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Global stability of spherical polytropes
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Recently, it has been proved that the spherical polytropes are globally stable solutions to the collision-
less Boltzmann, or Vlasov, equation of galactic dynamics. This proof provides a partial explanation of
the results of numerical simulations of colliding polytropes described herein, which show that these ob-

jects are indeed extremely robust.

PACS number(s): 05.20.Dd, 98.10.+z

The numerical experiments summarized here involved
zero impact parameter encounters of two spherical po-
lytropes with the same polytropic index n, each
comprised of N„,=2000 identical particles. As dis-

cussed, e.g., in [1],polytropes are time-independent solu-
tions to the Vlasov-Poisson, or collisionless Boltzmann,
equation, characterized by a one-particle distribution
function

fo(r, v)= constX(Eo E)" 3~2 if E&0
0 if E)0

where E=u 12+4[fo] denotes the energy of a unit
mass test particle with velocity v moving in the self-
consistent potential 4(r) associated with the equilibrium
distribution fo. The constant ED=Co denotes the value
of the potential at the boundary of the system, where the
spatial density p~0. The potential is so normalized that
4~0 as r~ ~. For T&n 5, this distribution gives rise
to a collisionless equilibrium with an everywhere finite
mass density and a finite total mass. It is well known [2)
that, for n & —„these equilibria constitute linearly stable

solutions to the Vlasov-Poisson system; and, as has been
shown recently by Aly [3], these equilibria are nonlinear-

ly stable as we11.

Theory has less to say about the stability of polytropes
with n ~ —„since the aforementioned proof of stability re-

quires that dfoldE be everywhere negative. Violating
the condition dfo IdE &0 implies an "energetic" instabil-

ity in the sense that there exist dynamically accessible
perturbations that decrease the energy of the equilibrium,
but this does not necessarily imply a linear instability [4].
Indeed, numerical simulations, e.g., by Henon [5], indi-
cate that these polytropes behave stably down to a value

'Also at Department of Physics, University of Florida, Cxaines-

ville, FL 32611. Electronic address: kandrup astro. u8.edu
tAlso at: Institute for Fundamental Theory, University of

Florida, Gainesville, FL 32611.
&Electronic address: mahon@astro. ufl.edu
&Electronic address: hsmith@astro. ufi.edu

very close to the limiting n =
—,'.

In these experiments, each polytrope constituted a
difFerent random microscopic realization of a macroscop-
ic object constrained to have an initial radius Ra=1.0.
Four different experiments were performed, correspond-
ing to pairs of identical polytropes with polytropic in-
dices n =1, 2, 3, and 4. In each case, the two polytropes
were originally separated by a distance r =3. The initial
relative velocities were so chosen that„extrapolated to
when the two polytropes were infinitely far apart, their
relative velocity u„i =3u „with u, the rms velocity of
the particles within an individual polytrope.

The specified initial data were evolved forward in time
using a direct N-body code which solved the coupled
equations of motion for all 4000 particles. The particles
were assumed to interact via forces derived from a
softened two-body potential

with r,"=r, —r and E a softening parameter that
effectively legislates a minimum impact parameter for
close encounters. All the simulations involved the choice
@=10 2. Previous numerical experiments [6] showed
that this value is sufficiently large that, for the duration
of the run, the evolution should be essentially collision-
less. This duration was -(15-25)t„, where
t„=(r oI2 GN„,m)' denotes a characteristic dynami-
cal, or crossing, time for an individual polytrope, defined
in terms of the initial radius Ro = 1 and the initial particle
number N„,. The positions and velocities of each parti-
cle were recorded at fixed 0.5t„ intervals, and these data
then analyzed to extract the bulk statistical properties of
the system.

To test the overall reliability of the simulations, a
second simulation with n =2 was also effected, this corre-
sponding to a collision of two different microscopic reali-
zations of the macroscopic polytropes. This simulation
demonstrated that the principal conclusions derived from
the Srst n =2 simulation are repeatable.

In each of these simulations, the two initia1 polytropes
collided with one another without any exchange of parti-
cles, and then readjusted to new collisionless equilibria.
These collisions a11 entailed a substantial nonlinear defor-
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FIG. 1. (a) The binned radial distribution of particles for col-
1iding polytropes with index n =2. The plotted curves represent
means for the two different polytropes. Radius is measured rel-
ative to the center of mass of the individual con6gurations. (b)
The corresponding binned distribution of radial velocities for
particles at r ( 1, normalized as described in the text.

mation as the polytropes passed through each other.
This is, e.g., illustrated by the behavior of the total kinet-
ic energy of each object, as defined in its center of mass
frame. In each case, this kinetic energy increased overall
to a value at least —1.8 times as large as the original
value, the maximum value arising at or near the time of
maximal interpenetration, and then subsequently de-
creased. After the collision, the kinetic energies exhibit-
ed damped oscillations as the two objects evolved to-
wards new collisionless equilibria. In each case, those
final equilibria were characterized by a total kinetic ener-

gy approximately 0.73+0.03 times as large as that associ-
ated with the original polytropes.

The qualitative features of the evolution are also mani-
fest through the behavior of the moments of inertia for
the individual objects. During interpenetration, these
moments decreased slightly below their original values
but, after the collision, they subsequently evidenced an
enormous increase. This is a reQection of the fact that
the collisions caused portions of the original polytropes
to be ejected to distances »Ra=1 from the centers of
mass, so that the overall "size" of the objects increased
substantially. This increased size also explains the
aforementioned decrease in the kinetic energies.

Given the overall change in the moment of inertia, it is
clear that one cannot simply say that the original po-
lytropes evolved into another pair of polytropes. Howev-
er, there is a well-defined sense in which the final equili-
bria may be characterized as polytropes of identical in-
dices n surrounded by an extended halo.

Some of the data from the collision of two n =2 po-
lytropes are exhibited in Figs. 1(a) and 1(b). Figure 1(a)

shows a binned distribution of particle number as a func-
tion of r, the radial distance from the center of mass of
the evolved polytropes, at various instants of time, so
normalized that the most populated bin has a height of
unity. The original polytrope at t =0 is indicated by the
dashed curve, an intermediate state at t =6t„ is
represented by the dotted line, and the solid line
represents the distribution at a much later time, namely,
t =21t„. Each of these three curve is generated by con-
structing binned distributions for the two objects sepa-
rately, and then computing an arithmetic mean.

It is evident by inspection that, for small values of r, all
three distributions are very nearly identical. It is also evi-
dent that, for r &0.8 or so, the evolved distributions
differ appreciably from the original polytropes in a
fashion that is readily interpreted as a surrounding halo
attached to another polytrope with the same index n =2.
It is interesting to observe that, already at t =6t„, the ra-
dial distribution at r & 3 is essentially the same as the final
radial distribution at t =21t„.

Figure 1(b) illustrates the corresponding distributions
of radial velocities, again defined relative to the individu-
al centers of masses and averaged for the two evolved po-
lytropes. The dashed line shows the total distribution of
radial velocities for the initial polytropes, whereas the
solid line shows a suitably normalized distribution for the
particles located at distances r &1.0 from the centers of
mass at t =21t„. This "suitable normalization" involves
rescaling all of the velocities by an overall factor of
(N, &&/N„, )', where N„, =2000 and N„&& denotes the
number of particles situated at ~ &1. This is of course a
natural renormalization for a system in virial equilibrium,
given an assumption of near spherical symmetry, so that
the particles located at r & 1 have essentially no eff'ect no
particles at r & 1.

The solid and dashed curves in Fig. 1(b) are virtually
identical, this illustrating the fact that, for r (1, the late
time distribution of radial velocities assumes the form ap-
propriate for an n =2 polytrope with total particle num-
ber X„&,. The overall distribution of particle speeds at
time t =0 and 21t„, not illustrated here, are also essen-
tially identical. The dot-dashed curve represents the cor-
responding radial velocity distribution at t=6t„. Here
the overall agreement is somewhat less good, this a
re6ection of the fact that the system is still undergoing
substantial radial oscillations. In this connection, it
should also be noted that the radial distribution at
t=6t„agrees with the t=0 distribution somewhat less
well than does the t =21t„distribution.

Figures 1(a) and 1(b) do not provide a complete charac-
terization of the data, as they provide no information
about possible deviations from spherical symmetry. The
spatial and velocity distributions along the direction of
the collision can in principle be significantly different
along the orthogonal directions; and indeed, during the
collision, this is exactly what is observed. At t =1.0t„,
at or near the time of maximal interpenetration, the ve-
locity dispersions in the two orthogonal directions are
some 20%%ug larger than the velocity dispersion along the
direction of the encounter, but, by t =2.5t„, the situation
is reversed and the dispersion along the direction of the
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encounter is 20% larger than in the two orthogonal
directions. After this time, the configuration rapidly
becomes more symmetric, so that, after t=7.0t„, the
three orthogonal components of the dispersion typically
agree at the 2—4% leveL

Figure 2(a) illustrates the corresponding radial distri-
butions for the evolved n =1 polytropes at t =0 and late
times, and Figs. 3(a) and 4(a) the radial distribution for
the evolved n =3 and 4 polytropes. For these simula-
tions, it is again apparent that the final distributions at
small radii are virtually indistinguishable from the initial
polytropic distributions, but that, for larger radii, the late
time distributions merge into an extended halo. One in-

teresting feature to note, however, is that the transition
from polytrope to halo becomes substantially less abrupt
as n increases from 1 to 4.

This fact implies that, in order to efFect a detailed com-
parison of radial velocities in the initial and final

configurations, one must, at least for the n =3 and 4 po-
lytropes, restrict attention to smaller regions in r, where
the overall radial distributions coincide more completely.
For this reason, the distributions of radial velocities were
compared only over the regions r (0.5 for n =3 and
r &0.4 for n =4, regions which contained, respectively,
99% and 88% of the particles at t =0. The distributions
of radial velocities for these regions, normalized by analo-

gy with Fig. 1(b), are illustrated in Figs. 3(b) and 4(b).
Figure 2(b) exhibits the radial distributions for the initial
and evolved n =1 polytropes, including all the particles
at r & l. It is again evident by inspection that, for these
regions, the agreement between the initial and final veloc-
ity distributions is very good.
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FIG. 3. (a) The binned radial distribution of particles for col-
hding polytropes with index n =3, generated as in Fig. 1 (h) The
corresponding binned distribution of radial velocities for parti-
cles at r &0.5.

The bulk properties of the final states generated from
these simulations can be explained semiquantitatively by
using analytic techniques of the form exploited, e.g., by
Alladin and his collaborators [7]. Indeed, the simulations
of Miller and Smith [8] corroborate, at least approximate-
ly, Alladin s predicted orbital motion for a pair of collid-
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FIG. 2. (a) The binned radial distribution of particles for col-
liding polytropes with index n =1, generated as in Fig. 1. (b)
The corresponding binned distribution of radial velocities for
particles at r (1.
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FIG. 4. (a) The binned radial distribution of particles for col-
liding polytropes with index n =4, generated as in Fig. 1. (b)
The corresponding binned distribution of radial velocities for
particles at r &0.4.
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ing galaxies. However, there is nothing in such an
analysis which would explain the striking robustness of
the overall shape of the distribution that has been ob-
served in the simulations described in this paper.

The results of these simulations are consistent with the
fact [3] that the spherical polytropes are globally stable
equilibrium solutions to the collisionless Boltzmann equa-
tion, i.e., that they are global energy minima with respect
to perturbations that preserve all the phase space con-
straints associated with a collisionless evolution. Howev-
er, these simulations really describe something even
stronger. What one observes in these simulations is a col-
lision between two objects, initialized as polytropes,
which involves a strongly nonlinear deformation in which
a significant fraction of the total mass is expelled into an
outer halo. The crucial point then is that the remaining
particles in the inner region readjust themselves so as to
form a distribution which is again essentially polytropic,
albeit with a smaller particle number ¹ In other words,
one sees evidence also for stability towards perturbations
that change the total particle number. It should also be
stressed that this is true even though the central regions
of the evolved polytropes pass directly through one
another.

One final point is also worth noting: up to an overall
normalization, rejecting the decrease in particle number,

the central (quasi-) polytropes formed as a result of the
collision between the two initial polytropes have the same
configuration space density distributions as the initial po-
lytropes in absolute units. Thus, e.g., the density distri-
bution is maximized at the same value of r. However,
this is not the case for the velocity distributions, which
only agree after a renormalization of the overall velocity
scale. A complete macroscopic characterization of a po-
lytrope of some specified index n requires two inputs,
which can be taken as (I) the total particle number N and
(2) either the overall radial scale for the configuration, as
determined, e.g., by the value of r at which the distribu-
tion of number is maximized, or the overall velocity
scale, as determined, e.g., by the rms velocity. The
significant feature, then, is that the final (quasi-) po-
lytropes retain the initial radial scale, while readjusting
their overall velocity scale, rather than the other way
around.

The simulations reported here were effected using com-
puter time made available through the Research Comput-
ing Initiative at The Northeast Regional Data Center
(Florida) by arrangement with IBM. H.E.K. was sup-

ported in part by the NSF Grant No. PHY92-03333.
M.E.M. was supported by the University of Florida.
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