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We analyze the spectral properties of various quantum pseudointegrable billiards (rhombus, gnomon,
deltoid) and link them to the genus of the invariant surface of the corresponding classical model. Nu-

merical investigations of the quantum billiards are completed by an experimental study of microwave
resonators. Absorption spectra of microwaves in "L-shaped" resonators are measured and the distribu-
tions of eigenfrequencies are investigated.
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I. INTRODUCTION

Classical billiards are not only used for entertainment
but provide mathematicians and physicists with an in-

teresting realization of dynamical systems. The dynamics
of a particle bouncing on a plane between hard walls de-
pends in a characteristic way on the shape of the billiard.
Its motion in a rectangular or circular billiard is regular
and the system is integrable. However, if a circular obs-
tacle is put inside the rectangle (Sinai billiard) or if the
circle is transformed into a stadium (Bunimovich billiard)
the system becomes chaotic [1,2].

During the last decade quantum analogs of classical
billiards have also been studied. The problem is
equivalent to solving a stationary Schrodinger equation in
a two-dimensional potential well of infinite depth of the
shape of the billiard enclosure. The ergodicity of the
classical model manifests itself in the statistical properties
of the spectrum of the corresponding quantum system.
Whereas for integrable systems the Poisson distribution
of the level spacing statistics was found [3—5], the spectra
of the classically chaotic systems display level repulsion
and the Wigner statistics of level spacings [4,6—10].
Spectral fluctuations of the classically chaotic systems are
well described [11] by ensembles of random matrices.
Depending on the symmetry properties of the system the
orthogonal, unitary, or symplectic ensemble should be
used [12].

The difference between the integrable and chaotic clas-
sical systems can be easily seen if one investigates the
behavior of their trajectories in the phase space. The tra-
jectories of an integrable system are confined to an invari-
ant manifold which is topologically equivalent to a torus
(an object with genus g equal to unity), while the trajec-
tories of a chaotic system explore the whole available
phase space. There are also, however, dynamical systems
the phase space trajectories of which are bounded on in-
variant surfaces which are topologically equivalent to
multihandled spheres (objects with genus 2 & g ( ~ ).
These systems corresponding to finite genus are called
pseudointegrable [13—17].

From the quantum point of view the difference be-
tween the integrable and chaotic systems can be de-
scribed as follows: In the integrable case, because of the
existence of the classical invariant torus, a semiclassical
quantization is possible [Einstein-Brillouin-Keller (EBK)
method] [18]. For the integrable billiards this procedure
leads to quantum levels which exhibit level spacing statis-
tics according to the Poisson distribution. The chaotic
case is more complicated. The absence of an invariant
surface makes an EBK quantization impossible and the
quantum levels can be obtained by solving the corre-
sponding Schrodinger equation. A formulation of semi-
classical quantization conditions based on the classical
periodic orbits [19,20] has been improved only recently
by a novel technique of resuming its divergent series
[21—23].

Pseudointegrable systems feature two contradicting
properties, at first glance. From the classical point of
view these systems are not chaotic since they possess an
invariant surface. The complicated topological structure
of this surface makes, however, the EBK quantization
questionable. In addition, it is not clear at all to what ex-
tent the methods of periodic orbit quantization might be
suitable for this case [24,25]. On the other hand, the level
spacing distribution of pseudointegrable quantum sys-
tems is closer to the Wigner distribution, characteristic of
classically chaotic systems, than to the Poisson distribu-
tion.

Quantized versions of pseudointegrable billiards were
studied first by Richens and Berry [14]. They found a
level repulsion in spectrum of an L-shaped billiard, typi-
cal of classically chaotic systems. Recent numerical stud-
ies of a rhombus billiard [26—28] have confirmed this fact
and have shown that the results obtained for pseudoin-
tegrable systems differ significantly from the Wigner dis-
tribution. A nonzero probabi1ity of 1evel clustering was
found for one symmetry class of a rhombus bilhard by
Biswas and co-workers [26,27], but this observation was
based on rather small statistics containing less than 350
levels each. These results have not been observed by Shu-
do and Shimizu [28], who obtained for the same quantum
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system a statistics containing about 3000 levels and re-
ported a level repulsion.

An interesting work on pseudointegrable systems is
credited to Cheon and Cohen [29], who analyzed an ap-
proximation of the Sinai billiard constructed of N rectan-
gles. For a large number N they observed that the level
statistics become closer to the Wigner distribution. Since
this pseudointegrable system is characterized by a genus
equal to N, one might speculate that in the limit g~ 00

the level spacing distribution tends to the Gaussian-
orthogonal-ensemble (GOE) -like distribution, charac-
teristic of the classical chaotic systems possessing a gen-
eralized time-reversal symmetry [11]. However, in a re-
cent study of a billiard rhombus with the vertex angle not
commensurate with n (characterized by an infinite
genus), a discrepancy with respect to GOE distribution
was reported [28].

Pseudointegrable systems may also be constructed by
putting a singular, pointlike perturbation into a regular
billiard [30]. On the one hand, it is diflicult to find a
rigorous definition of the classical limit of this model (the
same holds true for its modified version [31]);on the oth-
er hand, the quantum calculations are usually easier than
for polygonal billiards [32]. Shigehara et al. have com-
puted 10 eigenvalues of this system and reported a linear
repulsion [33]. The obtained distribution of the level
spacings might be well approximated [34] by an ensemble
of additive random matrices [35-37]. The same ensem-
ble has been applied to explain preliminary results ob-
tained for an L-shaped billiard [38]. In spite of numerous
papers on the pseudointegrable quantum systems recently
published, several questions still remain open. It is not at
all clear whether the spectral properties of these quantum
systems depend on the energy, whether they are uniquely
determined by the genus g of the corresponding classical
phase space, or what the properties are of a classically
nonchaotic system with g ~ oo.

The aim of this paper is to present results concerning
the properties of pseudointegrable quantum billiards and
corresponding microwave cavities studied experimental-
ly. Since authors of previous papers on this subject have
presented difFerent, and often contradicting, opinions
concerning the properties of pseudointegrable quantum
billiards, we would like to verify some statements and for-
mulate more general hypotheses. To this end, we analyze
several different quantum billiards described by a free pa-
rameter, a change of which allows one to obtain a better
statistics.

For a numerical investigation we have selected three
different shapes of the billiard presented in Fig. 1:
rhombus, gnomon ("L-shaped" billiard), and deltoid
("kite"). The genus of the invariant manifold in the
phase space of a rhombus depends on the vertex angle y
and is finite for any angle commensurate with m. Choos-
ing an appropriate angle of the rhombus, one may find
several realizations of a simplest pseudointegrable sys-
tem, characterized by g =2. The two other models are
even more suitable for our purposes, since both enable a
construction of a one-parameter family of systems with a
constant value of the genus g. The symmetrical L-shaped
billiard might be described by the length of its arm a,
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FIG. 1. Pseudointegrable billiards of genus 2 studied: (a)

rhombus, (b) gnomon, (c) deltoid.

while the asymmetrical deltoid is parametrized by the an-

gle a, as can be seen in Fig. 1. Classical properties of
pseudointegrable billiards are briefiy reviewed in Sec. II
of this work.

The character of a quantum spectrum can be described

by the level spacing distribution P(s), which character-
izes the correlations between adjacent levels, and by the
spectral rigidity 53(L), which describes the long-range
correlations of the spectrum [10]. In Sec. III we present
an analysis of the dependence of both these quantities on
the energy and on the parameters p, a, and a for each
system, respectively.

A problem of describing a quantum particle bouncing
in a given two-dimensional billiard is closely related to
the classical system consisting of electromagnetic waves

propagating in a fiat resonator having the shape of the
billiard. Similarity between the Schrodinger equation,
describing the quantum billiard, and the Helmholtz wave
equation justifies a direct comparison of the results ob-
tained from microwave experiments [39-43] with the
quantum theory. The distribution of spacings between
adjacent eigenfrequencies of the resonator constructed in
a shape of the Sinai billiard agrees with the Wigner sur-
mise [39], but some deviations due to the bouncing-hall
mode have been reported [43]. The spacing distribution
of a rectangular microwave resonator, corresponding to
an integrable billiard, does not confer to the Poisson dis-
tribution [34]. Observed discrepancies can be explained
by the presence of a wire antenna used for transmitting
the microwaves to the system. This part of the experi-
mental apparatus plays the role of a point perturbation,
and the entire system can be associated with a singular
pseudointegrable billiard [30,32].

In Sec. IV we describe results of a microwave experi-
ment performed with the cavity- in the shape of asym-
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metric L-shaped billiards [44]. Note that due to the pres-
ence of the antenna in the cavity one should not expect a
coincidence of the measured eigenfrequencies with the
numerically computed levels of the corresponding quan-
turn billiard. On the other hand, a comparison of the re-
sults obtained for rectangular and L-shaped resonators
provides arguments supporting the observations obtained
by a numerical study of pseudointegrable quantum bil-
liards. %e conclude in Sec. V, summarizing our results
and presenting a list of open problems.

II. CLASSICAL PSEUDOINTEGRABLK
BILLIARDS

Let us focus our attention on the billiards with a polyg-
onal enclosure. A polygon billiard is called rational [13]
if all angles between sides of the polygon P are rational
multiples of m. The phase-space trajectories are then
con6ned to an invariant manifold R which is obtained by
unfolding the original billiard and identifying the oppo-
site sides. Let P be a rational polygon with vertex angles
en; /m;, i = 1, . . . , k and let M be the least common mul-

tiple of m;. The genus g of the corresponding object R is
then [14—16]

In the simplest case the integral of motion J is in an in-
volution with the Hamiltonian H,

IH, J j =0, (2)

where I j denotes the Poisson bracket. The topological
theorem of Arnold [49] then implies that the invariant
surface is equivalent to a two-dimensional torus (the sys-
tem is integrable). In the general case of a rational po-
lygon, however, the integral of motion J does not fulfil
the involution equation (2). Instead of this, the Poisson
bracket [H,J j is proportional to a sequence of 5 func-
tions which are localized on the "bad" vertices of the po-
lygon. At those points the geodesic flow of the billiard
becomes singular. As a consequence, the topological
theorem does not apply and the invariant surface has a
more complicated topological structure. In general the
bad vertices enhance the genus of the invariant surface as
described by formula (1).

From the quantum point of view the existence of the
singularities in the classical geodesical flow makes EBK
semiclassica1 quantization impossible. Moreover, the
overall structure of these singularities (they are localized
at isolated points) explain the similarity of the level statis-
tics obtained for pseudointegrable polygonal billiards and
for billiards with singular perturbations [30,32].

One immediately sees that g equals unity for bi11iards
having the shape of a rectangle, equilateral triangle, or of
triangles with vertex angles equal to m /3, n /2, n /6 and to
m. /2, m. /4, m. /4. Polygon 8 has in these cases the shape of
a rectangle, parallelogram, or regular hexagon, respec-
tively, and is (after identification of the opposite sides) to-
pologically equivalent to a torus. These billiards are inte-
grable [45]. It is worth noting at this point that only for
these polygonal billiards one can solve exactly the corre-
sponding Helmholtz equation [46,47].

The simplest pseudointegrable billiards are character-
ized by the genus g equal to 2. A billiard with an L-

shaped enclosure belongs to this class. Many other exam-
ples are known: a rhombus with vertex angle equal to
m. /3, or, in general, a n/3 parallelo. gram, deltoids with
angles (n/3, m/2, 2m. /3, n/2) a.nd (n. /4, m/2, 3n/4, m/4), .
or isoscelaneous triangles (~/6, 2m. /6, ir/6) and
( n. /5, 3~/5, ir/5 ).

The genus 3 is characteristic for the m/4 parallelogram
or for a billiard containing three rectangular steps (an ad-
ditional "step" added to the gnomon). Moreover, in ac-
cordance with Eq. (1), the rhombus with vertex angle
equal to m/(%+1) or the X-step rectangular staircase
correspond to manifolds of genus g =¹Examples of bi1-
liards corresponding to each finite genus are therefore
known.

The pseudointegrable billiards are not ergodic since the
phase-space trajectories of those systems are confined on
two-dimensional invariant manifolds. The existence of
such a manifold indicates the existence of an additive in-
tegral of motion J (besides the Hamiltonian). However, it
is diScult to distinguish empirically the classical trajecto-
ry in the pseudointegrable billiards from that in chaotic
billiards with a positive Lyapunov exponent [48].

III. QUANTUM PSEUDOINTEGRABLE
BILLIARDS

A quantum billiard is a simple quantum-mechanical
model consisting of a point particle moving in the two-
dimensional infinite potential wel1

0, [xyjEQ
V x

, I,yjen, (3)

where the compact set 0 is determined by the shape of
the classical bil1iard BQ. Analysis of the quantum model
is based on solving the stationary Schrodinger equation,
which in this case reduces to the Helmholtz equation

( V' +k )g(x,y) =0,
conditionDirichlet boundarywith the

q(x,y) =O~(, y)~so.
The above equation may be solved analytically for inte-

grable billiards only [46,47]. Studying pseudointegrable
billiards, we have to rely on numerical solutions of Eq.
(4), which were performed according to the numerical
technique described by Rieddel [50] and applied in other
papers [4,14,46].

Let [Eo,E&,E2, . . . j denote the infinite sequence of
the eigenvalues and [ Po, P, , $2, . . . j the corresponding se-

quence of the eigenfunctions of Eq. (4). According to the
Weyl formula [51], the mean spacing between levels of
the quantum billiard s=(E, +, E; ) is in the first—ap-
proximation inversely proportional to the area of the bil-
liard Q. Further corrections to this formula take into ac-
count the specific features of the billiards enclosure, like
corners and edges [51]. We have used the Weyl formula
to check the accuracy of numerical computations and to
estimate the percentage of eigenvalues missing. For each
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P (s) s~e —s n/42

W (5)

The distribution

P (s}=(1+q)C(q)s~exp[ —C(q)s'+~], (6)

with C(q)=II [(2+q)/(I+q)]]'+~, was proposed by
Brody [52] without any physical arguments, but seems to
describe quantitatively spectral properties of several
quantum systems. Another phenomenological distribu-
tion has recently been proposed by Izrailev [53,54],

P&(s)= As ~( 1+sBP)j'~'ex p
—m. ps ——(2—P)s

16 4

where

2i' 1 — /2f (P ) = —0.168 74,

(7)

and the constants A and 8 are determined by the normal-
ization conditions. The usefulness of the above distribu-

quantum system, we obtained about 3000 levels, and the
error of less than 2%%uo did not affect seriously the statisti-
cal properties of the spectra described by the level spac-
ing distribution P (s}and the spectral rigidity h&(L) [12].

We solved nuitierically the Helmholtz equation (4) for
pseudointegrable polygonal billiards presented in Fig. 1:
rhombus, gnomon, and deltoid. Statistical properties of
the quantum spectra should be studied separately for
each parity class. For a rhombus billiard with the vertex
angle 2y the odd-odd class was considered, which is
equivalent to the right triangle billiard with the vertex
angle y. %e have chosen billiards defined by angles

y2, =m. /5, y22=n/10, and yz3=m/8, .which are charac-
terized by genus g =2. The same genus corresponds to
the L-shaped billiards. We studied the odd-parity class of
symmetric billiards constructed from the unity square by
excluding a corner square of length a (1 (see Fig. 1) and
took a =0.1,0.2,0.3,0.4,0.5. As examples of another
class of genus 2 systems, we examined "kite" billiards
defined by irrational angles a i

=m ( &2—1 ) /4,
a2=n(&3 —1)/4, and a&=m(&5 —1)/2. Right triangle
billiards defined by angles y» =m /14, qriz=n /7,
Ip33 3m. /14, and A&4= m. /12 were analyzed as representa-
tives, of systems of genus 3.

Careful analysis of the data obtained for several sys-
tems belonging to different classes confirms the following
hypothesis: (i) statistical properties of spectra of quan-
tized pseudointegrable systems depend on the energy only
very weakly, (ii) spacing distribution exhibits level repul-
sion, (iii) level spacing distributions characteristic of all
genus 2 systems are neither Poisson nor Wigner, and (iv)
statistical properties of systems of higher genus are closer
to those predicted by random matrices and characteristic
of classically chaotic billiards. In order to describe ob-
tained histograms of level spacing P(s) in a quantitative
way, it is natural to fit data to distributions interpolating
between Poisson distribution Pp(s)=e and the Wigner
surmise

tion has been demonstrated on the model of band random
matrices [55]. Another distribution based on the model
of additive random matrices has been proposed by Lenz
and Haake [36],

su (A, )P„(s)= exp
—u(A, ) s

4A,

2p~i sou (A, )
e 0 S ~

0

where u(A, )=&n.U( —1/2, 0, A, ), Io(x) stands for the
modified Bessel function, and U(a, c,x) denotes the Tri-
comi function [56]. This formula was rigorously derived
for 2X2 random matrices, but gives a good approxima-
tion to the statistics for arbitrary large matrices [37]. For
q =p=A, =O all three above formulas reduce to the Pois-
son distribution while the GOE distribution is approxi-
mated for q =p= 1 or in the limit A.—+ 0o.

The distribution of Berry and Robnik [57] is obviously
not adequate for our case, since [because of P(0))0] it
does not portray the observed feature of level repulsion
(iii). This property is guaranteed by the distributions
(6)—(8). In order to measure the quality of the fit we used
the y test for each of the above distributions. Working
with about 3000 levels for each system we made histo-
grams consisting of 30 bins. Following the standard pro-
cedure we have not taken into account bins for which the
number of events expected according to the distribution
analyzed is smaller than 7, so the number of degrees of
freedom v is equal to 27, 28, or 29, depending on the set
of numerical data and the distribution. The quality of the
fit is characterized by the normalized sum of squared de-
viations g and the confidence level c =log, o[Q (g) ]. Pa-
rameters characterizing the level spacing distribution of
spectra of pseudointegrable billiards are collected in
Table I.

Results of the fitting procedure demonstrate that none
of the above distributions passes the y test satisfactorily
(confidence level of order 10 "—10 '3). On the other
hand, each distribution (6)-(8) gives an approximation to
the results obtained for pseudointegrable quantum bil-
liards, and the values of the best fit might be applied to
characterize the statistics quantitatively. The simple
Brody distribution (6) often gives a better fit than the
more sophisticated distribution (7), while in some cases
the best fit is provided by the random-matrix distribution
(8). Since this distribution was definitely the best in
describing spectra of the billiard with a point interaction
[32,34], we have chosen it to characterize the obtained
distributions by the parameter A, .

The relatively low confidence level Q, which character-
izes the quality of the fits, influences the accuracy of the
value of the parameter A. obtained in fitting. Observe that
the genus 3 systems are described in higher values of the
parameter A, than the systems characterized by genus 2,
and are therefore closer to the GOB distribution. The
only exception is the m. /12 rhombus. All the values of
the fitting parameters obtained for this billiard (with a
significantly smaller confidence level) are much lower
than those characteristic of other genus 3 systems. This
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TABLE I. Parameters characterizing spectra of quantum pseudointegrable billiards: (a) quarter of
rhombus with vertex 2y; (b) ~/3 deltoids with angle a; and (c) "L-shaped" billiards parametrized by the
side length a. Best-fit values and the levels of confidence are presented for the Lenz-Haake (8), Brody
(6), and Izrailev (7) distributions.

System

parameter

Genus Lenz Haake Brody

c(k)
Izrailev

c{b)

g =a/10
y= ~/8
q=v/5

y= vr/14

(p =~/12
g= m. /7

q = 3n. /14

a=&2—1

a=&3—1

a=2&5-2

a =0. 1

a =0.2
a =0.3

a =0.4
a =0.5

0.62
0.53
0.57

0.75
0.43
0.81
0.66

0.47
0.41
0.41

0.41
0.51
0.53
0.51
0.39

—3.8
—3.5
—3.7

—3.6
—11.5
—1.7
—1.6

—5.5
—5.0
—5.2

—5.9
—4.6
—6.1

—2.7
—12.5

0.72
0.67
0.70

0.78
0.57
0.80
0.73

0.60
0.59
0.55

0.54
0.65
0.62
0.63
0.48

—3.2
—4.5
—4.2

—2.0
—4.2
—0.8
—1.5

—1.0
—1 ' 2
—4.9

—11.1
—5.9
—9.3
—49

—10.1

0.70
0.65
0.68

0.78
0.53
0.80
0.71

0.57
0.57
0.51

0.51
0.62
0.59
0.61
0.42

—4.0
—4.5
—4.8

—2.1
—5.2
—09
—1.7

—2.1
—1,9
—7.2

—12.5
—7.4

—10.8
—7.2

—10.7

b,3(L)= ln(L) —y,2
(9)

where the constant y=0.00695. Figure 3 presents the
spectral rigidity for a pseudointegrable billiard, while the
dashed line denotes the Poisson-like spectrum and the
solid line the GOE-type spectrum (9). Note that the rigi-
dity 63(L) is similar to all the systems of genus 2 and 3,
respectively, at least for I. of the order of 20. For larger
values of L the properties of the corresponding classical
billiards, including the variety of the system-specific
periodic orbits, influence the fluctuations of the spectra
[58], and the spectral rigidity of different systems with
the same genus begins to di6'er. Spectra of genus 3 sys-

peculiar behavior of this system has already been report-
ed in [28], but still awaits an explanation.

In addition, the spectra of various genus 2 systems are
not described by the same values of the fitting parame-
ters. It is not yet clear whether these differences are sta-
tistically signi6cant and denote different spectral proper-
ties of systems with the same genus, or alternatively,
whether they are caused by not sufficiently large statistics
of levels or by the lack of an exact interpolating formula.
Though we have demonstrated that the genus of the clas-
sical phase space is an important factor influencing the
statistical properties of the quantized systems, it is not
possible to conclude at this stage that for each genus
universal distributions of eigenlevels exist. Exemplary
statistics of quantum billiards characterized by genus 2

and 3 are presented in Fig. 2.
Complementary information concerning the statistical

properties of spectra might be obtained by a study of the
spectral rigidity b,3(L). This quantity measures the
correlation of the spectrum at the distance L. It is
known that for the Poissonian spectra rigidity increases
linearly, b,3=L/15, while for the GOE a logarithmic law
(valid for L ) 1) has been found [12],

tems are more rigid than those obtained for g =2, and
thus closer to the formula (9). On the other hand, in the
whole range of L there exists a significant difference be-
tween the rigidity of the pseudointegrable systems and
those of GOE, typical of classically chaotic systems. This
observation does not contradict recent results of Biswas
and Sinha [25], who tried to show a link between the
genus of the classical phase space and long-range correla-
tions of the quantum spectra.

IV. MICROWAVE EXPERIMENT
IN AN L-SHAPED RESONATOR

Measuring the reflection spectra of microwave cavities
yields information about the spectrum of the correspond-
ing quantum billiard [39]. The presence of the antenna in

the experimental apparatus [34] and the finite resolution
of the measurement limit the obtained accuracy, but it is

relatively easy to get larger numbers of eigenfrequencies
than in the case of time-consuming numerical calcula-
tions involving diagonalizations of large matrices. The
microwave resonator might be thus treated as an analog
computer providing an alternative way to get comple-
mentary information on the corresponding quantum sys-

tem. %e have decided, therefore, to accomplish mi-

crowave experiments using cavities of the shape of pseu-
dointegrable billiards.

The experimental apparatus used is analogous to that
described in Ref. [34]. The system consists of an L-

shaped resonator coupled to the power source by a mi-

crowave cable (see Fig. 5). The microwaves were excited

by a thin wire antenna perpendicular to the top and bot-
tom face of the cavity, these faces being parallel to each
other with a distance of d =8 rnm. The reflection of the
microwaves was measured as a function of frequency.
Each reflection minimum obtained corresponded to an

eigenfrequency of the resonator. In order to increase the
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amount of available data we repeated measurements for
different values of the sides of the resonator a and b (see
Fig. 4). The lengths a and b were in the range from 80 to
280 mm. The position of the antenna was fixed for each
resonator (x, =30,y, =80, . . . , 120 mm).

The frequency of microwaves v was scanned in the
range 0.5-18 GHz, and depending on the area of the
resonator, each spectrum contained 200 to 600 eigenfre-
quencies. A comparison with the Weyl formula showed
that the total experimental loss was of the order of 25%%uo.

This rather large loss had two causes. A correlated loss
results from the fact that the finite resolution of the ex-
perimental limits the smallest resolvable distance to
several MHz. Second, a resonance cannot be exited if the
position of the antenna coincides with a node line. This
leads to an uncorrelated loss. From the fact that in Sinai
billiards (where because of the level repulsion the corre-
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FIG. 2. Level spacing distribution evaluated numerically for
genus 2 billiards: (a) deltoid with a=v2 —1, )(,=0.47; (b) L-

shaped billiard with a =0.4, A, =O. 51 and a genus 3 billiard; and
(c) a quarter of a y= m/14 rhombus, A, =O.75. The dotted curve
represents the Wigner surmise.

FIG. 3. Spectral rigidity obtained numerically for (a) genus 2
billiards, deltoid with a=v (2)—1(o), L-shaped billiard with

a =0.2(4), quarter of a y=m/5 rhombus ( X ); and (b) genus 3
billiards, quarter of a y=m/14(O) and p=~/7( X ) rhombus.
Dashed line represents the Poisson spectrum and the solid line
the GOE-like spectrum.
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In order to analyze the spacing distribution of mea-
sured frequencies, we applied the standard technique of
spectral unfolding [52] separately for each resonator.
Since the coupling of the antenna with the system grows
with frequency [34], we collected the data separately for
difFerent energy ranges. Figure 5 presents the experimen-
tal data obtained (a) for 5 GHz & v (10 GHz and (b) for
15 GHz&v(18 GHz. The best fits with distribution (8}

P (s)
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7

/

—/

0.0
S

FIG. 5. Comparison of the level spacing distribution ob-
tained experimentally for L-shaped resonators (bold lines) and
rectangular resonators (faint lines) and the frequency range (a) 5

GHz & v (.10 GHz, and (b) 15 GHz & v ( 18 6Hz.

FIG. 4. Scheme of the experimental apparatus. The mi-

crowaves are irradiated via a copper wire (diameter d=0. 5

mm) into an L-shaped cavity; (x„y, ) describes the position of
this wire. The lengths of the sides a and b were varied. (For di-

mensions, see text. ) The refiected microwave power is regis-
tered by means of a scalar network analyzer.

FIG. 6. Level spacing distribution collected from 102 L-

shaped resonators of different sizes in the frequency range (b) 10
GHz(v&14 GHz. Solid line represents the distribution (8)

with A, =0.68 and the dashed line the Wigner distribution.

are represented by bold lines. In order to facilitate a
direct comparison, the results received for the rectangu-
lar resonators [34] are superimposed in the figure and

represented by faint lines. As expected, the results ob-
tained for pseudointegrable L-shaped resonators are
closer to the Wigner distribution. The difFerence between
the two cases studied is evident for small frequencies [see
Fig. 5(a}] and becomes less significant for larger frequen-

cy [Fig. 5(b)]. In this regime the coupling of the antenna
with the cavity is so large that the rectangular resonator
also displays features typical of pseudointegrable billiards

[34]. In the case of L-shaped cavities the pseudointegra-
bility is connected with the shape of the resonator and
the inhuence of the antenna for the results is smaHer.
This explains smaller changes of the level spacing distri-
bution of L-shaped resonators with frequency.

Measured spectra are characterized by the parameter A,

obtained in the process of fitting the distribution (8) to
the data analyzed. Figure 6 shows the experimental re-

sults for the frequency range 10 GHz&v(15 GHz.
Values of the parameter A, are equal to 0.62, 0.68, and
0.75 for the frequency ranges limited by 10, 15, and 18
GHz, respectively. The confidence level Q was of the or-
der of 10 —10 in each case. Corresponding values for
the rectangular resonators are 0.19, 0.34, and 0.58. Com-
parison of these numbers allows us to conclude that (a}
the spectra of L-shaped resonators are closer to the GOE
than the spectra of rectangular resonators, (b) the proper-
ties of the spectra of L-shaped resonators depend only

weakly on the frequency, and (c} due to presence of the
antenna in the experimental apparatus, the spectral prop-
erties of rectangular and L-shaped resonators become
similar for large frequencies.

V. CONCLUDING REMARKS

Numerical investigations of pseudointegrable quantum
billiards allow us to conclude that the statistical proper-
ties of the spectra are neither described by the Poisson
distribution nor the Wigner distribution. In contrast to
integrable systems the analyzed spectra display a clear
level repulsion. On the other hand, its character is
different in comparison with the classically chaotic sys-
tems. This result suggests that the statistical properties
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of quantized spectra are a good measure to judge, wheth-
er or not the underlying classical dynamics is chaotic and
described by a positive Lyapunov exponent.

None of the known families of the distributions inter-
polating between P'oisson and the GOE distribution can
be considered as exact for the pseudointegrable systems.
Random-matrix distribution (8) can be used, however, to
parametrize the properties of the spectrum. Parameter A,

might be interpreted as a measure of an efFective coupling
of the "chaotic" contribution to the integrable system
due to presence of the singularities in the classically regu-
lar geodesic flow.

Level statistics and the spectral rigidity of pseudoin-
tegrable billiards are dependent on the genus of the mani-
fold corresponding to the classical phase space. Howev-
er, based on all the numerical data collected, we cannot
state that statistical properties of quantum spectra are
deternuned uniquely by the genus g. Further analysis of
other polygonal billiards is needed to find definite evi-
dence proving this hypothesis.

Numerical results concerning the properties of spectra
of pseudointegrable quantum billiards are additionally
supported by results of a microwave experiment with L-

shaped cavities. There exist two independent sources of
pseudointegrability in this case: the 3rr/2 corner of the
microwave resonator and the wire antenna being a part of

the measurement device. The infiuence of the antenna in-

creases with the frequency of microwaves. The observed
frequency dependence of the A, parameters for the mi-

crowave L-shaped resonators shows that the effective
genus increases with the frequency from 2 to 3. An
analogous behavior was also found for the rectangular
resonators [34]. The experiments show that the statisti-
cal properties of spectra of L-shaped resonators do not
depend on the frequency so strongly as the spectra of the
rectangular resonator.
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