volves recognizing that the slowest relaxing modes of the
fast subspace will control the slow modes of the system,
namely the stress fluctuations that yield the transport
coeKcient. A projection operator is defined to project
the stress fluctuations onto bilinear products of concen-
tration fluctuations. These bilinear products of the slow-
est relaxing modes of the fast subspace will be slower in
relaxing than any of the fast variables. The mechanis-
tic approximations required follow the usual paradigm
[60,1,15], with the exception of the detailed treatment of
three-body terms arising in the final expression. As will

be shown, the two versions of the resultant expressions for
the vertex, or coupling functions found in the literature

(T,, {—k) = Q,o„,
K

p
—1+ ikr; +—y

—2) .k Fi ik r;. —

with F, the direct interparticle force [61]. The projection
operator is defined on the density subspace as

1 —Q, = P, = C(—k)) (C(k). (47)

Now the mode-coupling procedure discussed above re-

quires a projection operator for the subspace of bilinear
products of density fluctuations

P2 ——) ) Q ) (C(ki) C(k2))
k1 k2 k3 k4

xB '(kik2ksk4) (C(ks)C(k4)) . (48)

A A

Normalization such that P2P2 ——P~ determines

arise from diferent approximations used in simplifying
the three-body terms.

The starting point is Eq. (30) defining the longitudi-
nal viscosity in terms of stress fluctuations. The stress
fluctuations above arise through density fluctuations as

(27r) [8(ki + ks) b(k2 + k4) + (i(ki + k4)b(kz + ks))
4C'S(ki) S(k2)

resulting in

.C(ki)C(kg))(C( —ki)C( —kg)
2C2S(ki) S(kg)

(50)

rii(ki) = — ri„(k)Pre"'P, ri„(—k)) .
V

Note that the longitudinal stress lies fully in the subspace
onto which this projects.

Now following the procedure outlined by Hess and
Klein [61,1] and Szamel and Lowen [62], the longitudi-
nal friction function is rewritten as

C( — k)re" rC( k)) (C(—k, )e"'C(k, ))

x [8(ki —ks) + 8{k2 —k4)]
(2ir) 2

V
= S(k&, t) S(k&, t)NC(2~)'

x [h(k' —k") + b(k' —k")],
kg —kg ——k',

ks —k4 =k (54)

These two assumptions constitute the usual procedure iu

mode-coupling analyses [60,1,15,13].
The last part of the longitudinal friction coefficient is

the coupling vertex, given as

Substitution of Eq. (50) for the projection operator re-
sults in a number of higher correlations that must be
evaluated. The time evolution operator occurs in the fol-

lowing four-point correlation function:

(C(ks) C(k4) o.„(—k) ) . (55)

This can be broken into two terms through substitution
of Eqs. (46) and (47) into the above. The first can be
rewritten as

C —kq C —k2e Cks Ck4 {52)
C{ks)C{k4)) (ik. F'/k —k(,T) e

The projected time evolution operator is replaced by its
unprojected value,

OQ=O. {53)

Further, the four-point correlation function is factored as

(i[k —{ks + k4)]

x [k ks S{k4)+ k . k4S(ks)] .
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This term alone is unacceptable as is since it necessitates
a cutofF at large wave vectors for the integration to con-
verge.

The second part of the three-body correlation function
has the form

T3 — C k3 C k4 P cr„—k

N

C(ks)C(k4)P, ) (ik F'/k —k&T) e
i=1

(57)

Inserting the definition of the projection operator, Eq.
(47), into Eq. (57) above yields the following expression
for this part of the three-body correlation function:

(C(ks)C(k4)C( —k)) .
1

PS(k)
(58)

In the molecular theory of simple fluids and the study
of colloidal glass transitions, the three-point correlation
function above is approximated wholly in terms of two-

point correlation functions through the convolution ap-
proximation (CA),

Equation (58) above is the key to understanding the dif-
ferences in the vertex functions found in the literature
[1,15,62,63]. The following section outlines the deriva-
tion of the two vertex function as used in this work.

Coneolution appv origination

1 1

PS k (C(ks)C(k4)C( —k)) = (C(ks + k4)C( —k)) (C(ks)C( —k+ k4)) (C(k4)C( —k+ ks))¹Sk
S(k)S(ks) S(k4),

N

which is analogous to the Kirkwood superposition approximation but in Fourier space [64]. The result of combining
this with the first part, Eq. (56), is

N — k ksS(k4)(1 —S(ks)) + k k4S(ks)(1 —S(k4))
Pk2 2C2S(ks) S(k4)

(60)

The result for the longitudinal friction coefficient is obtained by substitution of Eqs. (60) and (54) into (51), yielding

2C2
[i1~~ (k, t)] =

s dk'g„(k, k')g„(—k, —k') S(ki, t), S(kz, t),

g„(k,k') =
2 (k . kick(ki) + k . kzc~(kz)),

ki z = k/2 P k'. (61)

The vertex function gcP has strong coupling to low k values through the direct correlation function cg(k) = (1—
S(k))/CS(k). Note that in the convolution approximation the three-body terms are completely reduced to two-body
terms through Eq. (59) above. The shear component of the longit'udinal stress, by a similar derivation, yields

2Cz
[i1,(k, t)] = dk'g (k, k')g (

—k, —k')S(ki, t), S(kz, t),

g~~ (k) k') = (ki ~cd(ki) + k2 ~cd(k2)). (62)

This completes the closure of the generalized hydrodynamics equations by relating the second memory function, the
longitudinal friction, to the dynamic structure factor and vertex functions that depend only on equilibrium, static
quantities. These simplify for k =0 and for isotropic systems to

(64)

2. Two-body treatment

Hess and Klein [1] employed a rigorous factorization of the vertex function instead of the convolution approximation
employed above, which will be referred to throughout this paper as the two-body treatment (to be denoted by TB).
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The starting basis is Eq. (58) above. The summations are explicitly split into two-particle sums and three-particle
sums with the following result:

(C)ke)C)ke)C[ —k)) = ) e '"'") e '""") e'"")
i=1 j=l /=1

N

~) —ikg. r;

i=1

N N N
i(k —kq). r1 + g —ikq-rz g i(k —kq). r1

l = 1 j=l t= 1

N N

) e
—i(kk+kk) r„. )

j=l l = 1

N N N
eik r~ . + yr) + ) e

—ikk r; ) e ikq —ri ) eik r~

i=1 j=1 l = 1
l pi, j

(65)

In terms of structure factors, this can be rewritten as

1
(C(ks)C(k4)C( —k)) = NC h(k) + h(ks) + h(k4) + —+ —Ss(k, ks, k4),

where h(k) is the Fourier Transform of h(r) and Ss represents the three-body correlation function which is the last
term in Eq. (65) above. Combining Eq. (66) with Eq. (56), yields the following for the correlation defined as Eq.
(55):

N k ksh(ks) + k k4h(k4)
Pk2 2CS(ks) S(k4)

X 1 S (k~ ks~ k4) + h(k)(h(ks) + h(k4)) (67)

This rearrangement is performed to provide a convergent vertex. As three-body correlations are difFicult to calculate
and require additional approximation, Hess and Klein argued in favor of neglecting the entire second term, thus

leaving a tractable result containing only two-body correlation functions.
Again, using this form for the three-point correlation function results in the following for the longitudinal and shear

viscosity functions:

2C
[g) (k, t)] =

s dk'g„(k, k')g„(—k, —k') S(kg, t), S(ks, t),

g„(k,k') =, , (k k~h(k', ) + k ksh(k2)),

2C
[q, (k, t)] = dk'g (k, k')g (—k, —k')S(kg, t), S(ks,t),

/

kS(1 )S{1

This form, in contrast to the convolution approximation,
results in a slightly more complex coupling for the vertex
function. The two wave vectors are mixed to a greater de-
gree than in the former case. Notice also that both forms
reduce, in the limit of weak-coupling to the exact weak-
coupling limit [Eq. (45)]. This comparison is reminiscent
of the various methods of closing three-body correlation
functions in equations for the equilibrium structure. As
there does not seem to be any fundamental reason to
choose one form over the other, the results of using both

(O, t)T' = d k'[S(k', t)]'[S(k')]

forms in a numerical calculation will be performed to de-
termine their performance.

These simplify for k =0 and for isotropic systems to
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( k'k', i ( 1 dh(k')i
qS(k')'p~ qf k' [d

/

k'
/&

(7o)

Thus, the stress relaxation functions are expressed solely
in terms of the time- and wave-vector dependent struc-
ture S(k, t)

D. Corrections for the sero-time limit

It is known that the mode-mode coupling (MMC) ap-
proximation is more accurate in describing the time evo-
lution of the dynamic friction function than the initial,
zero time value, which is an equilibrium property of
the suspension calculable from mechanical [29,31,59] and
Huctuation dissipation [58,13,59] derivations. Thus it is
preferable to use the MMC approximation to calculate
only the relaxation or time dependence of the dynamic
friction functions and rely on the exact calculations for
the initial prefactor. The relaxation functions are defined
as

time. All the rest of the linear viscoelastic functions can
be determined directly in this way, as demonstrated in

Appendix A.
The above system of coupled integral equations can,

in principle, be solved self-consistently for the dynamic
structure, mass diffusion, and parallel viscosity, and then
the shear viscosity calculated. In practice this has not
been accomplished, but rather, three approximate tech-
niques have been used to decouple the equations. Previ-
ous calculations based on this formalism have resulted in
the following conceptual picture of suspension dynamics
[1]. Strong interparticle interactions result in an over-

damped system with short-range order. Relaxations are
characterized by a wave vector and time dependent vis-
cosity. The short-range order, thought of as clusters with
characteristic lifetimes, govern the time dependence of
this viscosity. Thus at short-times the system has elas-
ticity, but Bows as a viscous Buid at long times. The
length scale being probed is also important in determin-
ing this time scale, thus the wave vector dependence.
Strong coupling between concentration and stress Buctu-
ations results in viscoelastic behavior.

rjii (k, t)
7-ii(k, t) =

q. (k, t)r, (k, t) = (71)

IV. RESULTS AND DISCUSSION

A. Short-time approximation

The correct longitudinal and shear friction functions are
written in terms of the high frequency elastic constants

pic (k, 0) = E' (k),

q, (k, o) =G' (1). (72)

pic(k, t) = E' (k)7ii(k, t),
r4(k, o) = G' (k)7;(k, t). (73)

Note that this scheme takes advantage of the known, ex-
act initial values without compromising the integrity of
the MMC approximation for the dynamics.

The macroscopic dynamic properties of the suspension,
such as the rheology, can then be directly calculated in
terms of these dynamic friction coefficients. For example,
as shown in Appendix A, the definition of the Newtonian
shear viscosity yields

This leads to the following relations based on the above
definitions:

[S(k, t)] = S(k)exp —D, (k)k t (75)

The simplest method of solving the generalized hydro-
dynamics MMC hierarchy has been to approximate the
time and wave vector dependent structure factor by a
short-time (ST) expression [6,1]. This essentially decou-
ples the hierarchy and permits calculation of the rheo-
logical properties in terms of the static structure factor
and the single particle diffusion coefBcient. Lindsay et
al. [20] predicted the Maxwell relaxation time, relating
the steady shear viscosity to the high frequency modulus
as 7.M = r4/G', to have a form similar to a Lindemann
melting criterion. Here a similar approach is used to
predict the frequency dependent complex shear viscosity
and comparison is made with a common model for the
relaxation spectrum.

In the short-time approximation the memory function
for the GDE relation is neglected and the original Fick's
law is maintained. The dynamic structure factor is of
single exponential form with a wave vector dependent
relaxation time as given by the collective diffusion coef-
ficient:

q. = j, q. (o, t)dt = G(t)dt,
0

rI(( = Jo rp))(0, t)dt = G))(t)dt,
0

(74) D (k) = D K(k)/S(k). (76)

The generalized mass or collective diffusion coefficient is
written as

where G(t) is the shear viscosity relaxation function dis-
cussed in Appendix A. Thus measurement of the &e-
quency dependent viscosity or modulus can be directly
compared to the time dependent viscosity function deter-
mined from generalized hydrodynamics via Fourier trans-
forming the dynamic friction function with respect to

For the strongly charged system considered here hydro-
dynamic interactions will be neglected in these calcu-
lations and so the generalized sedimentation coefficient
K(k) appearing above reduces to unity. Recent cal-
culations by Genz and Klein [65] have demonstrated
the importance of including hydrodynamic interactions,
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treated via the renormalization of Beenakker [66], for
weakly charged suspensions. Mathematically, this form
for [S(k, t)] follows from replacing the fully time and
wave vector dependent diffusion coeKcient in the gener-
alized diffusion equation (34) with its time integral, the
collective diffusion coe%cient. The physical argument is
that collective concentration relaxation would occur on
a time long enough that it would sample this net mass
diffusion rate. In essence, this neglects memory effects
and would be the result from neglecting coupling between
stress and concentration fluctuations in the formalism.

With the above approximation the viscosity functions
equations (63) and (64) or (69) and (70) are readily calcu-
lated from knowledge only of the static structure factor.
Lindsay et al. [20] give typical solutions for the time de-
pendence of the shear and longitudinal viscosities for very
dilute, charged systems of spherical particles within the
two-body treatment. These were then integrated, yield-
ing the steady shear viscosity from Eq. (74). Over a,

dilute range of concentrations it was determined that

(77)

where d is the average spacing between particles. The
proportionality between the shear viscosity and the high-
frequency modulus defines the Maxwell relaxation time
for the system, the mean relaxation time for the stress
fluctuations. The above relation is interpreted within a
cage-melting picture to express an idea similar to the well
known Lindemann melting criterion. Namely, the viscos-
ity is proportional the force acting on a test particle, sur-
rounded by an instantaneous configuration of neighbors
times a relaxation time. The characteristic time required
for this force to relax is given by the time necessary for
the test particle to travel about one-tenth the average
neighbor separation distance. This is the time necessary
for the surrounding cage to "melt, " hence the analogy.

Direct Fourier transformation of the zero-wave-vector
expression for the time dependent viscosity [Eqs. (70)
and (74) ] yields the complex, frequency dependent shear
viscosity as

S(k) »

FIG. 1. Equilibrium microstructures S(k) versus ka, sys-
tems A, B, and C as marked.

viscosity. Table II shows the results for these mean
Maxwell relaxation times for both vertex functions and
both shear and longitudinal modes. As shown, the convo-
lution approximation yields slightly longer times and as
will become more apparent in the fully self-consistent so-
lution, always yields longitudinal relaxation times greater
than for shear modes. Notice how the two-body treat-
ment of the vertex functions leads to a longitudinal relax-
ation time that decreases with increasing structure (ex-
amine systems A and B), while the convolution treat-
ment yields the opposite results. Comparison with the
Lindemann criterion is quite good, with the deviation
increasing as the structure factor increases. For compar-
ison, the results of a calculation using a nonequilibrium
Smoluchowski analysis is included [31], which demon-
strates that this technique gives comparable results to
the short-time ansatz considered here.

Given the static structure factor for suspensions of
charged particles, the measurable viscosity is directly
calculable in terms of the fundamental physicochemical
properties of the microscopic constituents of the suspen-
sion and the solvent properties. Transformation into a
relaxation spectrum yields insight into the physical pro-
cesses behind the mechanical behavior. For this example
of short-time behavior, the relaxation spectrum can be
discerned by direct comparison of the integrands in Eq.
(78) and the definitions, Eqs. (A12) and (A13), yielding

2D, kI2

S(k') ' (78)

where ur is nondimensional with a /Do. The equivalent
results within the convolution approximation can be di-
rectly obtained by substituting cg(k) for h(k) and can-
celing [S(k)] 2 from the integrand. Results for S(k) are
given in Fig. 1 for the three systems listed in Table I.
The corresponding shear and longitudinal viscosities are
shown in Figs. 2(a) and 2(b) for the two-body vertex
functions. These rheological functions are characteristic
of a linear viscoelastic fluid with a dominant Maxwell
relaxation time, although there is evidence of multiple
relaxation times in the broadening of the longitudinal

S(k)
2D k2

(dh(k) i ( S(k) dS(k) )
dk k dk

(79)

TABLE I. System parameters.

System Radius (nm) Charge (e)
A 62.5 1240
8 62.5 1240

62.5 1240

Uolume
frac.
0.117
0.117
0.01

Added salt
conc. (mM)

0.3
0.6
0.3

In this case, the results for the convolution approxima-
tion can be obtained by simply multiplying the above
relation by 1/[S(k) ]. Thus in the short-time approxi-
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0.14-
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~a'/Dp
100 1000 10000 0.01 0.1

u)a"/D,

FIG. 3. Maxwell relaxation spectrum for the short-time
approximation, system C, convolution approximation (thin
line), two-body approximation (thick line).

gp/'go

0.01 .—

0.001;

0.0001
0.0001 0.001 21 10

~a /Dp
100 1000 10000

FIG. 2 ~ Normalized frequency-dependent viscosity for sys-
tem A, (a) dynamic shear viscosity, dimensionless on rl, (b)
dynamic longitudinal viscosity, dimensionless on g~]

mation the relaxation spectrum is given entirely by the
static structure factor. A quantitative result for system
C (see Table I) is given in Fig. 3, where it is seen that the
convolution approximation yields a longer and stronger
main relaxation peak. The form of the function suggests
the limitations of interpreting the short-time approxima-
tion in terms of a spectrum of Maxwell relaxation times
as H(A) has a clear physical significance. The denomina-

tor has zeros and goes negative if
&& ) 2 &, winchas(a) s(a)

can occur if S(k) has significant structure. Further, the
function can be multiple valued as k itself is not a unique
function of A if S(k) has significant structure. Neverthe-
less, the short-time calculations for the viscosity are in-
dependent of this model and are well behaved even for
strongly correlated systems. The limitations on the va-
lidity of its application are determined by the neglect of
the memory term.

The general asymptotic behavior of the complex vis-
cosity is readily discernible &om the above expressions.
In the limit of zero &equency, the real part yields the

steady shear viscosity; it decreases as the frequency
squared in the high frequency limit. The imaginary part
is proportional to the frequency in this limit. For infi-
nite frequencies, the loss part decays as inverse frequency
squared while the storage part goes inversely with the &e-
quency, the slope yielding the high frequency elastic mod-
ulus [see Eq. (A13)]. Accounting for the direct hydrody-
namic contribution to the stress would yield a &equency
independent contribution to the loss part of the viscosity
[30]. This general behavior conforms to the notions for
a simple viscoelastic material. Further, one can make an
estimate of the mean relaxation time directly from the
relaxation spectrum above. The dominant contribution
will be at or near the peak in the structure factor, where
k „=27r/d. This results in A = (d/2pr) S(k )Do,
which corresponds to the calculation of Lindsay et al.
[20] to within an order one constant.

B. Viscoelastic approximation

A more sophisticated approximation to the general-
ized hydrodynamics MMC equations that maintains the
self-consistency is the viscoelastic approximation (VEA).
This is physically motivated by trying to approximate the
time behavior of the system by an interpolation between
short-time elasticity and long-time fiuid behavior. For
"short" times ( on the diffusion time scale) the suspen-
sion behaves like an elastic solid while for "long" times
the suspension will Bow like a Quid. Thus the approxima-
tion defines generalized Maxwell relaxation times for the
shear and longitudinal viscosities and approximates the
time dependence of the generalized mass diffusivity as a

TABLE II. Maxwell relaxation times. TB refers to the two-body vertex functions, CA to the
convolution approximation, and SE denotes the results of the Smoluchowski equation in Ref. [31].

System
A
B
C

ST-TB
0.068
0.060
0.23

r. (~)
ST-CA

0.069
0.061
0.23

SE
0.076
0.051
0.26

Lindemann
0.042
0.042
0.22

rP(k)
ST-TB ST-CA
0.055 0.075
0.099 0.063
0.83 0.51
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A(ll (k, 0)
Cll(" ') = .+ [. (k)]

II

(80)

defining the Maxwell relaxation time for longitudinal fric-
tion. This can also be calculated, in the absence of hy-

drodynamic interaction, from the contribution of inter-
particle interaction to the longitudinal viscosity

1 jll(k, z = 0)
(k) = dt's)ll(k, t) =

k, 0 o g), k, o
(81)

simple exponential decay [1]. Alternately, one can con-
sider this as a model for the second memory function, the
memory function for the GSE relation [1,8,9]. The VEA
replaces the full wave vector and time dependent mem-
ory function with a single exponential containing a time
constant that is wave vector dependent. However, unlike
the previous models for the memory function, this ap-
proximation does not specify the wave vector dependence
explicitly; it is to be determined by the self-consistent so-
lution of the generalized hydrodynamic equations.

Mathematically, the above assumption translates into
the statement

The three parameters a(k), » 2(k) are then alge-
braically related to the mean diffusion and longitudinal
viscosity relaxation times as

M »(k)~2(k)
a(k)» (k) + (1 —a(k) )w2 (k)

'

(k) = a(k) r2 (k) + (1 —a(k) )» (k) . (86)

The result is a closed set of nonlinear equations that are
simpler than the more general set but still formidable.
Because of the viscoelastic approximation, one might ex-
pect to predict the correct overall behavior but not cap-
ture all of the details of the relaxation processes from this
approach.

Weak-coupling limit of the viscoelastic
apps'ozimation

Examination of Eq. (84) shows that the group under
the square root can be viewed as the strength of the cou-
pling between the elasticity of the suspension and the
density fluctuations. In the limit that of weak coupling
the second cumulant is small, p2 m 0 implying no elas-
ticity and low concentrations,

where A(ll(k, z) = k Ar/ll(k, z)/(C(, ). Substitution into
the GSE (31) leads to a single exponential for the time
dependent part of the generalized mass diffusivity in the
overdamped limit,

4p,

(
c ~M t)2

The two modes are then given by

(87)

AD(k, z) = D (k)
+ 4( ll(k z)

—p,2(k)/k

+(
ll

(k))
' (82)

(»,2(k)) = — pi(k) + (~n (k))

This single exponential ansatz defines the Maxwell relax-
ation time for diffusion as

( M(k))
—1

( M(k))
—1 P2( )

pi(k)
'

AD(k, t) = D~(k) —D(k, t) = — 2
e

—'/ro (k)g(t)
k~

(83)

Direct substitution into the overdamped GDE, Eq.
(34), leads to two poles resulting in a double exponen-
tial form for the dynamic structure factor:

S(k, s~( ~ ) a(k)e t/rt(k) + (1 a(—k)) t/~t(k)—
S(k)

a(k) = l. (88)

2. Strong coupling limit of the viscoelastic
up ps'ozimation

The two modes are completely decoupled, the first being
pure spatial diffusion as given by the short-time solution.
The mass diffusivity relaxes purely by the longitudinal
friction and the dynamic structure factor is given by a
single exponential equivalent to the short-time solution.

This solution is also necessarily true for all conditions
in the limit as k m 0, as can be seen from the hydro-
dynamic limiting behavior of the cumulants. In the hy-

drodynamic limit p2 goes to zero as k while pi goes
as k, leading to the above condition. This is required
so that all (k = 0) can remain finite, which is necessary

for the collective diffusivity to go to its correct hydro-
dynamic limit, while the relaxation time of the density
fluctuations in the hydrodynamic limit goes to infinity.

1
a(k) = —+

2

2

,, (k) —(T~ (k))
'

4
—p, 2(k)

—4p, 2(k)

- 1/2
p, (k) —v.~ (k)

2
2 p, , (k) —(~DM (k) )

1/2 In previous work [1] the square root was expanded to
yield the following relations for small amounts of cou-
pling:

C
C

P 1
—'TD

The mean structural relaxation time is given by

rg(y) (k) a(k)» (k) + (1 a(k) )+2 (k) ~ (8S)
(89)
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—4P,2
C zM-')2 (9o)

was analyzed to yield

~i 2
= -(ui —&r ) +(—v2)'1,2 2 1

1
a(k) = —. (91)

This leads to two, mixed modes that are not clearly sep-
arable as to their physical origin.

However, analysis of this limit proves it to be unattain-
able for physically realistic colloidal suspensions. Substi-
tution of the above relation (91) into the equation for the
diffusional relaxation time (86) yields

M c
7z) = Py~ (92)

This 1eads to further separation of &equencies, imply-

ing faster concentration fIuctuations and diffusion for

py ) ~& . For the opposite case, the diffusion relax-
ation frequency becomes smaller. The weighting of the
relaxation times now begins to mix in the viscoelastic
character of the longitudinal kiction.

Taking the opposite limit, the strong coupling limit of

Pz

(~l)' —~2'

a(k) = p', *~g (96)

Further v2 is seen to become proportional to 7.
~~

through
relation (86) and both are large. As discussed above,
these relations must have the proper hydrodynamic limit.
For k ~ 0, ~q diverges proportional to pz and the prod-
uct a(k)rq, which equals the mean structural relaxation
time [see Eq. (85)], reduces to the short-time solution.
Also in this limit v2 and

w~~
remain proportional and

do not diverge as k -+ 0 for a Quid. Therefore, in the
strong-coupling limit the structural relaxation times be-
corne widely separated. For k )) 0, rq becomes small
for large longitudinal elasticity while w2 becomes compa-
rable to the longitudinal relaxation time. Further, the
diffusion process is driven by the longitudinal elasticity

C

",', which is expected to become small for strong
P1

coupling. The physical picture is that finite wavelength
concentration fluctuations are correlated because of the
elasticity arising from strong interactions between Brow-
nian particles, resulting in both a long decay time for the
dynamic structure function S(k, t) and the stress relax-
ation as characterized by 7™.

Il

which satisfies relation (90) automatically. In this limit,
relation (86) becomes C. Comparison with experiment

M-'
+@ c

(93)
Py

As 7P must be real positive for a Brownian Quid, the
C

inequality
~
."~', & 1 must be satisfied. However, the sec-(~))'

ond cumulant written in nondimensional form becomes

y, ', = —(p, ', )' S(k)— (94)

CM-'
)I

+ c
Py

P2

Py

This immediately results in the limiting behavior

@I 3
In the dilute limit, ~pg ~ z~ and S(k) -+ 1 and so

p2 -+ —2(p~) violating the above inequality. The situa-
tion becomes worse with increasing concentration, lead-
ing to no physically realizable solution in this limit.

There is another strong-coupling limit that can be ob-
tained from direct consideration of the slowing down of
the longitudinal stress fluctuations. For strongly inter-
acting systems it is expected that the Maxwell relax-
ation time for longitudinal stress fluctuations becomes
large (r ~ oo) due to the interactions. Equally valid

I1

is the picture of strong longitudinal elasticity, such that
—pz/p~ becomes relatively large. In this limit, the diffu-
sional relaxation time becomes

Recently, the microstructure, density Huctuation cor-
relations, and rheology of a well characterized suspension
of charged, polystyrene spheres have been measured via
small-angle neutron scattering (SANS), static and dy-
namic light scattering (SLS,DLS), and mechanical spec-
trometry over a wide range of particle and added salt con-
centrations [50,67]. This experimental database provides
a check of the above theoretical predictions by direct
comparison of the microstructure, density fluctuations,
and rheological predictions for systems where the equilib-
rium structure and the colloidal interaction parameters
are well characterized. In the following, comparison of
the predictions for and measurements of the intermediate
scattering function will be made for dilute, but strongly
correlated suspensions for which DLS is possible but me-
chanical spectrometry unfeasible. Then, a similar com-
parison of mechanical properties will be made for more
concentrated systems with added salt, where DLS cannot
be used to measure the intermediate scattering function
but SANS and mechanical spectrometry yield the equi-
librium structure and the linear rheological response.

f. Dilute samples investigated via DLS

The relaxation of the dynamic structure factor (in-
termediate scattering function) for a dilute but strongly
correlated suspension of colloidal particles was measured
with dynamic light scattering [50]. Briefiy, polydisperse
polystyrene spheres (number average radius 35.5 nm,
number average charge Q=390) were suspended in deion-
ized water at various volume &actions. DLS measure-
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ments of the intensity autocorrelation function were an-
alyzed to obtain the cumulants and the full decay of the
dynamic structure factor S(k, t) At each scattering wave
vector, the time decay of S(k, t) was fit to the double
exponential form derived in the viscoelastic ansatz, Eq.
(84), via a nonlinear optimization routine. It was found
that the double exponential ansatz is an excellent repre-
sentation of the data, as concluded from both the quality
of the fit and the excellent agreement between the first
and second cumulants determined Rom traditional poly-
nomial fits and from the double-exponential fit. More
details of the experiments and data extraction can be
found in Ref. [50]. Table III provides a summary of the
necessary properties measured for the suspensions.

Calculation of the equilibrium structure factors from
the multicomponent OZ-RY equation were performed
and excellent agreement obtained for the measured struc-
ture factors as compared to static light scattering mea-
surements [50], verifying the validity of the approach.
The polydispersity was modeled as a discretization of a
Schulz distribution with F, = 35.0 nm 6 16%. This
technique for modeling the particle distribution provides
a tractable and accurate method of handing the poly-
dispersity in particle size and charge (the surface charge
density is assumed constant). Figure 4 provides a overall
picture of the DLS samples' structures, where the cal-
culated thermodynamic structure factor is plotted, not
the measured structure factor. As seen, the structure
grows smoothly with increasing concentration, with the
main peak growing in magnitude along with higher order
peaks. As the main peak height does not exceed 2.85,
it is expected &om the Hansen-Verlet criterion [68], and
is indeed observed to be true, that these suspensions are
Huids at rest.

The elastic moduli calculated from the polydisperse
equations (17) and (18) are shown in Fig. 5. Calculations
for the DLS samples results in a power law with index
1.3 for the shear modulus and 0.97 for the longitudinal

0
0 0.01 0.02

I

0.03

FIG. 4. Thermodynamic structure factors S(k) versus k in
nm, systems RY2, RY3, RY5, RY6, RY7, RY8 correspond
to the primary maximum left to right, respectively.

modulus for the variation with particle concentration.
This compares well with calculations for monodisperse
suspensions, where power law behavior of around 4/3 is
predicted for the shear modulus [6,31]. This power law
index is less than 2, reBecting the increasing counterion
concentration accompanying the increasing particle con-
centration that decreases the screening length. Note that
at these particle concentrations it is found that including
hydrodynamic interactions (known for pair interactions)
yields an insignificantly small quantitative change.

The static structure predictions, particle size determi-
nation, polydispersity corrections, and longitudinal elas-
ticity can be checked by measuring the the first two cu-
lnulants. The measured first and second cumulants cal-
culated according to the polydisperse equations (12) are
compared against the cumulants extracted &om the DLS

TABLE III. Sample characteristics.

System

1A
1B
1C
2A
2B
2C
3C
4A

0.181
0.10
0.208
0.06
0.092
0.119
0.285
0.353

35.5 6 5.7
35.5 + 5.7
35.5 + 5.7
35.5 + 5.7
35.5 + 5.7
35.5 + 5.7
35.5 + 5.7
35.5 + 5.7

1.0 (dialyzed)
1.0 (dialyzed)
1.0 (dialyzed)
0.1 (dialyzed)
0.1 (dialyzed)
0.1 (dialyzed)

0.01
10.0 (dialyzed)

340
420
300
390
390
340
300
300

Radius (nm) C, n (millimolar) Q (e)
SANS samples K

0.01
U
0

0.001

RY2
RY3
RY5
RY6
RY7
RY8

0.01 'Pp

0.0205 lp

0.047 %
0.07 'Pp

0.095 Pp

0.14 'Fp

SLS and DLS samples
35.5 + 5.7 deionized
35.5 + 5.7 deionized
35.5 + 5.7 deionized
35.5 + 5.7 deionized
35.5 + 5.7 deionized
35.5 + 5.7 deionized

390
390
390
380
400
390

0.0001 0.001
volume Fraction

FIG. 5. High-frequency shear modulus z r (o) and
~' &}'

high-frequency elastic modulus
& (o) versus volume

fraction for the DLS samples. The lines are best povrer law

fits; see text.
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in Figs. 6(a) and 6(b). Details of corrections for the pri-
mary electroviscous effect are treated in Appendix B.The
agreement with experiment is excellent, especially around
wave vectors corresponding to the peak in the structure
factor, further verifying the validity of the polydisperse
OCF model in accurately modeling the suspension. The
variation in the second cumulant at high wave vectors
can be attributed to both low signal to noise ratios and
the fitting procedure used to extract the cumulants.

Both the short-time (ST) (75) and viscoelastic (VE)
(83) and (84) closures for the GH equations were solved
for the effective ffuid using both the two-body (68) and
convolution approximation (61) for the vertex functions.
As inputs to the solution, the first and second cumu-
lants [the thermodynamic cumulants given by Eq. (16)]
and the thermodynamic structure factor (11) are cal-
culated. This definition of an effective fm.uid is a con-
sistent method to incorporate polydispersity within the
philosophy of generalized hydrodynamics. Briefly, the
self-consistent equations were solved iteratively by using
the short-time solution (75) as an initial guess. First, the
Maxwell relaxation time was calculated from the mode-
mode-coupling closure to the Green-Kubo relation for the
longitudinal viscosity (81). Then, the Maxwell time for
collective diffusion and the two exponentials and weight-
ing factor for the dynamic structure factor (84) were cal-

culated. These were then used to recalculate the Maxwell
relaxation time for longitudinal viscosity. This procedure
was performed until a mean-square deviation of less than
0.1% was achieved, which was determined to be sufficient
to insure convergence. Longer ranges of integration and
finer discretizations of the numerical integrations were
performed until no change was observed in the final solu-
tion. As the equations are nonlinear, attempts were also
made to use difFerent starting guesses to seek other solu-
tions. Those guesses reasonably near to the final struc-
ture or short-time solution all converged to the same so-
lution while other initial guesses simply did not converge.
The calculations were converged for all the systems stud-
ied for both sets of vertex functions. Following this, the
rheological properties were determined by calculation of
the Maxwell relaxation time for the shear viscosity, (64)
or (70).

The results for the relaxation times are compared in
Fig. 7. In each frame, experimental results for r2(k),
rq(k), and (1 —a(k)) are shown from top to bottom as
the points [note (1 —a(k)) being close to 1 means that
r2(k) is more heavily weighted in the mean structural re-
laxation time]. The predictions for the two-body vertex
functions are given as dashed lines while the convolu-
tion approximation is given as solid lines. The plots are
given in experimental units of microseconds and inverse
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FIG. 6. (a) First cumulants, on a rela-
tive scale versus k (nm ), predictions (—)
and experimental measurements (o). (b) Sec-
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measurements (o).
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nanometers. The short-time approximation lies approx-
imately midway between 02(k) and rq(k) for all systems
and has the general shape of r2 (k). The most signi cant
component, of the comparison is the peak in r2(k) and
the value of (1 —a(k)) at the peak, which corresponds
to the wave vector at the maximum in the equilibrium
structure factor S(k). Clearly, the two-body vertex func-
tion yields excellent predictions for r2(k) and (1 —a(k)
which are the dominant contribution to the mean struc-
tural relaxation time. This suggests that the coupling
between suspension viscoelasticity and structural relax-
ation are correctly modeled through the mode-mode cou-
pling. Clearly the convolution approximation overpre-
dicts this coupling, which is not unexpected for super-
positionlike approximations in general [14,24]. T ie two-

body vertex function does underpredict the magnitu e
of &I (k), which is better represented by the convolution
vertex function. The good agreement between theory
and the published experiments demonstrates the power
of keeping the self-consistency in solving the generalizec
hydrodynamics equations.

A comment must be made concerning the double-
exponential nature of the dynamic structure factor. It
is well known that many DLS experiments on charge
systems can be simply approximated yd b such a dou e-

exponential fit, but deviations are common [56]. This
double-exponential fit is an approximate form of the fu

generalized hydrodynamics theory that arises directly

factor does exhibit reasonable double-exponential decay,
then the viscoelastic approximation itse Is expected to
be satisfactory. Other workers using generalized hydro-
dynamics have advocated the use of spectrums, more ex-
ponentials [9], or Kohlrausch functions [16]. It would be
reasonable then to make comparisons for cases where t e
double exponential form is not realized by comparing t e
mean structural relaxation time

rs(A) ——a(k)rq(k) + (1 —a(k))T2(k)

S(k, h)Ch
S(k) o

for these cases. Clearly, for the above comparison with

laxation time is almost perfect due to the good agreement
of w2(k) and (1 —a(k)).

Figures 8(a) and 8(b) show typical examples for the dy-
namic viscosi y unc ions,'t f ti ns here for the two-body vertex
functions, where the characteristic, viscoelastic behavior
for a single Maxwell time is primarily observed. There is
only a small deviation g,

' and
q~~

at high &equency ue

to rq(k) because it has little strength in the structure
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FIG. 8. (s) Normalized dynamic shear viscosity (g,'/g ) for

system RY5 versus dimensionless frequency co—,real partQ
(—), complex psrt(o). (b) Normalized dynamic longitudinal
viscosity (q~~ */g~~ ) for system RY5 versus dimensionless fre-

quency &u &, real psrt (—), complex psrt(o).

relaxation. The results are qualitatively similar for the
convolution approximation, just shifted to slightly lower
frequency (longer time). For both vertex functions, cou-
pling of suspension viscoelasticity to density fluctuations
results in longer Maxwell relaxation times relative to the
short-time solution. The relaxation times, for both ver-
tex functions and for both short-time and VE approxi-
mations, are summarized in Figs. 9(a) and 9(b). The

'10 . '10
volume fraction

short-time solutions follow the Lindemann law Eq. (77),
with the numerical coeScient increasing as one goes from
short-time to full viscoelastic solution and in going from
two-body to convolution approximation (see Table IV).

Important qualitative differences can be observed in
comparing the two approximations for the vertex func-

FIG. 9. (s) Predictions for the Maxwell relaxation
times (dimensionless) for rheology for the DLS systems
in the two-body approximation, short-time solution (—),
self-consistent viscoelsstic solution (- - -), 7; (e), 7P (o).
(b) Predictions for the Maxwell relaxation times for rheology
for the DI S systems in the convolution approximation, same
symbols as in A.

Property

TABLE IV. Rheological snd dynamic power-Isw-St parameters (property = AP~).

Short-time Viscoelastic
A A

M
8
M
II

Is

~ll

+1,0

0.036
0.0027

2.6
3.3

0.14

Two-body-vertex approximation
-0.63
-0.72
0.66
0.29
0.046

0.067
0.0035

4.7
4.3
0.45

-0.63
-0.70
0.66
0.27
0.040

M

M
II

gS

~ll

+1,0

0.037
3.6
2.6
52.

0.15

Convolution-vertex approximation
-0.63
-0.32
0.66
0.34
0.039

0.042
4.2
260.
5200
1600

-0.63
-0.31
0.97
0.66
0.67
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tions. As noted in the short-time analysis above, the two-
body vertex function yields Maxwell times for longitudi-
nal viscosity shorter than those for shear. Because the
high frequency longitudinal elasticity is much larger than
the shear modulus, the longitudinal viscosities remain
larger than the shear viscosities. Thus there is a trend in
going from weakly to strongly interacting systems sug-
gesting that the longitudinal viscosity will eventually be-
come less than the shear viscosity for the two-body ap-
proximation. The convolution approximation, however,
yields distinctly different results for the Maxwell relax-
ation times such that the longitudinal Maxwell time is
always longer than that corresponding to shear.

The rest of the rheological functions, as determined
from the structural relaxation times, are summarized in
Figs. 10(a) and 10(b). The two-body vertex functions re-
sult in viscosities that increase sublinearly with volume
fraction and a normal stress coefficient 4'q o that is almost
independent of volume fraction. When converted to real
units it is clear that these mechanical properties cannot
be measured to any accuracy using standard rheological
equipment; so, no direct comparison with experiment is
possible for these dilute systems. The coupling of den-
sity Buctuations to elasticity leads to an increase in the

rheological properties in all cases. For the convolution
approximation, the increase in rheological properties in
going from the short-time to the full viscoelastic solution
is much more than for the two-body vertex, reflecting a
stronger coupling between the longitudinal density fluc-
tuations and the elasticity of the suspension. The pri-
mary normal stress coefficient 4q 0 is found to be practi-
cally independent of volume fraction for both vertex ap-
proximations. The elongational pseudoviscosity, as cal-
culated from Eq. (A6), leads to a Trouton ratio between
2.9 and 3.0 for all the systems studied. This is primarily
a consequence of the large difference between the elastic
and shear moduli (see Fig. 5). Table IV summarizes t, he
power law fits to these rheological functions.

Also notice that the power-law exponents for the vis-
cosity increase with volume fraction between two-thirds
and one. This is just the contribution of the interparticle
forces to the overall viscosity, so one would add the sol-
vent plus the linear Einstein coeKcient to get the mea-
sured viscosity. This result suggests that capillary vis-

cometry measurements of these dilute, but strongly iii-

teracting, suspensions would give near linear plots with
volume fraction. However, instead of measuring the iii-
trinsic viscosity, the capillary viscometry will be strongly
influenced by the interparticle forces. This phenomena
has been recently reported for similar suspensions [69],
and will be the subject of a future article [54].

h
v V

2. Concento ated suspensi ons

10

10 10
volume fraction

A
V

f

1Q

(b),l~ 1 I

1 Q
volume fractIon

FIG. 10. (a) Predictions for the rheology (made dimen-
sionless with the solvent viscosity) of the DLS systems
in the two-body approximation, short-time solution (

—),
self-consistent viscoelastic solution (- — -), rI, (*), gI~I (o), C'q

(o). (b) Predictions for the rheology of the DLS systems
in the convolution approximation, short-time solution ( ),
self-consistent viscoelastic solution (- — -), rl, (*), &II (o), 4'$

(o).

The highly concentrated suspensions (see Table III)
were prepared using the same batch of colloids by dial-

ysis against a known salt solution of 1:1electrolyte [67].
These suspensions vary in viscosity from waterlike to
glassy, highly viscoelastic pastes, making it possible to
accurately determine the low-shear limiting rheological
response but unfeasible to measure the intermediate scat-
tering function via DLS. In the experimental paper [50],
the SANS data for the concentrated samples was fit by
a five-component HNC-OZ polydisperse model. Due to
the computational requirements of solving the five corn-

ponent problem, no RY-OZ solutions were performed.
However, it was determined that the effective colloidal
charge remained unchanged, along with, of course„ the
size and polydispersity. Direct comparison of theory and
experiment for these limited systems can be made and
the results are qualitatively and quantitatively similar to
what follows. However, for clarity of understanding and
to make a more meaningful and definitive comparison ~f
the theoretical predictions with actual rheological mea-
surements, an effective monodisperse fluid will be defined
of the same number average size and charge with a De-

bye length given by the salt concentration of the dialysis
bath. This enables us to explore the trends in the predic-
tions and to compare with experiments over a much wider

range of parameter space without introducing any addi-
tional complications or parameters. This mapping for
the structure, as shown previously [59] and reproduced
below, gives excellent results for direct comparison with
wave-rigidity measurements of the high-frequency shear
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elasticity, a property solely of the static structure and the
intercolloidal potential.

The structure factors are shown in Figs. 11(a) and
ll(b) for various volume fractions for the two series of
0.1 mM salt and 1.0 mM salt concentrations, respectively,
corresponding to the first two system series in Table III.
Using the rule that the peak in S(k) exceeding 2.85 is
indicative of a phase transition to the crystalline phase
[68], it is apparent that structures from the dilute Huid

into the metastable Huid regime are being investigated for
both series The thermodynamic properties of energy,
pressure, and compressibility, as calculated from these
structures, are shown for both systems in Figs. 12(a)
and 12(b). They increase smoothly into the metastable
Suid regime with the higher concentration showing an
almost exponential rise.

Figure 13 shows the calculations for the h.igh frequency
shear modulus using this pseudomonodisperse Buid (hy-
drodynamic interactions are neglected, see [59]). As
shown, the agreement is excellent in the qualitative be-
havior and for the quantitative overlap. Again, there are
no adjustments in this calculation as both the microstruc-
ture and colloidal interaction potential are known. This
result helps to justify the model as an accurate represen-
tation of the suspension. The predicted. high-frequency
shear elasticities also increase rapidly in the metastable
luid regime and are clearly well within the measured val-

ues. Thus the colloidal potential parameters used to fit

100 .-

0.1 I

0.01
volume fraction

I

0.1

100; (b).:

10-

01-

0.01
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FIG. 12. Dimensionless compressibility (o), pressure (+),
and energy ( ) for systems at (a) D. l millimolar salt concen-
tration, (b) 1 millimolar salt concentration.

3.5-

2.5-

S(k) 2-

15-

0
0 0.02 0.04 0.06 0.08

ka
0.1

I

0.12

I

0.14

the structure can also be used to predict high-frequency
elasticities. This is especially encouraging as the elastic-
ity is sensitive to the second derivative of the potential
while the structure is sensitive to the magnitude of the
potential and its derivative.

Using the same numerical scheme results in predic-
tions for the dynamics, typiBed by the results presented
in Figs. 14(a) and 14(b). The results for the two relax-
ation times and the weighting function in the viscoelastic
approximation for the two-body vertex functions [14(a)]
resemble those seen for the more dilute case (see Fig. 7).
Also shown are the short-time solution and the Maxwell

3.5- (b)

S(k)

2.5-

1.5-

10 " X

0.5-

0
0 0.05 O.I5 0.2

0.01

FIG. 11. (a) Thermodynamic structure factors for salt con-
centration 0.1 millimolar, volume fractions 0.005, 0.01, 0.03,
0.05, 0.07, and 0.1 with increasing peak height. (b) Thermo-
dynamic structure factors for salt concentration 1 millimolar,
volume fractions 0.01, 0.03, 0.10, 0.15, 0.17, 0.20, and 0.21
vrith increasing peak height.

volume fraction
0.1

FIG. 13. High-frequency shear elasticity for systems at
0.1 millimolar salt concentration: measured (+), predicted

(—o —); and at 1 millimolar salt concentration: measured

(X), predicted (—Cl —).
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qualitative differences. The two-body closure [15(a) and

15(c)] results in similar behavior as at the lower densi-
ties, where the longitudinal Maxwell times decrease faster
than the shear with increasing concentration. The relax-
ation times predicted &om the self-consistent viscoelastic
approximation are signi6cantly longer than those pre-
dicted for the short-time solution. The strong upturn
for the 1mM salt concentration seen in the viscoelastic
solution is well into the metastable fluid regime, but is,
nonetheless, suggestive that a glass transition is being
approached.

The convolution approximation, Figs. 15(b) and 15(d),
show qualitatively different behavior and quantitatively
longer relaxation times. As mentioned, convergent solu-
tions were found only for the lower particle concentra-
tions at both salt concentrations. For these predictions,
the longitudinal relaxation time remains slightly larger
than the shear, insuring that the viscosities will have

s
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=
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FIG. 16. Reduced interparticle viscosity (q/p ) for (a) 0.1
millimolar salt concentration and (b) 1.0 millimolar salt con-
centration. Symbols: measured (o), viscoelastic (—), short
time (- — -), convolution approximation (o), two-body approx-
imation (s).

the same behavior. The strong coupling of density re-
laxations with suspension viscoelasticity result in longer
longitudinal and shear relaxation times. The strong up-
turn and loss of solution for the 1mM viscoelastic solution
was found to lead to an ideal-glass transition [70] using
the technique of Bengtzelius et al. [71].

The rheological predictions &om these models can now
be directly compared against actual mechanical measure-
ments of the shear viscosity, as shown in Figs. 16(a)
and 16(b). As seen, the measurements of Goodwin et
aL [67] show a strong increase in the low-shear limiting
viscosity with added particle concentration. Clearly, the
convolution approximation is able to qualitatively cap-
ture the exponential increase with volume &action and
is even quantitatively reasonable over the limited range
of comparison. Notice how the actual viscosity diverges
in the same region as the glass transition as predicted
&om the convolution approximation. All other predic-
tions are both qualitatively and quantitatively in dis-
agreement with the data. It is also to be noted that the
pseudo-Trouton ratio is between two and three for all the
predictions of the convolution approximation. The two-
body approximation yields both negative and very large
values as the longitudinal viscosity drops well below the
shear viscosity. Furthermore, the predicted primary nor-
mal stress coeKcients track the viscosity predictions but
are still below normally accessible values.

g. Physical interpretation in terms of cage melting-

A popular method of envisioning the dynamics in sim-
ple and colloidal fluids is the cage-melting model [56].
In this model, the particles are temporarily localized, or
"trapped" in a cage of their nearest neighbors. Diffu-
sion for short times is con6ned to the cage, while for
longer times, the cage "melts" and particles diffuse dis-
tances beyond the nearest neighbors. Colloidal trans-
port is achieved by this process of cage melting, freeing
the test particle to disuse until the next cage is encoun-
tered. The general expression for the interparticle viscos-
ity, g, = G' r, is to be interpreted as G' representing
the strength of the force localizing the particle in the
cage (relative to shear deformations) and w, represent-
ing the melting time of the cage. The latter is modeled
through extension of the Lindemann melting criterion for
suspensions (see also [72]). This interpretation of the Lin-
demann law works as long as the melting time is simply
controlled by free diffusion [20], as would be the case for
the isolated cage. As has been shown here, this result is
also recovered from the short-time approximation, which
neglects coupling of density fluctuations to the suspen-
sion viscoelasticity.

The mode-mode-coupling solution can be interpreted
as the consideration of the caging of these neighboring
particles within a cage of their nearest neighbors, a "mul-
tiple cage" phenomena. Thus, for the nearest neighbor
to diffuse so as to free the test particle, they themselves
must escape their cages of nearest neighbors, and so on.
Put another way, correlated motion of a collection of par-
ticles is required to dissipate the cage surrounding the
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test particle. This intuitive picture helps to put in per-
spective the dependence of the transport coefFicient upon
collective dynamics of density fluctuations.

V. SUMMARY AND CON CLU SION S

A method to calculate all of the collective dynam-
ics and linear viscoelastic rheology for Brownian col-
loidal suspensions simply in terms of the fundamental
physicochemical properties has been demonstrated. A
self-consistent solution of the generalized hydrodynam-
ics equations has been obtained numerically through the
viscoelastic approximation. In this derivation, a further
approximation must be made for the many-body rorre-
lations inherent in the mode-mode-coupling formalism.
Two treatments for the mode-mode coupling that are res-
ident in the literature are rederived here and explained
in terms of approximations for a three-body density cor-
relation function.

The predicted structures and DLS and SANS inea-
surements agree for these charged colloids interacting
via a Yukawa potential. It is shown how to explicitly
account for polydispersity effects for the structure, cu-
mulants, and elastic constants. The good agreement of
the calculated first and second cumulants and the high
frequeiicy shear elasticity over four orders of particle
concentration further demonstrates the ability to niodel
these charged suspensions via a Yukawa potential and
the Rogers- Young-Ornstein-Zernike equation.

Calculations are performed to demonstrate th~. vis-
coelastic predictions for weakly correlated suspensions.
Good agreement with the Lindemann melting rule and
previous calculations based on a nonequilibrium Smolu-
chowski analysis were demonstrated. The relationship
of these nonlinear equations for the transport properties
and t, he Maxwell relaxation spectrum are also demon-
strated.

Predictions for strongly correlated but dilute, in the
volume fraction sense, suspensions of charged particles
demonstrated the accuracy of the two-body approxinia-
tion of Bess and Klein in modeling the dynamics. A large
increase in the relaxation time above the Lindemann hy-

pothesis is observed. The convolution approximation
overestimates the three-body couplings and, hence, the
coupling of density relaxations t, o the suspension viscos-

ityy.

Calculations for higher suspension concentrations,
wliere added salt is needed to screen the electrostatic in-
t,eractions, show the inadequacy of the two-body approx-
imation to model the divergence of the relaxation time.
The longitudinal relaxation time and viscosity decrease
below that for the shear and no divergence in r (k) is

II

observed. On the other hand, the convolution approxi-
mation, which has been used previously in studying the
glass transition, demonstrates a strong divergence for the
mechanical and collective properties.

Further work comparing this self-consistent solution
against the details of Brownian dynamics simulations for
model systems are currently under study to firm some
of the interpretations and conclusions suggested I&y tI&e

comparisons with actual measurements. This work corn-
plements current research using the generalized hydrody-
namics formalism to describe both dilute suspensions and
glass systems by providing a self-consistent solution valid
for colloidal suspensions in the fluid phase. Future work
includes the study of other Brownian systems relevant to
the colloid community.
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APPENDIX A:
RHEOLOGICAL PROPERTIES STUDIED

Frequency dependent rheological measurements con-
tain information about the dynamics of complex fluids.
It is important to recognize that the results of the above-
mentioned theories are limited to the linear response
regime, and thus, the rheological characterization must
be done in the linear viscoelastic limit. In a practical
sense t, he deformation of the material during the mea-
surement must be asymptotically small such that the re-
sponse is linear. Within the context of the Onsager re-
gression hypothesis and the fluctuation-dissipation theo-
rem, the response of the suspension to its own internal
fluctuations will be identical to the linear rheological re-
sponse. Thus dynamical calculations of the stresses for
aii equilibrium suspension yields the linear transport, co-
«fhcients of interest to the rheologist.

As a starting point we take the generalized Maxwell
inodel for the relaxation spectrum of a complex fluid

[73], consisting of an infinite superposition of Maxwell el-

ements each with a characteristic relaxation time A. Th~

relaxation modulus is defined as

(Al)

where the experiment is a shear stress relaxation 7 ."(t)
at, infinitesimal shear strain levels ~ ".

The steady shear viscosity is defined as a time integral
over the relaxation modulus

(A2)

and by frame invariance [74], the primary normal stress
difference,

sG(s) ds.
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Although not itself a linear property, the primary nor-
mal stress coefBcient is related simply to the erst term in
an expansion for the shear modulus in &equency and,
as such, can be obtained from the dynamic viscosity.
Through linear viscoelasticity, the primary normal stress
coeKcient gives the recoverable strain upon flow cessa-
tion p" as

In the limits of a continuous distribution of relaxation
times and linear response, this differential Maxwell model
is equivalent to an integral model with the same relax-
ation spectrum H(A) Thus frequency-dependent moduli
or viscosities can be written in terms of the relaxation
time distribution function, again for a Maxwell model:

1@

fo g8
(A4)

g,'(od) = G"(od)/u) = H(A)dA,I + (odA)'
(A12)

showing this is zero in the limit of zero shear rate. The
other relevant rheological function, the secondary normal
stress coefBcient, cannot be determined solely &om linear
viscoelasticity, as it depends on the choice of constitutive
equation [74].

The steady elongational viscosity in the linear limit
can also be expressed (for an incompressible Huid) as

(A5)

1
rI,"((u) = G'((d)/~ = H(A)dA.

p 1+ (dA
(AI3)

Consequently, either a stress relaxation at infinitesimal
strain or a frequency-dependent viscosity-modulus mea-
surement can be used to determine the relaxation spec-
trum, the low shear viscosity, and the high frequency
limiting modulus. Further, the primary normal stress
coeKcient is related to the dynamic viscosity by

leading to the Trouton ratio of 3. For a general, com-
pressible fluid, this can be written as

29"
llnl

w —+0 QJ
(AI4)

8'Qd ('VII s 9d)

I// 9~
(Afi)

Therefore, predictions of the time and wave vector de-
pendent shear and longitudinal viscosity functions yields
the full linear viscoelastic behavior for the suspension.

where
g~~

is the longitudinal viscosity, which is calculated
in a manner analogous to Eq. (A2) with GII(t) replacing
G(t) In the m. odel to be considered here, the OCF, the
solvent is taken to be an incompressible, Newtonian fluid.
The stresses from the solvent and the fluid of Brownie
particles are taken to be additive. Thus, the elongationai
viscosity must be 3 as the longitudinal viscosity for the
suspension as a whole is essentially infinite. However,
it is still instructive to examine the contribution of the
Brownian Huid to the longitudinal viscosity and the resul-
tant elongational "pseudoviscosity" as the former prop-
erty can be determined through optical techniques [75].

Defining the frequency-dependent modulus

APPENDIX B:
PRIMARY ELECTROVISCOUS EFFECT

The polarization of the Debye layer surrounding a col-
loid due to relative motion of the colloid, counterions, and
solvent leads to a retardation force known as the primary
electroviscous effect. This retardation manifests itself as
an increase in the friction coefFicient as measured through
the 6rst cumulant. There is a significant literature which
treats aspects of this problem. Booth considered the elec-
trolyte drag on the sedimentation velocity of a colloid
by an asymptotic treatment of the entrainment of the

G(ur) = G'((u) + iG"((d), (A7)

yields

G'(~) = ~ f G(t) sin(~i)dt, (A8)

G"(~) = cu G(t) cos(~t)dt.
0

(A9)

This function is also directly related to the frequency
dependent shear viscosity:

rl.*(~) = )7.'(~) —i)7."(~) = (A10)

For such a general model this function may be written
in terms of an infinite, linear superposition of relaxation
times:

'I 0
0.001 0 01

k(nm )

O. I

G(t) = J H(i) & din A. (A11)
FIG. 17. System RY5, first cumulant: (0) DLS data, (—)

without primary electroviscous ef}'ect correction, (-*-)Booth's
correction, (- — -) Schurr's correction.
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counterions in the Stokes How field surrounding a moving
macroion [76], but neglected any fluctuations in counte-
rion concentration. Schurr [77] considers the effects of
fluctuations in counterion concentration on the friction
coeKcient, neglecting hydrodynamic coupling. Compar-
ison of these ideas have been discussed by Geigenmuller

[78] and by Schurr [79]. Medina-loyola and co-workers
have examined the full dynamics of the fluctuations and
their influence on the drag coeKcient using a generalized
Langevin equation approach [80—82]. It should be noted
that the rheological and dynamical influences of the pri-

mary electroviscous effect have been treated at length by
Russel [8o], Dhont [32], and Felderhof and Jones [84].
However, for the strongly interacting systems considered
in this paper, the secondary electroviscous efI'ect is cal-
culated to be many orders of magnitude more important
for the viscosity than this primary effect.

When comparing explicit measurements of the first cu-

mulant with theory, however, this extra f'riction due to
the Debye layer can be important. The two compet-
ing theories of Booth and Schurr were used to try and
correct the first cumulant predictions for the DLS sam-

ples. For the relatively large Debye lengths of our systems

(Ka ( O. l), the results of Schurr reduce to the classic
Debye-Huckel results. Comparison of these two correc-
tions for a typical sample are shown in Fig. 17. It is

apparent that the added friction lowers the cumulant for

both theories, but that the effect is minor. Comparison
with the data shows better agreement at large scattering
vector but worse agreement near the peak in S(k). Al-

though Schurr's correction is larger than that of Booth,
the two theories are not distinguishable to within the
accuracy of the data. Thus, as the peak in S(k) plays
a crucial role in the generalized hydrodynamics theory,
the predicted first cumulant without any corrections for

primary electroviscous effects is used throughout.
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