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Two-spin models with classical chaos and different quantum universality classes
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The local fluctuations in the quantum energy spectrum of a classically completely chaotic autonomous

dynamical system are expected to be the same as those in the eigenvalues of Gaussian random Hermitian
matrices. That relationship between a dynamical system and the random matrix theory is examined here

by introducing a model of an autonomous system of two nonlinearly coupled spins. The proposed model

can realize all three universality classes —the orthogonal, the unitary, and the symplectic —of Gaussian
random matrices depending upon the nature of the nonlinearity. The proposed system evolves in a
finite-dimensional Hilbert space which is in contrast with the existing models of autonomous systems re-

quiring an infinite-dimensional Hilbert space for their description. The model is, therefore, not only free
from the unpleasant problem of the truncation of the Hilbert space required for numerical work in the
case of an infinite-dimensional Hilbert space but can also be used to examine for a dynamical system
those aspects of the random matrix theory that are dependent on the dimension of the matrices. Those
aspects are of particular interest in the Brownian motion theory of the transition from a Gaussian or-
thogonal ensemble to a Gaussian unitary ensemble.

PACS number(s): 05.45.+b, 03.65.—w, 05.40.+j

The characteristics of the local fluctuations in the
quantum energy spectrum of generic autonomous dynam-
ical systems which exhibit global chaos in their classical
phase space are found to be the same as those of the ei-
genvalues of the Gaussian random Hermitian matrices
(see for example Refs. [1,2], and references therein). A
similar relationship is observed between the behavior of
the local fluctuations in the quasienergy spectrum of
periodically driven systems and the ensembles of circular
random matrices [1,2]. The characteristics of the spec-
tral fluctuations of the random matrices of sufBciently
large dimensions having the same group of canonical
transformations are also the same. The ensemble of ran-
dom matrices is accordingly classified in three universali-
ty classes: the orthogonal ensemble (OE), the unitary en-
semble (UE), and the symplectic ensemble (SE). The OE
is an ensemble of real orthogonal matrices, the UE is that
of complex unitary matrices, whereas the SE is an ensem-
ble of quaternion real matrices. In particular, the distri-
bution P(s) of the nearest-neighbor spacing s for the
three universality classes is very closely approximated by
the Wigner surmise [1,2]

P(s) =(ns/2) exp( —ns /4) (OE),

P(s)=(32s /~ )exp( —4s /m) (UE),
P(s)=(2' s /3 m. )exp( —64s /9m) (SE) .

For small spacings s,P(s)-s~, where P= 1, 2, and 4, re-
spectively, for the OE, UE, and SE, i.e., the neighboring
levels repel each other linearly, quadratically, or quarti-
cally depending upon whether the ensemble is orthogo-
nal, unitary, or symplectic. To which universality class a
dynamical system belongs is determined only by the sym-
metry properties of the Hamiltonian. If the Hamiltonian
is invariant under an antiunitary transformation then the
system is described by the orthogonal ensemble, whereas

a system without any antiunitary symmetry is described
by a unitary ensemble. The systems with a half-integral
spin possessing an antiunitary but no other symmetry be-
long to the symplectic ensemble. The eigenvalue spec-
trum of those Hamiltonians exhibits Kramers' degenera-
cy. The levels of regular dynamical systems, on the other
hand, generically follow Poissonian distribution, i.e., for
those systems, the nearest-neighbor spacing distribution
is exponential: P(s)= exp( —s). The distribution func-
tion P(s) is then maximum at s =0 or, in other words,
the levels of a regular dynamical system exhibit cluster-
ing.

The dynamical system theory [3] is able to provide
some but not a complete treatment of the relationship be-
tween the local fluctuations in the eigenvalue spectrum of
random matrices and those in the quantum energy or
quasienergy spectrum of classically chaotic systems. The
evidence of that relationship is provided largely by stud-
ies on the model systems. Those studies —both on auto-
nomous and periodically driven systems —show that the
energy or quasienergy fluctuations of the dynamical sys-
tems are indeed described by the random matrix theory
(see Refs. [1,2] and the references therein). There is, how-
ever, a basic difference in the models studied for the two
kinds of dynamical systems, in that whereas the Hilbert
space of quantized periodically driven models investigat-
ed so far is finitely dimensional; that for autonomous sys-
tems is infinitely dimensional. For autonomous systems
there is, consequently, the unpleasant problem of the cut-
ting off of the Hilbert space for numerical calculations.
Moreover, those models of autonomous systems cannot
test those aspects of the random xnatrix theory that de-
pend on the dimensions of the matrices. Such aspects are
of particular interest for studies of the transition from
one universality class to the other [1,4]. Here we propose
a model of an autonomous dynamical system capable of
realizing all three universality classes in a finite-
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dimensional Hilbert space. We discuss also the results of
our attempts to test some predictions of the Brownian
motion theory [l] of transition from linear to quadratic
repulsion. To our knowledge, the model of Ref. [5] is the
only example reported in the literature of an autonomous
dynamical system capable of realizing all three universali-
ty classes.

The study of classically chaotic autonomous models is
also important because the description of the correspond-
ing quantized Hamiltonians as random matrices has no a
priori justification in the sense that (a) most of the ele-

ments of the Hamiltonians in standard representations
are zero due to various selection rules so that the assump-
tion of the matrix elements being random variables does
not hold. In fact the matrices of the usual dynamical sys-
tems look more like sparse matrices (for a discussion of
the applicability of the Wigner surmise in those cases, see
Ref. [6]). (b) The energy-level density of the dynamical
Hamiltonians do not follow Wigner's semicircle law,
which is the law obeyed by the energy levels of a Gauss-
ian random matrix. The model introduced here also
su@'ers from the aforementioned noncompliance with the
basic requirements of a Gaussian random matrix, and yet
gives nearest-neighbor spacing statistics in agreement
with the Wigner surmise. However, it has not been possi-
ble to con6rm the predictions of the theory of Brownian
motion of random matrices for the transition from
Gaussian orthogonal ensemble (GOE) to Gaussian uni-
tary ensemble (GUE) in the proposed model. Note that
the quasienergies of periodically driven systems are uni-
formly distributed on a circle of unit radius which is in
accordance with the requirements of a circular ensemble.
The periodically driven systems are therefore better
placed compared to the autonomous systems as regards
their relationship with random matrix theory. For exam-
ple, the model of a kicked top, which is an example of a
periodically driven system, has been shown [4] to under-

go the transition from circular orthogonal ensemble
(COE) to circular unitary ensemble (CUE) in accordance
with the predictions of Brownian motion theory.

Our system consists of two nonlinearly coupled spins
denoted below by L and M. In the case of classical

I

motion, the spins L and M obey Poisson bracket rela-
tions, whereas in the quantum version L~AL and
M~AM, where the components of the operators L and
M obey the angular momentum commutation relations

[I.„,L» ]=iL„[M„,M ] =i M„[L,, MJ ]=0, etc .

Besides being coupled nonlinearly to each other, the spins
are coupled linearly to external magnetic 6elds denoted
below by the vectors a and b. The nonlinear coupling is
chosen so as to make the system acquire the desired sym-
metry. The symmetry operations can act independently
or jointly on the two spins. First, we construct a Hamil-
tonian possessing an antiunitary symmetry. The simplest
Hamiltonian with antiunitary symmetry for the coupled
spins interacting with external magnetic Gelds is obtained
by coupling a component of one spin with a component
of the other. Thus if I,, is the coupling between the x
components of the two spins, then the Hamiltonian

HgoE =8'L+b'M+X L M (3)

is invariant under the antiunitary transformation
L~ —L and M~ —M followed by the unitary transfor-
mation consisting of the reflection in the plane formed by
a and the x axis for the spin L, and that in the plane
formed by the vector b and the x axis for the spin M.
The antiunitary transformation changes the sign of the
linear terms in (3). That change in the sign is restored by
the aforementioned unitary transformation because the
components of the angular momentum vectors in the
plane of reflection change sign, whereas those perpendic-
ular to it remain unchanged. The Hamiltonian (3) is a
generalization of the model introduced by Feingold and
Peres [7].

Next we construct a Hamiltonian which breaks the an-
tiunitary symmetry possessed by (3). The simplest such
Hamiltonian is constructed by adding to (3) another
quadratic interaction term like L,M, . However, we
found better statistics working with a Hamiltonian with
cubic nonlinearity:

H „o=EaL+b M+A, „L,M„+A,„,L, (M„M, +M,M„)+A, ,L, (M M, +M,M )+p,„,M, (L„L,+L,L, )

+p,M, (L L, +L,L ) . (4)

Here the A, 's and p's are the coupling constants. The reason why the antiunitary symmetry of the quadratic Hamiltoni-
an could be broken more easily with cubic rather than quadratic nonlinearity xnay be a reflection of the intuitive expec-
tation that a nonlinearity of order higher than that of the antiunitarily symmetric part is perhaps more e6'ective in
breaking that symmetry.

Finally, the Hamiltonian whose quantum energies exhibit Kramers' degeneracy is obtained by allowing it to have an
antiunitary symmetry but no other geometric symmetry, along with restricting the total spin only to half-integral
values. We have obtained the Kramers degeneracy by working with a Hamiltonian which is symmetric under the an-
tiunitary symmetry L ~—I,M ~—M and has a quartic nonlinearity:

+a2,L,M +p,„(L„L,+L,L„)+p, ,(L„L,+L,L )+p2„,(M,M„+M M, )+p~, (M, M +M M, ) . (5)
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The numerical values of the coupling constants in (5) are
chosen so as to avoid the symmetry of the Hamiltonian
under the exchange of the spins.

Note that for the Hamiltonians (3)—(5), besides the en-

ergy E, the magnitudes )L( and )M) of the individual
spins are the constants of motion. Feingold and co-
workers [7] have studied classical motion corresponding
to (3) with a =b= (0,0, 1) and A,„=1 and have identified
the regions of regular, predominantly chaotic, and mixed
motions in the space of the values of E, ~L~, and ~M~.

They have found, in particular, that for (L~ = ~M~ =3.5

the classical motion is predominantly chaotic for
~E~ & 6.6, regular for ~E~ )9. 1, and mixed in between.

In the quantum version, L and M commute with the
Hamiltonians (3)-(S) and hence the eigenstates of the
Hamiltonians can be labeled by the eigenvalues of L and
M . The eigenvalues of L and M are A L (L +1) and
A I(M + 1 }, respectively, where the total angular
momentum quantum numbers L and M are integers or
half-integers. The classical magnitude of the spins is re-
lated to quantum numbers L and M as

~ L~ =R L (L +1)
and ~M~ =A' M(M+ I). For given values of the classical
spins and quantum numbers L and M, the value of fi is
thus determined. The lower the value of A', the better the
agreement expected between local fluctuations in the
quantum energies and the random matrix theory [1]. The
value of A' can be decreased by increasing the value of L
and M, i.e., by increasing the dimension of the Hilbert
space because, for a given L and M, the spins L and M
span the Hilbert space of dimensions (2L + 1) and
(2M+I), respectively, so that the coupled spin system
evolves in a space of dimension (2L +1)(2M+1). How-
ever, if the Hamiltonians are symmetric under the ex-
change of L and M, then the Hilbert space reduces to two
decoupled spaces. The state of the system is symmetric
under the exchange of the spins in one space, and
antisymmetric in the other. It follows that if
~L~ = ~M~ =L, then the dimension of the symmetric space
is (L+ 1}(2L+1),and that of the antisymmetric one is

L (2L +1) [6]. Since it is the smallness of A' that matters
in achieving agreement between the dynamical systems
and the random matrix theory, the reduction of the Hil-
bert space proves very useful in numerical work because
for a given total spin, i.e., for a given A' the diagonaliza-
tion of a spin-exchange symmetric system is required to
be carried in a space whose dimension is almost half of
the dimension of the full space spanned by a nonsym-

metric system.
To compute local fiuctuations in the quantum energies

of (3) and (4), we have taken ~L~ = ~M~ =3.5, which are
the values for which Feingold and co-workers [7] investi-
gated the chaotic properties of (3) in its classical phase
space for a=b=(0, 0, 1) and A,„=l. We let L=M and
a=b in (3) and A,„,=p„, and A, , =p„, in (4), so that both
(3) and (4) are symmetric under the exchange of the two
spins. We take L, =M=16 and diagonalize the Hamil-
tonian in the symmetric space of dimension 561. For
better statistics, we choose ten different closely spaced
values of the parameters for each Hamiltonian, and com-
pute the corresponding set of eigenvalues. The values of
the parameters for which we observed the GOE behavior

using HGOE are

a=b = (1.1+g,0.1+g, 1.0), A,„=l. 1+g, (6)

where g =0, 0.05, 0.25, 0.3, 0.35, 0.4, 0.45, 0.6, 0.9, and
1.05. The values of the parameters in (4) for which we
observed GUE behavior are A,„,=p„,=0.025,
A,„,=p„,=0.05,

a=b =(1.154+g,0. 105+g, 1.0),
A,„=1.098+g,

(7)

g =0, 0.524, 0.262, 0.314, 0.367, 0.419, 0.472, 0.629,
0.944, and 1.101.

To realize Kramers' degeneracy by using (5), one of the
spins is required to be half-integral, and the other to be
integral. We should also avoid symmetries other than the
antiunitary one. We therefore took L = 10.5 and M = 10,
and found good agreement with GSE statistics for the
level spacings of (5) with A,,=1.0+g, (g =0, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.45), p, =0.005K,„,
+1zz '
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FIG. l. The histogram on each of the plots in the left-hand
column of the figure is the numerically computed distribution
P(S} for the nearest-neighbor spacing S of the eigenvalues of
the Hamiltonian corresponding to the ensemble marked on the
plot. The solid curve with maximum height on each of the plots
for the histograms is the P (S) for the Wigner surmise for the SE
followed by that for the UE and OE. The solid curve on each of
the plots in the right-hand column is the numerically computed
staircase function I(S) as a function of S for the Hamiltonian
corresponding to the ensemble marked on the plot. The dashed
curves on each of those plots are the I(S) for the Wigner sur-
mise. The dashed curve that is uppermost near S =0 in each of
those plots is the Wigner surmise for the OE, followed by those
for the UE and SE.
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=0.3, and P,», =P2y, =0.4.
To determine the statistical properties of the local fluc-

tuations in the quantum energies, we unfold the spectrum
in each case to a constant density, and rescale it so as to
have the mean spacing equal to unity. The histogram of
the probability density P(s) and the staircase function

I(s)= f P(s)ds, (8)
0

obtained after averaging over ten sets of eigenvalues for
each universality class are plotted in Fig. 1 as a function
of s. Plotted along with the histogram are the curves for
the Wigner surmise (1). The curve with the maximum
height on each of the plots of P(s) corresponds to the
Wigner surmise for SE followed by that for UE and OE,
respectively. The numerically obtained histogram in
each case clearly justifies the identification of the Hamil-
tonians as belonging to a particular ensemble. That
identification is further confirmed by the plots of the
staircase function I(s) as a function of s in Fig. 1. The
solid curves in those plots are the results of the numerical
computation whereas the dashed curves represent (8) for
each of the three universality classes. The solid curve in
each case almost overlaps with the one corresponding to
the appropriate universality class.

The model Hamiltonians introduced here were used
also to study the transition from GOE to GUE by deter-
mining the statistics of the nearest-neighbor spacing of
the Hamiltonian HQQE+AHQUa as k is varied from zero
onwards. Transition from GOE at A, =O to GUE for
large A, is indeed observed. We determined the value A,,
of k at which the transition takes place for different
values of L, i.e., for different dimensions of the Hilbert
space. However, the transition does not follow the law
A, c —1/&N that is predicted for an ensemble of random
matrices of dimension 1V on the basis of Brownian motion
theory [1]. In fact the plot of 1 (An, , ) as a function of
ln(N) is found to be just an irregular scatter of points.
Increasing the dimension of the Hilbert space also does

not show any tendency of agreement with predictions of
the random matrix theory. The same negative result also
has been observed by Lenz, Wiedemann, and Saber [8].
The observed disagreement can be due to the fact that,
strictly speaking, the model Hamiltonian is more like a
sparse matrix because most of its elements are zero, and
the sparsity evidently continues to increase with the di-
mension of the Hilbert space. Since the random matrix
theory is for an ensemble of matrices whose elements are
random variables, it need not be applicable to an ensem-
ble of sparse matrices, as most of their elements are al-

ways zero, i.e., deterministic. Our results indicate that
although the Wigner surmise may hold for matrices as
sparse as encountered here, some other characteristics of
the local fluctuations in Gaussian random matrices may
not hold. The question of the applicability of the signer
surmise to sparse matrices has also been discussed in Ref.
[6]. However, the reduction of sparsity by increasing the
nonlinearity also did not help in improving the agreement
of the observed transition from GOE to GUE with ran-
dom matrix theory [8]. The disagreement between the
dynamical system behavior and random matrix theory
also could be due to the possible presence of large regions
of regular motion for the intermediate values of the tran-
sition parameter i(,. However, exploring the nature of the
classical motion for all intermediate values of k is a for-
midable task. The issue of the reasons for the noncompli-
ance of the transition from GOE to GUE of the dynami-
cal system proposed here with the predictions of the ran-
dom matrix theory is therefore left open.
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