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This paper summarizes an investigation of the statistical properties of stochastic orbits in one fixed,

time-independent potential, namely, the sixth order truncation of the Toda lattice potential, with the aim

of identifying a meaningful notion of "relaxation, " and then of correlating this relaxation with the
overall stochasticity of the orbits. For variable energies E, localized ensembles of initial conditions were

constructed and the subsequent evolution of these initial data then computed numerically. One discov-

ers thereby that, at least above a critical energy Eo, most ensembles of stochastic orbits exhibit a rapid
evolution, exponential in time, towards a time-independent invariant distribution, not microcanonical,
the form of which is independent of the choice of the initial ensemble. Moreover, for fixed energy E, the

decay rate A associated with this exponential approach is independent of the size or location of the

phase space region probed by the initial ensemble. This approach towards an invariant measure corre-
lates directly with the sensitive dependence on initial conditions exhibited by the stochastic orbits: A
small initial perturbation of the ensemble grows exponentially in time at a rate k which depends only on

the energy E and, within statistical uncertainties, the ratio A(E) IA,(E) is independent of E. The fact that
an initial ensemble of orbits evolves towards an invariant measure suggests that Lyapunov exponents

computed for individual orbits should also have a physical meaning in terms of the shorter time evolu-

tion of ensembles of orbits. This intuition is corroborated by calculations that show that, in a well-

defined sense, Lyapunov exponents y(E) characterize the "average" instability of ensembles of orbits
that sample the invariant measure.

PACS number(s): 05.90.+m, 51.10.+y, 98.10.+z

I. INTRODUCTION

The research summarized herein has three principal
aims, namely, (1) to formulate a simple statistical charac-
terization of the short time evolution of a Hamiltonian
system which evidences a considerable degree of stochas-
ticity but is not completely ergodic; (2) to identify and
quantify a notion of "relaxation towards a statistical
(quasi) equilibrium" which is both physically useful and
mathematically meaningful; and (3) to establish a direct
correlation between this "relaxation" and the stochastic
properties of the orbits.

The authors are especially interested in applications to
astronomical systems, such as galaxies„where one is con-
cerned with the orbits of individual stars, idealized as
point masses, in the average gravitational potential asso-
ciated with the overall distribution of mass. Such appli-
cations are interesting methodologically because of the
fact that the characteristic time scales of interest can be
extremely long. Thus, for example, the typical orbital
period, t„,for stars like the Sun in a galaxy like the
Milky Way is of order 2X 10 yr [1].

This implies that, if one focuses on a single stochastic
orbit and computes a Lyapunov exponent, y, in the stan-
dard way, as the t ~~ limit of Lyapunov characteristic
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numbers y(t) [2], she will typically be forced as a practi-
cal matter to integrate over periods of time that are or-
ders of magnitude longer than tH, the age of the Universe

[3]. From the viewpoint of the nonlinear dynamicist, the
evolution of orbits over time scales ~ tH involves short-
term, transient behavior.

If the Hamiltonian system of interest is completely in-
tegrable, it is of course possible to provide a complete
characterization of orbits in the potential, since the evo-
lution is restricted simply to lower-dimensional hypersur-
faces [4]. If the system is nonintegrable, this is no longer
exactly so. Nevertheless, if most of the orbits are regular,
as will be true for "nearly integrable" systems, there still
exist various techniques which can be used to analyze and
characterize the orbits, such as approximate integrals of
the motion, classifications of the orbital types, and vari-
ous spectral techniques [5].

However, if a substantial fraction of the orbits are sto-
chastic, with positive Lyapunov exponents, these tech-
niques are no longer applicable; and, moreover, there ex-
ists a sensitive dependence on initial conditions which
renders a strictly deterministic analysis less obviously
meaningful: As a practical matter, this exponential sensi-
tivity implies that an experimentalist or observer cannot
determine initial conditions with such precision as to jus-
tify a detailed deterministic evolution over even
moderately long time scales; and, even if she could do so,
it would not be possible, because of round-off error, etc.,
to generate numerically an accurate pointwise representa-
tion of the actual trajectory [6] (even though one might
hope to justify numerical calculations in terms of some
sort of "shadowing" argument [7]).
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Suppose, for specificity, that one is interested in motion
in a potential so chosen that the orbits are restricted to a
compact phase space region, e.g., because V is bounded
from below and diverges as ~r~~~. In this case, one
might expect physically that, if the orbits are stochastic,
so that two nearby trajectories typically diverge exponen-
tially, they will tend quickly to "run all over" the accessi-
ble phase space on a time scale ~ related somehow to the
time scale on which nearby trajectories diverge. This
"accessible phase space" might be the entire constant en-

ergy surface, or it might instead be a smaller region in
which the orbits are confined by some additional con-
straints. These constraints could be either exact con-
straints, associated, for example, with invariant tori, or,
alternatively, approximate constraints associated with
Cantori through which orbits can "leak" only on time
scales much longer than those of physical interest.

If one specifies some localized ensemble of initial con-
ditions, and evolves these initial data into the future,
there is no reason a priori to expect that, because of the
coexistence of regular and stochastic regions, the ensem-
ble will eventually evolve towards a uniform population
of the constant energy surface, i.e., towards a micro-
canonical distribution. However, one might nevertheless
expect that, at late times, different initial ensembles of
stochastic orbits will, if they all have access to the same
phase space region, tend, at least statistically, to sample
the accessible phase space in a fashion that is indepen-
dent of initial conditions. In other words, one might anti-
cipate an evolution towards a time-independent invariant
measure.

This possibility impacts directly on a problem of sub-
stantial interest for the gravitational N-body problem
[8,9]. On the one hand, numerical simulations have
shown that, when viewed in the many-particle phase
space, the E-body problem is exponentially unstable to-
wards small changes in initial conditions on a time scale
comparable to a typical crossing time, t„[10].On the
other hand, simulations have also shown that, given gen-
eric initial data, an X-body system will typically evolve
towards a statistical quasiequilibrium, in which bulk
properties evidence only small variability, on the same
time scale t„[11].A critical question which one would
like to answer is, can one demonstrate a precise sense in
which this "relaxation" towards a statistical quasiequili-
brium is directly related to the stochasticity of the orbits;
i.e., to the exponential sensitivity.

In the preceding discussion, the notion of an invariant
measure can be understood in two different contexts.
More fundamentally, one can visualize a completely
rigorous evolution towards an invariant measure which
obtains exactly in the t~00 limit. However, one can
also visualize a heuristic notion of an '*approximate" in-
variant measure, which may prove more useful for under-
standing evolution on shorter time scales. Suppose, for
example, that one is interested in physical processes that
are relevant on time scales —tH. It would then be
significant if, on a time scale « tH, generic initial data
were to exhibit an evolution towards a near-invariant
measure which, albeit not strictly time independent, only
evidences time-dependent changes on a time scale && tH.

There is substantial numerical evidence that precisely
this situation obtains for the gravitational X-body prob-
lem. Specifically, although numerical simulations exhibit
an evolution towards a time-independent quasiequilibri-
um on a time scale -t„«tH, they also indicate that this
quasiequilibrium is not a true equilibrium, and that, if
one waits long enough (t » tH), one will eventually see
further evolutionary effects.

The aim of this paper is to address the problem of pro-
viding a short time statistical characterization of stochas-
tic orbits and the problem of ascertaining whether, in the
aforementioned sense, "relaxation" and stochasticity can
be related. This will be done by answering several con-
crete questions about stochastic orbits in one particular
model potential, namely, the sixth order truncation of the
Toda lattice [12]. The focus here is not on asymptotic
properties appropriate in a t~ ~ limit. Rather, atten-
tion will be restricted primarily to the properties of orbits
over times t &100, this particular time interval corre-
sponding in "physical" units to an astronomically
relevant time scale tH.

(1) For different localized ensembles of initial condi-
tions, each corresponding to stochastic orbits, is there an
approach towards an invariant measure, the form of
which is independent of the specific choice of initial en-
semble? As described below, the answer to this is yes.
Moreover, the characteristic time scale r associated with
the approach towards the invariant measure is short. In
"physical" units, typically 7 (& tH.

(2) For fixed energy E, is the time scale r associated
with this approach independent of the choice of initial
conditions? The answer to this is a qualified yes. At rela-
tively high energies, most initial ensembles evolve ex-
ponentially towards the invariant measure on the same
time scale ~, but there are some exceptional ensembles in
which the approach is somewhat slower. Moreover, as
the energy decreases, and the overall proportion of sto-
chastic orbits decreases [13], the relative abundance of
these "exceptions" increases.

(3) Is the approach towards such an invariant measure
exponential in time t or is it instead given as a power law
in t? The answer here is that, for a broad range of ener-
gies E, the approach is exponential and, moreover, that
the convergence rate A(E) is well fit as a linear function
of E, i.e., A(E) = A +BE, for positive constants A and B.
Especially in view of the aforementioned "exceptions, " it
is not clear whether there is a sense in which this general
scaling persists for stochastic orbits at all energies, or
whether, instead, it breaks down below some critical en-
ergy Eo.

(4) To what extent does this approach towards an in-
variant measure reAect the sensitive dependence on initial
conditions? In particular, is there a simple correlation
between (a) the time scale associated with the approach
towards an invariant measure and (b) the time scale asso-
ciated with the sensitive dependence on initial conditions,
as probed, e.g. , by the rate at which a small initial pertur-
bation of the ensemble grows? Here again the answer is
yes.

Suppose that each initial condition in an ensemble of
initial conditions in a stochastic region is subjected to
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some small perturbation in position and/or momentum,
and the total configuration and momentum space pertur-
bations for the ensemble,

Ar = g (5x,. +5y, )'~

gp —y (5p2 +5 2 )1/2 (1.2)

are tracked as functions of time. One then concludes (a)

that, until they become macroscopic, b,r and hp grow ex-

ponentially, at a rate that is, for fixed energy E, indepen-

dent of the initial ensemble and the choice of initial per-
turbation; (b) that the growth rate A, is also well fit by a
linear relation A, (E)=a+bE; and (c) that, within statisti-
cal uncertainties, the ratio A/A, is approximately con-
stant, independent of energy. There is a direct one-to-one
correlation between the rate at which nearby ensembles
diverge and the rate at which generic ensembles evolve
towards an invariant measure. Similar correlations also
exist between A and other measures of the sensitive
dependence on initial conditions, such as the Lyapunov
exponent.

It is very convenient mathematically to characterize
the overall exponential instability of stochastic orbits by
computing a Lyapunov exponent, y. However, as ob-
served already, the usual construction via a t —+ 00 limit is
arguably unphysical for problems of astronomical in-
terest in the sense that it entails following orbits for times
that are much longer than tH, the age of the Universe. It
is more natural physically to consider a large number of
orbits but only follow their evolution for time scales & tH.

Fortunately, the fact that localized ensembles evolve
exponentially towards an invariant measure on a relative-
ly short time scale suggests a natural algorithm for es-
timating a Lyapunov exponent without studying indivi-
dual orbits for extremely long times. The critical point is
that, because the invariant measure is (at least approxi-
mately} time independent, the statistical properties of a
single stochastic orbit, as evaluated over extremely long
time scales, should coincide with the statistical properties
of an ensemble of orbits, analyzed over shorter time
scales, provided that the initial ensemble is selected with a
phase space weighting determined by the invariant mea
sure. The equivalence of temporal and phase space aver-
ages follows from Birkhoff's ergodic theorem [14] for a
true invariant measure.

To compute a shorter time estimate of the Lyapunov
exponent, all that one need do is generate initial condi-
tions by sampling the invariant measure, compute shorter
time Lyapunov characteristic numbers g(t), and then
construct an appropriate average. What this implies is
that the Lyapunov exponent has a physical meaning even
on relatively short time scales, by providing a precise
characterization of the average instability of "random"
orbits that sample the invariant measure. Finite time
Lyapunov characteristic numbers have already been con-
sidered in other, related contexts by a number of different
workers [15],and it has been shown that they can provide
useful insights into various problems of physical interest
[16],including fluid mechanics and plasma physics.

Section II of this paper provides a description of the
experiments that were performed, and the fashion in
which the data were analyzed. Section III then summa-
rizes the results derived from the simulations involving
the approach towards an invariant measure. Section IV
summarizes the results of experiments in which small
perturbations were introduced into the initial ensembles,
demonstrating in particular how the total growth rates
A,(E) correlate with the decay rates A(E) associated with
the exponential approach towards an invariant measure.
Section V concludes by showing that, in a precise sense,
the standard Lyapunov exponents do indeed provide in-
formation about the "average" rate at which nearby tra-
jectories diverge on relatively short, and hence physically
relevant, time scales.

II. A DESCRIPTION OF THE SIMULATIONS

+exp[ —2~3x +2y]

+exp( —4y) ]
—

—,', (2.1)

where Ix,p„]and Iy,p ] represent conjugate pairs. The
sixth order approximation, obtained by realizing the po-
tential V(x,y) as a Taylor series in x and y and then trun-

cating at sixth order, involves a Hamiltonian

H = ,'(p„+p )+ V—(x,y),
where

(2.2)

V(x,y)= —,'(x +y }+xy —
—,'y +—,'x +x y + —,'y

+x y+ —', x y —
—,'y +—,'x +x y

+—'xy +—"y
3 45 (2.3)

Unlike the exact Toda Hamiltonian, this H defines a
system which is not integrable and which, for energies
above E=0.80, admits stochastic orbits with positive
Lyapunov exponent [13]. For energies between E =0.80
and 24, the relative proportion of stochastic orbits in-
creases rapidly to approximately 80%, but, for larger en-

ergies, the fraction of stochastic orbits becomes a much
more slowly increasing function of E (cf. Fig. 12 in Ref.
[13]).

For different values of energy between E=5 and 75,
surfaces of section were generated, plotting y and p„at
successive points where randomly chosen orbits pass
through the value x =0. This is a useful choice of section
because the potential (2.3) is symmetric under a reflection
x ~—x, so that each orbit must periodically intersect the
x=0 hyperplane. These surfaces of section were then
used to identify initial data corresponding to stochastic
orbits. Specifically, ensembles of stochastic orbits were
generated by (a) uniformly sampling a rectangle in the
[y,p ] plane which corresponds to stochastic orbits with
x =0, and then (b} computing for each choice of y and p„

The exact Toda lattice Hamiltonian, which corre-
sponds to an integrable system with two degrees of free-
dom [12],is of the form

H= —,'(p„+p )+ —,', [exp[2&3x+2y)
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a value for p„,assumed non-negative, by demanding that
the orbit have the specified energy E, i.e., selecting phase
space coordinates [O,y,p,p I with

p. —= + [2[E—V(0,y)) —p,'I '" (2.4)

Most of the orbit integrations involved ensembles
comprised of 400 orbits. However, several integrations
involved 1600 orbits and, in one case, 3200 orbits were
considered. In absolute units, the total time over which
the orbits were integrated was t =100. The orbits were
integrated using a fourth order Runge-Kutta scheme
with fixed time steps. The integrations at low energies in-

volved a time step h =10 but, for higher energies, 10
was used. The positions, momenta, and energy of each
orbit were recorded at t =0.25 intervals.

As a test of the reliability of the simulations, several
different ensembles were evolved using three different
choices of time step, namely, h =10, 10, and 10
It was found that, for relatively short time scales, the re-
sults of the three different integrations were essentially
identical, but, for somewhat longer time scales,
significant differences began to arise. However, except
for the highest energies that were considered, namely,
E =60 and 75, integrations with 10 and 10 for times
t 100 yielded no statistically significant differences in

the quantities computed in Secs. III and IV. This was in-

terpreted as a justification for using h =10 times steps
for the lower energies. It should also be stressed that, in
all cases, the initial time interval used in computing the
time scale ~ associated with an approach towards the in-

variant measure was sufficiently short, t &40, that the
data could be trusted in a pointwise sense, orbit by orbit.

The data from the orbits at t=0.25 intervals were

binned in the phase space variables, x, y, p„andpy to ob-

tain coarse-grained approximations F(x,y,p„,p~, t) of the

time-dependent distribution function. Such an I' is, how-

ever, unwieldy. Because F depends on four variables at
each time t, it is difficult to visualize; and, even more im-

portantly, because one is only considering ~ 3200 orbits,
a gridding into n cells with n not extremely small would
lead to statistically insignificant results. For this reason,
attention focused primarily on "reduced" distribution
functions f (t) constructed by summing over two of the
four phase space variables. There are of course six possi-
ble choices of reduced f. Attention focused primarily
on three of these, namely, f (x,y, t), f (p„p,t), and

f (y,p, t).
The coarse-grained reduced distributions were a11 con-

structed by binning into a rectangular lattice of equal
area cells, of total size n X n, with n = 10, 20, and 40. The
region to be gridded varied as a function of E, as it was
altered to ensure (1) that all points along each orbit fitted
into the region that was gridded but (2) that only a
minimum number of cells were forbidden energetically
(because of the triangular symmetry of the potential, a
rectangular gridding necessarily yields some inaccessible
cells).

Such coarse-grained distributions f (t) are still dificult
to analyze since, e.g., for a 10X 10 binning of 400 orbits,
at each instant of time this would entail assigning 400

points into 100 different cells, of which )80 are accessi-
ble. For this reason, an additional temporal coarse grain-
ing was effected by averaging f over successive t =0.25
times steps. More precisely, a coarse-grained f(t) was
defined by the prescription

1+m6t

f(t)= g f(t), (2.5)

with 5t =0.25 and m =15 or 25. It was discovered that
the two different choices of m lead to distributions that
are statistically identical.

As discussed more carefully in Sec. III, it was observed
that f(t) evolves exponentially on a relatively short time
scale towards an invariant measure f;„„,the form of
which is, for fixed energy E, essentially independent of
the choice of initial ensemble. A specific coarse-grained
realization of this invariant f;„„wasgenerated in the fol-

lowing way: For each choice of initial ensemble, compute
the coarse-grained reduced f(t) at t=0.25 intervals.

Next, for the given ensemble, average f (t) over the last

200 recorded values of t, i.e., from t =50.25 to 100.00.
Finally, average the results obtained thereby for the

different ensembles that were evolved. Via this prescrip-
tion, eight ensembles of N =400 orbits yield an f;„„gen-
erated from 6.4X 10 points. This provides reasonable

statistics, even for a 40X40 gridding, which involves

1.6X10 cells.
The form of the reduced invariant distribution was ex-

amined visually in two different ways, namely, (1) by con-

structing density contour plots from the gridded data and

(2) by constructing gray-scale maps. One obvious ques-

tion of interest is the extent to which the full invariant
measure F;„,(x,y,p„p~) corresponds to a microcanonical

distribution F;„„i.e., to a uniform sampling of the con-

stant energy surface. This is in fact straightforward to
ascertain. Indeed, one verifies quite generally that, if the
invariant measure is of the form

Fm;,„,= A 6D (H E), — (2.6)

where A is a constant, 5D denotes a Dirac distribution,

and the Hamiltonian H is of the form (2.2) for any poten-
tial V(x,y), the reduced spatial distribution

2n A if x,y so that V(x,y) ~ E
,
0 if x,y so that ( V, x)y) E.

(2.7)

(If, instead, one had a three-degree of freedom system,

with a kinetic energy K=p /2, the constant term in

Eq. (2.7) would be replaced by f,„,(r ) =4m A [2(E
—V)]' . ) One can infer that F;„„deviatesfrom a micro-

canonical distribution if f;„,(x,y) shows statistical y

significant differences from the piecewise constant distri-

bution (2.7).
To quantify the sense in which f(t) converges towards

f;„„,one needs to identify a notion of "distance" between

two coarse-grained reduced distribution functions, f, and

f2. This was done by constructing a discretized analog of
an L, ' norm, which entails a pointwise comparison of the

population of each cell of the coarse-grained distribution
functions. Consider for specificity the reduced distribu-
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tions f(x,y, t) and f;„„(x,y), each of which is as-
sumed to have been normalized identically, so that

g„gf(x, y, t)=g„gf;„„.The distance Df(x,y, t) is
then defined by the prescription

D x t =
g g f;„„(x,y, t)
x y

(2.8)

y(t) = lim
1 5r(t)

sr(o) o t 5r(0)
(2.9)

where 5r(0) and 5r(t) denote the configuration space de-
viations of two nearby orbits at time 0 and t, and, in the
limit t ~~, one obtains thereby the Lyapunov exponent

y= lim y(t) . (2.10}

Note in particular that Df (x,y, t)=0, i.e., lnDf ~—~,
implies complete agreement between the true and invari-
ant distributions.

This definition provides a strong notion of conver-
gences in that it involves a pointwise comparison of the
two coarse-grained distributions. Mathematically, an L~
norm [constructed in terms of lf(x,y, t} f;„„(x—,y, t)l2]
might seem more natural. However, one can argue that
the prescription adopted here is physically better
motivated because it is f, rather than f, which is the
basi.c object that defines probabilities. The "pointwise"
character of the comparison is of course diluted some-

what in that one is considering sums of coarse-grained
distributions, rather than integrals of smooth functions.
However, as will be discussed in Sec. III, it would appear
that the rate at which Df converges towards zero is in

fact independent of the scale of the coarse graining.
The average rate at which nearby stochastic trajec-

tories diverge was computed in three different ways. The
first involved subjecting each individual orbit in the en-

semble to some small change in position and momentum,
and then tracking the evolution of the total configuration
and momentum space perturbations, hr and bp, until

they become macroscopic. Explicit calculations show
that perturbations of individual orbits typically grow ex-

ponentially at a rate that is largely independent of the de-

tailed form or amplitude of the initial perturbation. It is
therefore natural, and convenient, to compute b r and hp
by perturbing each initial condition in the ensemble in an
identical fashion. This was done by perturbing each ini-

tial condition with specified y and p to new values

y+0.0001 and p +0.001, with x still assumed to vanish

identically and p„modified to ensure that the energy E is

unchanged.
This statistic provides a simple characterization of the

overall rate at which small perturbations grow, but it is
limited in that it only probes the aggregate properties of a
large number of orbits over the relatively short period of
time before the perturbation becomes large. For this
reason, the average rate at which nearby stochastic tra-
jectories diverge was also computed in two other ways,
both of which involve the standard prescription due to
Bennetin, Galgani, and Strelcyn [2]. Over finite times t
one can define a Lyapunov characteristic number

It follows from Oseldec's theorem [17] that diS'erent
stochastic orbits all restricted to the same phase space re-
gion will be characterized by the same Lyapunov ex-
ponent. However, the time scale on which any individual
orbit manages to probe the entire phase space region will

in general be very long; and, for this reason, one might
also expect that, as a practical matter, the time required
to compute a reasonable estimate of the late times

Lyapunov exponent y from a single orbit will also be very
long. These expectations, realized by other workers for
other potentials, were also confirmed by the calculations
described in Sec. IV. Even an evaluation of y(t) for a
time t=10 leads to overall uncertainties of amplitude
—10%. The Lyapunov exponent y most certainly does
not provide a reasonable characterization of the instabili-

ty of individual orbits on times scales t 100.
The calculations of Lyapunov exponents from the long

time evolution of individual orbits were therefore aug-
mented by additional calculations which tracked y(t) for
multiple orbits for shorter total times tf,„~100. For each
energy E, a fixed number q of initial conditions were
selected "at random, "with a relative density weighted by
the invariant distribution F;„„(x,y,p„p ). These initial
data were then evolved to derive characteristic numbers

y, (t„„)for each orbit i Final.ly, the results from the indi-
vidual orbits were averaged to derive a "mean Lyapunov
number"

(2.11}

for the ensemble.

III. THE APPROACH
TOWARDS AN INVARIANT MEASURE

The orbit integrations described in Sec. II lead to
several concrete conclusions regarding the evolution of
an initially localized ensemble of stochastic orbits of fixed
energy E.

The first unambiguous conclusion is that, at least for
energies E & 10 or so, initially localized ensembles of sto-
chastic orbits tend generically to evolve at late times to-
wards a time-independent distribution. This was
confirmed directly through the observation that all six
coarse-grained reduced distributions f(t) evolve towards
time-independent values f;„„.Strictly speaking, this does
not prove rigorously that the full F(x,y,p„,p, t) evolves
towards an invariant F;„„.However, what is true is that
F(x,y,p„,p~, t) must itself evolve towards an invariant
distribution unless it incorporates finely tuned time-
dependent correlations between the four basic variables.

The second unambiguous conclusion is that, at least for
energies E 30, the form of the invariant distributionsf;„„is independent of the location of the initial ensemble.
Different ensembles of orbits, originally situated in very
different phase space regions, diverge in such a fashion as
to sample the same measure at late times. That this re-
sult can be true is a reAection of the fact that, at
sufBciently high energies, all the stochastic orbits have
access to the same phase space region. At lower energies,
this is no longer so. Specifically, one finds that, at least
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FIG. 1. The coordinates (x,y) generated from 25 stochastic
orbits with energy E=30, sampled at t =0.25 intervals for a to-
tal time t =50.

for E «20, a substantial fraction of the stochastic orbits
divide into three distinct "families" which, at least on rel-
atively short time scales t ~ 100 do not access the entire
stochastic region.

This general behavior is illustrated by Figs. 1 and 2.
Figure 1 plots the spatial coordinates x and y for one ini-
tially localized ensemble of 25 obits with E=30 at
t =0.25 intervals for a total time t =50. The obvious
point is that the orbits appear to fill a region in
configuration space corresponding approximately to an
equilateral triangle. In particular, the overall distribution
manifests the discrete 2n/3 rotational symmetry of the
potential given by Eq. (2.3). Figure 2 plots x and y for a
localized ensemble of 25 orbits with E=10, again at
t =0.25 intervals and for a total time t =50. The obvious
point now is that the region occupied by the orbits is no
longer approximated by an equilateral triangle, and no
longer manifests a 2m/3 rotational symmetry. Most of
the orbits are restricted instead to a smaller wedge in
configuration space. For E =30, most/all ensembles of
orbits yield plots analogous to Fig. 1. For E =10, some
ensembles again yield plots with the same symmetries as
Fig. 1. However, many yield instead plots like Fig. 2 or
analogous plots derived by rotations of +2m/3.

It is evident from Fig. 2 that some of the orbits "essa

cape" from the localized wedge. Significantly, however,
these escapers are not located near the edges of the local-
ized ensemble, so that they cannot be eliminated by sim-

ple choosing an initial ensemble localized in a smaller

phase space region. If one reduces the size of the region
sampled by the initial ensemble, one does not completely
eliminate the escapers. Rather, what appears to be true is
that embedded in a phase space region in which "most"
orbits are confined, at least on short time scales, are other
orbits which are in fact able to escape. The fact that this
conclusion appears to hold even for very small phase
space regions suggests strongly that whether or not some
orbit can escape from the localized wedge within a given
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FIG. 2. The coordinates {x,y) generated from 25 stochastic
orbits with energy E =10, sampled at t =0.25 intervals for a to-
tal time t =50.

time interval hT evidences a fractal dependence on initial
conditions (cf. [18]).

A third unambiguous conclusion is that the approach
towards an invariant distribution, as probed through the
"distance" Df (t), is exponential. Analysis of the coarse-
grained data demonstrates that a plot of ln(Df) as a func-
tion of t is essentially linear. One does observe noticeable
deviations from a pure exponential, deviations that be-
come somewhat larger if one considers lower energies
and/or ensembles localized initially in progressively
smaller phase space regions. However, overall the ap-
proach towards an invariant distribution is well fit by an
exponential relation

Df (t) =const Xexp( At) . — (3.1)

A fourth unambiguous calculation is that the time
scale T=l/A associated with the approach towards an
invariant measure is independent of the location of the
initial ensemble of orbits. Different localized ensembles
of initial conditions, situated in widely separated phase
space regions, evolve towards the same invariant measure
on the same time scale T. This behavior is illustrated in

Fig. 3, which plots lnDf (x,y, t) for several difFerent en-
sembles at E=40. For each individual ensemble, the
data were constructed from coarse-grained reduced dis-
tribution functions f(x,y, t), obtained via a 10 X 10
configuration space binning and a temporal average overI=15 time steps. The initial ensembles were each con-
structed via a uniform sampling of a phase space region
with hy =0.2 and Ap =0.72, assuming that x =0 and p,
is given by Eq. (2.4). It is clear from Fig. 3 that the con-
vergence towards an invariant measure is approximately
exponential and that the time scale T is approximately
the same for each of the ensembles.

The data displayed in Fig. 3 all involve the particular
reduced distribution f(x,y, t) This, however, is im. ma-
terial. A fifth unambiguous conclusion is that the time
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FIG. 3. Df (x,y, t), the difference between f(x,y, t) and the
invariant measure f~„„(x,y), for several different ensembles of
orbits with E=40. Df was generated from a distribution

f(x,y, t) which involved a 10X10 configuration space binning
and a temporal averaging over 15 time steps.

scale T associated with the approach towards an invari-
ant f;„„is independent of which pair of variables one
chooses to consider, {x,y j, {x,p„j, {x,p j, {y,p„j,

A sixth unambiguous conclusion is that, at least over a
moderate range, the time scale T associated with the ap-
proach towards an invariant distribution is independent
of the level of the temporal and/or phase space coarse
graining. Different temporal coarse grainings were
effected by averaging over m =15 and 25 time steps, and
it was observed that, within statistical uncertainties, these
different coarse grainings did not change the basic con-
clusions. This is illustrated by Fig. 4, which is identical
to Fig. 3 except that it was constructed from coarse-
grained distributions f(x,y, t) that were averaged over
m =25 time steps.

Similarly, coarse-grained distributions were construct-
ed, allowing for n Xn binnings, with n =10, 20, and 40,
and it was discovered analogously that the level of this
coarse graining does not alter the value of T. This is il-
lustrated by Fig. 5 which, for one specific ensemble of ini-
tial conditions with E=60, computes Df (x,y ),
Df(p„,p~), and Df(y, p ) for the three different levels of
phase space coarse graining. All the curves in this figure
involve a distribution f(t) averaged over m=15 time
steps. It is clear that, for early times, the slopes of the
nine different plots in Fig. 5 are all essentially the same.

It is also evident that, at later times, the exponential
decrease in Df stops and the curves asymptote towards
limiting values. This is a finite size effect. Neither the in-
variant distributions f;„„northe true coarse grained dis-
tributions f(t) associated with the initial ensemble have
been determined exactly, since they have been construct-

FIG. 4. The same as Fig. 3, except generated by a temporal

averaging over 25 time steps.
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Flax. 5. Df(x,y, t), Df(y p~, t), and Df(p„,p~) for one
specific ensemble of initial conditions with E=60 with variable
phase space coarse graining. The top three curves have a
40X40 coarse graining, the middle three have 20X20, and the
bottom three have 10X 10.

ed using only a finite number of orbits. Even if the nu-
merical f(t) and f;„„constitutetwo random samplings of
the same analytic distribution, finite number statistics im-

ply that Df (t) must be nonzero. When these statistical
errors become the dominant source of differences be-
tween f(t) and f;„„,the exponential decrease in Df must
stop.

To confirm explicitly that this "saturation" is purely a
finite size effect, with no further physical implications,
one can investigate how the time evolution of Df (t)
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FlG. 6. Df (x,y, t) computed for difFerent ensembles of orbits
with E=40, sampling the same phase space region but with
variable numbers of orbits from N = 100 to 3200.

FIG. 7. Df(x,y, t) computed for four different ensembles

with E=40 centered about (y,py ) =(0,0). The different ensem-

bles involve cells of initial conditions successively smaller in

area by factors of 100.

varies as a function of total orbit number N. The results
of one such investigation are exhibited in Fig. 6, which il-
lustrates lnDf (t) computed for different ensembles of or-
bits with E=40, all sampling the same phase space re-
gion but allowing for variable X from 100 to 3200. Note
that, as expected, increasing N lowers the value of Df at
which saturation occurs, so that the exponential decrease
holds for longer times t.

A seventh unambiguous conclusion is that the time
scale T associated with the approach towards an invari-
ant distribution is independent of the size of the phase
space region sampled by the initial localized ensemble.
This was examined in special detail for the case of orbits
with E =40, allowing for Iy,p~j phase space regions of
variable size 0.2X0.72, 0.02X0.072, 0.002X0.0072, and
0.0002 X0.000 72, i.e., allowing for a systematic
magnification in resolution by a factor of 10 .

Figure 7 exhibits the evolution of Df(t) for four
different localized ensembles, obtained by successive
magnifications of a given phase space region with E =40
centered about (y,p )=(0,0). Three facts follow from
this and other similar sets of experiments. First of all, it
is clear that, overall, the time required to converge to-
wards an invariant measure increases as the size of the in-
itial phase space region shrinks. Secondly, one discovers
often (albeit not for the experiments summarized in Fig.
7) that the convergence towards the invariant measure
becomes less uniform as the size of this region shrinks:
one begins to see occasional deviations from a completely
systematic decrease in Df. Thirdly, however, it is also
clear that, despite these trends, the overall approach to-
wards an invariant measure is still exponential and the
time scale T is essentially the same for the different
magnifications. This is manifest in the fact that, although
the curves in Fig. 7 have different offsets, at least initially

A(E)= A+BE, (3.2)

with A =0.0330+0.0106 and B=0.002 13+0.000 48.
Because of the relative1y large error bars, one cannot ex-
clude the possibility of a more complicated functional
dependence, but there is no evidence of any systematic
deviations from the simple linear relation.

Another striking feature is that the late times distribu-
tion F;„„(x,y,p„,p ) is not microcanonical. This is, for
example, illustrated by the form of the reduced distribu-
tion f;„,(x,y ) which evidences statistically significant
differences from the piecewise constant form implied by
Eq. (2.7). At high energies, the distribution f;„„(x,y) ex-
hibits four distinct local maxima, one at the origin, a
second along the y axis for a positive value of x, and two
others obtained from the second by +2~/3 rotations.
This, is, e.g. , illustrated in Fig. 8, which presents a gray-
scale plot of f;„,(x,y) for E=30. Note that Fig. 8 was
generated from a large collection of 1600 initial condi-
tions, including the 25 which were used in generating Fig.
1.

At lower energies, the situation becomes more compli-
cated because of the existence of "families" of stochastic
orbits which individually break the 2m. /3 rotational sym-
metry. However, even if one restricts attention to orbits
which fill the entire triangular region, a qualitative
change can be observed. Specifically, one discovers that

their slopes are approximately the same.
An eighth conclusion is that, over a fairly wide range

of energies E, the convergence time T(E) and the conver-
gence rate A(E) are well fit by a simple analytic form.
Specifically, one finds that, at least for energies in the
range 10~E «75, the convergence rate is we11 fit by a
linear growth law
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FIG. 8. A gray-scale plot of the projected invariant distribu-
tion f;„„(x,y) for stochastic orbits with E=30.

the origin, which by symmetry must be a density ex-
tremal, eventually passes through a critical point and
changes from a maximum to a local energy minimum.
This is illustrated in Fig. 9, which presents a gray-scale
plot of f;„„(x,y) for E=10. This figure difFers qualita-
tively from Fig. 2, also generated for orbits with E=10,
because of the fact that the initial conditions correspond
to orbits that are not "trapped" in a restricted portion of
the accessible configuration space.

The aforementioned conclusions all refer to "generic"
behavior. However, as observed already, exceptional en-
sembles were occasionally observed. Typically, these cor-
respond to ensembles of stochastic orbits which initially
begin to evolve exponentially towards the invariant mea-
sure, but then halt their approach, in the sense that
Df (t) stops decreasing exponentially towards zero before
finite number effects have become important. This quali-
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FIG. 9. A gray-scale plot of the projected invariant. distribu-
tion f;„„(x,y) for stochastic orbits with E= 10.

tative behavior is observed more frequently at lower ener-
gies, especially E 20, and for initial ensembles that sam-
ple smaller phase space regions. Moreover, a qualitative
inspection of the evolution of these ensembles would sug-
gest that, typically, this behavior corresponds to a situa-
tion in which some fraction of the orbits have become
trapped in a particular phase space region or in which the
orbits tend systematically to avoid some given region.

It would seem natural to conjecture that this anoma-
lous behavior is somehow associated with "sticky" is-
lands: if some fraction of the orbits in the ensemble stray
too close to an island, they may be temporarily detained
in the neighborhood of the island and hence be prevent-
ed, at least for a time, from evolving towards an invariant
measure. As E decreases, the proportion of regular or-
bits, and hence of islands, increases and indeed, it is just
below E=24 that the relative abundance of stochastic or-
bits begins to decrease precipitously. Moreover, one may
expect that smaller ensembles are more likely to be im-
pacted significantly by tiny, seemingly randomly distri-
buted islands in what appears superficially to be a sea of
stochasticity. This interpretation, consistent with the in-
terpretation of similar phenomena observed in other sorts
of problems [18], would imply that most/all ensembles
are effected at least soinewhat by islands, but that, in
many cases, the effects are simply too small to be ob-
served.

In this connection, it should also be observed that, at
energies E & 10 or so, the overall proportion of stochastic
orbits and the size of typical simply connected stochastic
regions are sufBciently small that it is diScult to con-
struct large ensembles of stochastic orbits; and, for this
reason, it is not clear numerically whether the simple
behavior observed for ensembles of stochastic orbits at
higher energies actually persists.

The computations summarized above show that local-
ized ensembles of initial conditions corresponding to sto-
chastic orbits exhibit a rapid exponential evolution to-
wards a distribution which is rather nearly time indepen-
dent. However, they do not, and cannot, prove that there
are no further systematic changes on much longer time
scales. One cannot, for example, exclude the possibility
that, on very long time scales t )&100, the ensemble will
evolve towards a distribution which is more nearly micro-
canonical.

The possibility of such a slow variability was in fact in-
vestigated for one set of initial conditions with E=30.
Specifically, an initially localized ensemble of 1600 sto-
chastic initial conditions was evolved into the future for a
total time t =1100, and the output for the time interval
[1050.25, 1100] analyzed in the same fashion as the data
for the interval [50.25, 100] to extract new "invariant dis-
tributions" f;„„(x,y), f;„„(y,p ), and f;„,(p„,p„).This
period of time is so long that one cannot trust the point-
wise evolution of the orbits. However, one may hope
that, because of some shadowing argument, the statistical
properties of the orbits are reliable, and that this integra-
tion provides at least an indication of the qualitative form
of the true evolution. In any event, a comparison of the
early and late times 'invariant distributions" suggests
that the two different distributions may be slightly
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different, but these differences, if real, are not of unambi-
guous statistical significance. One cannot exclude the
possibility of nontrivial evolutionary effects on time
scales t))100. However, what seems clear is that any
systematic evolutionary effects that do exist must proceed
on an exceedingly long time scale.

IV. THE SENSITIVE DEPENDENCE
OF INITIAL CONDITIONS

Turn now to a consideration of the sensitive depen-
dence on initial conditions that is exhibited by the sto-
chastic orbits. As discussed in Sec. II, one especially sim-
ple way in which to quantify this sensitivity is by intro-
ducing small perturbations in the initial position and
momentum of each member of an ensemble of stochastic
orbits, and then computing the evolution of the total
configuration and momentum space perturbations, Ar
and hp, at subsequent times. The net result of such an in-
vestigation is that, as might have been expected, Ar and
Ap typically grow exponentially, with a characteristic
growth rate A, that is independent of the specific form and
amplitude of the initial perturbation, provided only that
the perturbations of the individual orbits are all of com-
parable size.

This point was tested explicitly for the case of ensem-
bles of orbits with E =20, where several different integra-
tions were effected. Each of these experiments involved
perturbing every initial condition in the same way,
through given displacements 5x, 5y, and 5p, i.e.,
Ix,y,p I ~Ix+5x,y+5y, p +5p ), with p„modified to
guarantee that the energy is unchanged. Different experi-
ments involved different choices of the initial displace-
ments I5x, 5y, 5p ). The principal conclusions derived
from these experiments were (l) that b, r and hp typically
grow exponentially until the initial perturbation becomes
"macroscopic, " at which point the overall growth satu-
rates; (2) that the growth rates A,„and A, associated, re-
spectively, with hr and Ap are, for each given experi-
ment, equal to one another within statistical uncertain-
ties; and (3) that the values of A, „=A,„=A,are independent
of the specific choice of the initial perturbation, again to
within statistical uncertainties.

The fact that the choice of initial perturbation is imma-
terial facilitates a simple algorithm which was used to
quantify the sensitive dependence on initial conditions:
Each ensemble analyzed in Sec. III was first perturbed
via an initial displacement y ~y +0.0001 and

p —+p +0.001, with x still assumed to vanish and p )0
fixed by the constraint of fixed energy. The perturbed en-
sembles were then evolved into the future, and the output
of the perturbed ensembles compared with the output of
the unperturbed ensemble to extract Ar and Ap.

One concrete conclusion derived from these experi-
ments is that, for fixed energy E, hr and hp do indeed
grow exponentially with a growth rate k that is largely
independent of the location of the initial ensemble. As
for the case of the approach towards an invariant mea-
sure, some occasional exceptions were observed, these
corresponding to a situation in which the perturbation in-
itially grows somewhat more slowly than the average rate

where a =0.2493+0.0404 and b =0.0141+0.0009. Care-
ful examination of the data suggests that the k versus E
relation actually exhibits some curvature, especially at
lower energies, but the deviations from a linear relation
are small.

It is illuminating to compare the growth rates X with
the decay rates A associated with the evolution towards
an invariant measure, which are also approximated by a
linear relation, A= A+BE. The third concrete con-
clusion derived from such a comparison is that the ratio
R (E)= AIR, is rather nearly constant, independent of en-

ergy E. Specifically, one finds a best fit value
R =6.790+0.756. The goodness of fit is illustrated by
the upper curve in Fig. 10. The large error bars, especial-
ly prominent at lower energies, imply that one cannot ex-
clude the possibility of relatively small systematic effects.
However, what is clear is that R does not change all that
drastically.

This fact implies that, for stochastic orbits in this trun-
cated Toda potential, there is a direct, one-to-one
correspondence between the degree of stochasticity ex-
hibited by an ensemble of orbits and the rate at which
that ensemble evolves towards an invariant measure.
Both the degree of stochasticity, as measured by the total
growth rate A. , and the rate A associated with the evolu-
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FIG. 10. The top curve exhibits the ratio R =A(E)/A. (E) as
a function of E. The lower curve exhibits the ratio
A =A(E)/g(E) as a function of E.

However, these occasional anomalies only persist for
relatively short periods of time, (say) b, T —2 —3, and, if
one ignores them, one finds that the overall growth rate
during the "normal" period is again given by the average
k, at least to within statistical uncertainties.

The second concrete conclusion is that the growth rate
k varies smoothly as a function of E in a fashion again
consistent with a linear growth law. Specifically, the data
are reasonably well fit by a linear relation

k(E)=a+bE,
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tion towards an invariant measure are, for fixed energy E,
essentially independent of the specific choice of initial en-

semble. And, moreover, if E is altered, A, and A change
in such a fashion that the ratio A/A, is rather nearly un-
changed.
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V. SHORT TIMES ESTIMATES
OF LYAPUNOV EXPONENTS

The stability of stochastic orbits in the truncated Toda
potential was also examined in a more conventional way
(cf. Ref. [2]) through a computation of Lyapunov ex-
ponents. This was done by introducing a small initial
perturbation 5x =10 ' into each orbit, continually solv-

ing the variational equations for the perturbation as the
unperturbed orbit is evolved, and then renormalizing the
evolved perturbation back to a total amplitude

(fix2+fiy2+fi 2+fip2)1/2 1()
—10 (5.1)

at intervals b, t =10. Successive estimates for y(t) were
effected at the same ht intervals, with the calculations of
an individual orbit proceeding for a total time t=10.
The value y(t =10 ) was then interpreted as providing an
estimate of the true Lyapunov exponent, which is only
defined in a t~ 00 limit. Several orbits were tracked for
a period twice as long, namely, t=2X10, and it was
found that, overall, doubling the integration time had a
relatively small effect on the final value of g. To test the
reliability of the estimated Lyapunov exponent derived
from a single orbit, computations of y(t=10 ) were
effected for a total of ten stochastic orbits for each value
of E. An analysis of the means and the associated stan-
dard deviations implies that an integration for any indivi-
dual orbit over a period t =10 provides an estimate of y
accurate at approximately the 10% level.

For variable energies E, Fig. 11 exhibits as triangles
the "average" Lyapunov exponents computed in this
fashion, with the associated dispersions represented as er-
ror bars. It is evident that, unlike the instability time
scale A,(E) considered in Sec. IV, which can be reasonably
well fit by a linear relation, A, =a+bE, the exponent y(E)
is not well fit as a simple linear function of E. Empirical-
ly, the data in Fig. 11 are better fit by a quadratic func-
tion y(E) =a+pE+yE, where a= 0 0148—, .
P=0.0159, and y= —8.82X10 . A naive least squares
fit to a linear relation would yield instead y(E) =A+BE,
with A =0.103 and %=0.00853, but it is evident that
neither this nor any other linear relation can provide a
reasonable fit to all the points. Moreover, even an empir-
ical quadratic fit ignores a definite indication of a change
in the functional form of g(E) at energies below a critical
value E=30.

Despite these complications, however, there is still a
direct connection between the Lyapunov exponent y and
the decay rate A associated with the exponential ap-
proach towards an invariant measure. This is illustrated
by the lower curve in Fig. 10, which exhibits the ratio
A(E)=A/g. There is an indication that, for small E, A
is larger than for large E but, overall, the data are con-
sistent with a ratio that is approximately constant. The
best fit value %=1.912+0.252.
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FIG. 11. Lyapunov exponents y for orbits of varying energy
E. The triangles represent mean values obtained by computing
y(t) for ten orbits for a total time t=10. The error bars
represent dispersions about these mean values. The diamonds
represent mean values by computing y(t) for 400 orbits for a to-
tal time t = 100. The solid curve is a least squares quadratic fit.
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Estimates of the Lyapunov exponents were also gen-
erated by following for shorter times the evolution of or-
bits that sample the invariant measure. This was done by
exploiting the data analyzed in Sec. III. Specifically, for
each value of E, three of the 400 orbit ensembles were
selected, and the final output at time t =100 were chosen
as initial data for a new ensemble, the presumption being
that each of these sets of initial conditions should yield a
fair sample of the true invariant measure. Estimates of
g(t) for each orbit in these new ensembles were then com-
puted as above at time intervals b, t = 10, the only
difference being that the integrations were halted after a
much shorter total time, namely, t = 100.

The collection of 400 y's at each time t yields a distri
bution of instability time scales, for which a mean g(t)
and a standard deviation oz(t) were then computed. The
net result of such a computation was the discovery that,
in every case, the mean f(t =100) agreed with the con-
ventional estimate of y obtained from a long time integra-
tion of ten stochastic orbits. The goodness of fit is again
illustrated in Fig. 11, where the mean values g(t =100)
for the three different ensembles are represented by.dia-
monds.

The basic conclusion is that, as one might have expect-
ed, the Lyapunov exponent g can be interpreted physical-
ly as representing the "average" instability of an ensem-
ble of orbits that samples the invariant measure. In other
words, the fact that ensembles of stochastic orbits evolve
towards an invariant measure, where temporal and phase
space averages agree, implies that Lyapunov exponents,
defined formally via t~ 00 limit for a single stochastic or-
bit, also have a weH-defined physical meaning for ensem-
bles of orbits on much shorter time scales.

Although the mean g's agree closely with the long time
estimates of y, the overall distribution of short time g s is
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FIG. 12. The mean y(t=100) (solid line), the associated
dispersion o.~(t = 100) (dashed line), and the ratio
r =cr~(t =100)/g(t =100) (dot-dashed line) for 1200 orbits at
each energy E, corresponding to initial conditions chosen so as
to sample the invariant measure.

quite broad, with a dispersion that is typically
—30—40% as large as the mean. This behavior is illus-

trated in Fig. 12. The curves in that figure were con-
structed by grouping together the total of 1200 orbits
from all three ensembles at each energy E, and, for the
composite distributions of g's, computing a total mean
and dispersion. The three curves in the figure represent

g, o r, and the ratio r =o zip, each evaluated at time
t = 100. To obtain estimates of the errors associated with
these quantities, the three different ensembles at each en-

ergy were also analyzed individually. The plotted error
bars for y and 0& reQect the computed standard devia-

tions associated with the means and dispersions of the in-

dividual ensembles.
It should perhaps be stressed again that, from the

viewpoint of nonlinear dynamics, there is nothing special
about the particular value t =100 which has entered into
all of these calculations: one can equally well compute the
mean y for shorter or longer times. Given that the initial

ensemble does not sample the invariant measure, it is
hardly surprising that, at early times t «100,g (t) does
not coincide with the true Lyapunov exponent. Howev-
er, as the ensemble converges towards the invariant mea-
sure g should also converge towards the true Lyapunov
exponent y; and indeed, a numerical evaluation of f( t )

shows that, for t )50 or so, y and/ (t) agree quite closely
[19j.

Computing 7i(t) for 400 orbits for a total interval t = 50
only requires as much time as computing J('(t) for a single
orbit over a period t=2X10 or for a pair of orbits for
t = 10 . However, at least for this model potential, such a
short times computation provides a more reliable esti-
mate overall of the true Lyapunov exponent than what
would be derived by tracking one or two orbits for a time
t =10 . In this sense, one can argue that the short times
estimate of g, in addition to being more physical when
considering systems on relatively short time scales, is

computationally useful as well, in that it serves as a more
eScient algorithm than the usual procedure.

One final remaining point is that the short times pro-
cedure provides substantially more information than does
the standard long time estimate of y. Evaluating y(t) for
all of the orbits in some ensemble yields a distribution of
instability time scales, which provides a potentially useful
characterization of the degree to which different orbits
are unstable on different time scales. This fact has al-
ready been exploited by various authors for other systems
in a variety of different contexts [15,16j. Applications of
this approach to the transient dynamics of ensembles of
orbits in galactic potentials are discussed elsewhere [19j.
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