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Post-Gaussian approximations in phase ordering kinetics
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Existing theories for the growth of order in unstable systems have successfully exploited the use of a
Gaussian auxiliary field. The limitations imposed on such theories by assuming this field to be Gaussian
have recently become clearer. In this paper it is shown how this Gaussian restriction can be removed in
order to obtain improved approximations for the scaling properties of such systems. In particular it is
shown how the improved theory can explain the recent numerical results of Blundell, Bray, and Sattler
[Phys. Rev. E 48, 2476 (1993)]which are in qualitative disagreement with Gaussian theories.

PACS number(s): 64.60.Cn, 64.75.+g, 81.30.Hd

I. INTRODUCTION

Essentially all of the current theories for the growth of
order in unstable systems assume the existence of an un-

derlying Gaussian auxiliary field. In the work of the au-
thor and co-workers [1—3], this variable m (R, t) has the
physical interpretation that its magnitude gives the dis-
tance from R to the nearest interface. In their theory for
the case of a nonconserved order parameter (NCOP),
Ohta, Jasnow, and Kawasaki [4] (OJK) introduce a
Gaussian diffusion field u. These theories have had many
successes, and the basic development has been pushed
very far. The limitations of such theories has not been
clear. When do they break down and how can one im-

prove them? Direct comparisons of calculations with
simulation results have shown that the "Gaussian"
theories give good approximations for the order-
parameter scaling function, and there has been difficulty
in choosing among them. The OJK approach seems to
give a better description for the order-parameter scaling
function F (x) for large scaled distances x, but the devel-
opment due to the author gives a much better treatment
for the nonequilibrium exponent A, associated with two-
time correlation functions. Recent work by Blunde11,
Bray, and Sattler [5] (BBS) indicates that if one looks at
higher-order correlation functions one finds a distinctive
qualitative breakdown of the Gaussian descriptions for
the auxiliary field. In this paper approximation methods
are introduced which allow one to go beyond existing
Gaussian approximations and obtain agreement with the
test proposed by BBS.

In the case of a conserved order parameter (COP), the
breakdown of Gaussian theories is signaled [6] by a cross-
over to negative values of the Fourier transform of the
m-field autocorrelation function for small wave numbers.
The development of post-Gaussian approximation for the
COP case looks promising, but will be treated in subse-
quent work.

As mentioned above, Blundell, Bray, and Sattler [5]
have recently proposed an "absolute test for theories of
phase-ordering dynamics. " They considered an ordering
system with an order parameter P(1)=g(R„t, ), which
has an ordered value lim, „g (1)=go. They then point

I

versus the square of the order-parameter correlation
function

Cg(12) =
& |t(1)g(2)& (2)

has a qualitatively difFerent behavior for small C~ than

that predicted by existing Gaussian theories. Existing
theories give

Cp = [Cy/l(o] (3)

while the numerical work by BBS indicates that C~ goes

to zero much faster than C& for small C&. It seems clear
that one must go beyond the Gaussian approximation to
obtain this result.

We develop here a general theory where the Gaussian
approximation serves as an accurate zeroth-order ap-
proximation. More particularly, it is shown that by in-
cluding the first non-Gaussian correction the result of
BBSdescribed above is obtained in a nontrivial manner.

II. PROBLEM STATEMENT

The theory discussed here has been applied to a variety
of different ordering systems: Systems with a NCOP sca-
lar order parameter are treated in Refs. [1,7—9], a NCOP
O(n)-symmetric order parameter in Refs. [2,7,9—11], a
NCOP q-state Potts model in Ref. [12], a COP scalar or-
der parameter in Refs. [3,13],and a COP O(n)-symmetric
order parameter in Ref. [14]. In all but the conserved
scalar order-parameter case the application of the theory
is a rather direct and simple application of the theory
developed in Ref. [1]. Since many of the main points of
the theory are apparent from the case of a scalar NCOP,
the discussion here will be restricted to that case.

In the case of interest here, the dynamics of a scalar or-
der parameter g(R, t) are generated by a Langevin equa-
tion of the time-dependent Ginzburg-Landau (TDGL)

out, based on direct numerical evaluation, that a plot of
the quantity

& [tto —0'(1)][4o—0'(2) ] &

C (12)=
z

& [Ig—y'(I)] && [lg —lP'(2)] &
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type: where

&(1)=(V"(o(1))}.. (16)

The noise i} in Eq. (4}, as usual, is assumed to be Gauss-
ian with variance

( Z(1)Z(2) ) =2k, rr5( 12),

In this last expression, the average is over an appropriate
probability distribution governing the o. degrees of free-
dom to be discussed below. The original Langevin equa-
tion then takes the form

where T is the temperature of the driving bath and, for
example, 1 is shorthand notation for (R„t, ) and

A„(1)u(1)=7}(1)—I U(1),

where U(1) is defined by

(17)

5(12)=5(R,—R, )5(t, r,—) . (6) U(1)= V'(o(1)+ W(1)+u (1))
In Eq. (4), V(g) is a degenerate, double-welled potential
with minima at $0 and I' is a kinetic coefficient. The
physical situation of interest corresponds to a rapid tem-
perature quench at time to from an initial disordered
state to a final bath temperature T below the ordering
temperature. In practice, one quenches from an initial
state characterized by random (Gaussian) initial condi-
tions with variance

( $0(R)gp(R ) ) E05R, R' (7)

where $0(R) =P(R, tp). Thus the initial state is assumed
to be completely disordered. The analysis is restricted
here, for simplicity, to the high symmetry case of a criti-
cal quench where the average of the order parameter van-
ishes,

where

(10)

III. FORMAL DEVELOPMENT

A compact discussion of the method developed in Ref.
[1] starts with the introduction of a translation of the or-
der parameter of the form

It will be useful in the discussion below to rewrite the
equation of motion Eq. (4) in the form

(9)

—V'(o (1)) —Q(1)[ W(1)+u (1)] .

The expectation is that U(1) can be treated as a pertur-
bation in the long-time limit. Equation (17}plus the sup-
porting definitions are simply a redefinition of the origi-
nal problem. There have been no approximations, and
(17) is true for general choices for cr(1).

The key points in the development, as first pointed out
in Ref. [15], is that there should be a clear separation of
the variables o. and u for long times, and if one is to get
started on a quantitative theory, one should be able to
neglect the perturbation U. As time evolves, the system
orders and fl becomes positive. This means that the
propagator A„, defined by Eq. (15), develops a mass and
the u variable is rendered stable. This has the conse-
quence that u decays exponentially to zero in the long-
time limit and for quenches to T=O. For nonzero tem-
peratures, for long times, the field u describes the Auctua-
tions in an ordered domain.

If U is to be small, then one must require that W and B
[which are linearly related by Eq. (12)] be small in the
long-time limit. It is at this stage in the development
where one has a choice. How are the degrees of freedom
0, which govern 8, to be defined?

The key step, developed in Ref. [1], is the introduction
of an auxiliary field m which is smoother than f, but
whose zeros coincide with the interfaces of g. This field

m (R, t) has the physical interpretation that its magnitude
gives the distance from R to the nearest interface. This
physical picture can be realized by assuming that cr(m)
satisfies the equation for an equilibrium interface:

P(1)=o(1)+W(1)+u (1), —,'o z(m) = V'(o (m ) ), (19)

B (1)=A(1)o (1)+I V'(o (1))

and 6„ is the Green's function

A„(1)G„(12)=5(12)

for the operator A„:

A„(1)=A(1)+rn(1),

(13)

(14)

(15)

where u (1) is an independent fluctuating field and o (1)
and W(1) are to be determined. Next make the choice
for W(1) given by

W(1)= —fd2G„(12)B(2), (12)

where

with m the associated coordinate. In Eq. (19) the factor —,
'

is inserted for convenience, cr „(m )—:8"o( m ) /Bm ", and
the boundary conditions are lim + cr =+$0. It should
be clear from the physics of the situation that at long
times the fields m and u are essentially independent and
should be viewed as fluctuating in separate function
spaces. As such, as pointed out in some detail in Ref.
[15],one must introduce a probability distribution P [m]
which governs the m fields. It is the average over P [m]
which appears in the definition of 0(1).

Having transferred attention from 0. to m, one is sti11
left with the task of constructing 8 to be small. At the
formal level, the simplest choice guaranteeing [11] that
8 (1) be small is to choose
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8 (1)=A(1)o (1)+I V'(o (1))=0 . (20) IV. POST-GAUSSIAN APPROXIMATIONS

8(1)=1/t =1/L", (22)

where L is the growth law and n is the growth exponent.
The Gaussian approximation for P[m], coupled with

Eq. (21), leads to a very good zeroth-order approximation
for the scaling function. Here we are concerned with the
limitations of this theory. How does it break down and
how could one improve it?

This is equivalent to assuming that cr satisfy the original
equation of motion with P~o for a quench to zero tem-
perature where the noise can be set to zero. This choice
implicitly determines the underlying probability distribu-
tion P[m] governing the variable m. In Ref. [1] a
different approach was taken. Instead of taking 8 (1)=0,
it was assumed that weighted averages of 8 (1}are zero.
Since (8(1)) =0 by symmetry, the simplest nonzero
average is given by

(21)

Assuming that P [m] is a Gaussian distribution, Eq. (21)
is sufficient to determine the variance ( m (1)m (2) ) and
all other averages over m.

It was found in Ref. [1] that these conditions are
sufficient to make the o variable order. If the o variable
orders, then o approaches its uniform value $0 and
A(1)tr(1) and V'(tr ) approach zero in the long-time limit.
Thus while 8 (1) is not identically zero, it will be small.
In the scaling regime, one estimates

How can one gain some control [16] over P [m] in a
near-Gaussian context? One can begin by assuming that
m is governed by a general probability distribution P [m]
given by an expansion in terms of generalized Hermite
polynomials:

P[m]=e ' g A„(1,2, . . . , n}H„(1,2, . . . , n},
n=p

(23)

Xe
—K fm]

(24)

where

Ko[m] =—f d) d2 m(1)CO '(12)m (2) (25)

and Co ' (12) is the matrix inverse of Co (12),

3Co 13 Co 32 = 12 (26)

The set of functions H„(1,2, . . . , n) form a complete
orthogonal functional set in that any functional d [m]
can be expanded in the form

where integrals over repeated indices are implied and the
generalized Hermite polynomials are defined by the func-
tional derivatives

Ko [m} 5"
5m (1)5m (2) 5m (n)

d [m]= g fd 1 d2 dn a„(1,2, . . . , n) fd 1'd2' dn'Co(11')Co(22') Co(nn')H„(1', 2', . . . , n')
n=0

and the expansion coefBcients a„are given by the averages

a„(1,2, . . . , n)=, (d [m]H„(1,2, . . . , n})0,1

n~

where ( )0 indicates an average over the Gaussian probability distribution

(27)

(28)

—K [m]
e

P[][m]=
Zp

(29)

and Zo is a constant chosen such that Po[m) is properly normalized (1)0=1. Equation (28) follows from the ortho-
gonality relations

fd 1"d 2" dn" C[](1'1")Co(2'2" ) Co(n 'n "
) (H„(1,2, . . . , n )H„.( 1',2', . . . , n

'
) )o

=5„„.I(1,2, . . . , n; 1', 2', . . . , n'), (30)

where I is the product of 5 functions which are symmetric under interchange of any two labels in the primed or
unprimed set and conveniently defined by the functional derivatives

5"[m(1'}m(2') . m(n'}]
5m (1)5m (2) 5m (n)

(31)

Carrying out averages over the general probability distribution P [m] is rather convenient. It should be clear that
essentially all averages of interest can be obtained from the generating functional
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4'(D]=(exp f d(D(1(m(T(

QO

fdl12. dn A„(1,2, . . . , n) H„(1,2, . . . , n)exp fdl D(1)m(1)
n=0

(32)

where D(1) is an arbitrary function. The associated Gaussian average is straightforward to evaluate given the
definition of the H„with the final result

S[D]= g fdl d2 dn A„(1,2, . . . , n)D(1)D(2) D(n)exp f dl d2 D(—1)D(2)C0(12)
n=0

{33)

where

C0(12)= & m (1)m (2) }0 . (34)

—x /2S 0A„'"(1)
p(x;1)= g H„(x/QS0)

„=0 So V 2mS0
(39)

e ' D1 =Ik 112' (35)

With this choice for D and the result (33), we easily ob-
tain

Averages can be categorized by the number of distinct
space-time points involved in the average. For example,
all averages which depend on m at the same space-time
point can be evaluated in terms of the quantity

p(x;1)= &5(x —m (1)}}
dk

&

—ik(x —D((1)) }
2~

'
A (0)(1)

g(0)( 1 )

0

(40)

and that A„-L".
Averages which depend on a single space-time point

are given then by

where the H„are simply related to the usual set of Her-
mite polynomials. This result indicates that p is a func-
tion of x/QS0 and that function can be expanded in

terms of the complete set of Hermite polynomials. It also
indicates that the natural set of expansion coefficients is

given by

p(x;1)= g A„(1,1, . . . , I)f e '"'(ik)"e
n=0 277

& {(([m(1)] ) = fdx {(}[x]p(x;1) . (41)

where

(36) This can be expressed, after using the defining equation
for the H„and n integrations by parts, as

S (1)=&m (I)} (37)
&y[ (I)]}=y A„")(1)&y„(I)}o,

n=0
(42)

A„' '(1)= A„(1,1, . . . , 1) . (38)

All of the coefficients A„are evaluated at a single space-
time point, and so one can define

where we introduce the convenient notation

d"
{t(„[m(1)]—= P[m (1)] .

dm "(1)
(43)

It is then easy to show that p(x;1) can be written in the
form

Turning to the more interesting case of two-point aver-

ages, we easily find that

p(x), xz,'1, 2) = & 5(x) —m (1))5(x2 —m (2) ) )

dk, dk2 'klx I ik2x2
e ' ' ' 'g[D{1)=ik)5(11)+ik25{12)]

2m 2'
=f '

e
' '"'e ' '"'g fdl d2. dnA„(1, 2, . . . , n)[ik)5(11)+ik25(12)][ik)5(21)+ik25(22)]

2m 2'
X [ik)5(n 1)+ik25(n2)]expI —

—,'[(k) +kq)S0+2k)kqC0(12)]] .

(44)

This result, after doing the k
&

and k2 integrations, can be put in the form

oo n d d
p(x, ,x2;1,2)= g ( —1)"g '

A„.,(1,2) p()(x,x2;12),
0 s. n s). ' dx) dx2

(45)
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where p~ is the Gaussian result

po(xi x2, 12)= exp — [x, +xz —2x,xzf] . ,= r . -r'
2mSO 2SO

where

Co(12)f (12)=
So(12)

So(12)=+So(1)SO(2),

and

(46}

(47)

y(12)=[1—f (12)] (49)

We have also introduced the notation A„.,(1;2) to indicate that A„has s arguments equal to 2 and n —s arguments

equal to l. It is clear that general two-point averages can be written in the form

0 s!(n —s)!

= (p(1)y(2) &0+ Aq(11)($2(1)y(2) &0+2A2(12)(pi(1)yi(2) &0

+ A 2(22) ( y(1)y2(2) &0+ A4(1111)( yg(1)y(2) &Q

+4A~(1112)($3(1)y,(2) &0+6A~(1122)(pi(1)y~(2) &0

+4 A ~(1222) ( $,(1)y3(2) &0+ A ~(2222) ( $(1)y4(2) &0+ (50)

Here we assume a symmetric quench such that all A„
with odd n vanish. For n =2 there is an additional
(beyond Co) independent function A2(12) for determin-
ing all two-point functions. If one includes n =4 terms,
there are two additional independent functions A~(1112)
and A4(1122).

The idea is to use a sequence of constraints to deter-
mine the coefficients A„. Since ultimately one requires
that the quantity 8(1) be small, one can choose the
coefficients A„, up to order n, by enforcing the con-
straints

(&(I) (2)&,=0, (53)

( (1) (2)& =$0F( ),
F(x)=—sin f(x),2

(54)

(55)

and

where ( &o indicates a Gaussian average. Equation (53)
leads, in the scaling regime, to an equation for the vari-
ance f (x). In evaluating the average given by (53) for the
case of equal times t

&

= t2 = t, we need the results

(&(1)a(2)& =0,
(&(1)o(2)o(3}o(4)& =0,

(51)

(52)

(56)

etc., up to level n. In principle, as n increases, one might
suppose that the theory enforces the condition that 8 (1)
be small more effectively. In the work here, we will look
at the lowest-order versions of this theory. While this
scheme might look unwieldy and arbitrary at first sight,
we shall see below that it is practica1 and contains some
elegant features. There are indications that the expan-
sion sequence in n converges rather rapidly. We do not
yet know why this may be the case.

In the next section, we review the theory obtained at
the Gaussian level. This is followed in the next section by
considering the case where we keep terms at level n =2.

V. GAUSSIAN THEORY

20o

ISO(1) 2
(57)

—pox VF(x ) = tan F+V F, — (58)

where 2I po=LL. The solution of this equation is dis-
cussed in some detail in Refs. [1,17]. The key points in-
volved in solving Eq. (58}follow from a study of its short-
and long-distance solutions. For short-scaled distances, F
is given by

where x = ~Ri —R2~ /L and L (t)=ISO(t) The—equation.
of motion [Eq. (53)] in the case of equal times reduces to
the scaling equation obtained in Ref. [1]:

The case where P [m] is Gaussian corresponds to
A„=O for n & 0. In this case we can only impose the sin-
gle constraint

F(x)=1—aox(1+P~x+P3x + . )

for small x, where

(59)
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2
m(d —1)

' 1/2

(60)

P,„,„=O, and P3 is given in [1]. For large x, where F is
small, we can again solve Eq. (58) analytically. There is a
growing exponential solution, an algebraically decaying
solution, and the physically acceptable exponentially de-
caying solution given by

e
—px /2

F(x)=F„ (61)

7T

4pp
(63)

and the values obtained for pp and A, from the eigenvalue
problem are in good agreement with numerical deter-
minations of A, .

The matching of the short-distance and the physically ac-
ceptable long-distance behavior can only be achieved for
a selected value for p. One therefore has a nonlinear ei-
genvalue problem with pp=1. 104. . . for d=2, while
pp=0. 5917. . . for d =3.

A major accomplishment of the theory [18] is to give
good estimates for the nonequilibrium exponent A, [19]
characterizing the two-time autocorrelation function

(P(O, t)f(O, t')) -L, '(t)

for t &&t'. The theory gives the relationship

0„1(12)= (8(1)o. "(1)o '+'(2) ) =0,
Q„&(12)=(8(1) o "+'(1)o '{2))=0,

(68)

(69)

for integers n and 1, and the superscripts 0 and E stand
for odd and even sectors.

In principle, this gives an infinite number of conditions
to be satisfied by choosing two functions
[Cp(12), A2(12)]. Surprisingly, as we shall see, these can
be chosen such that (67) and (69) can be satisfied for all n

and 1 and (68) can be satisfied for n =1=0 and is "small"
for all other values of n and l.

Let us look first at the condition setting Q„(1) to zero.
After minor rearrangements, this can be written in the
form

1 8
( '"+'( 1 ) ) +—( ,( 1 )

'" + '( 1 ) )
1

2n+2 Bt, 2

—( V'o (1)o'"+'( I ) ) =0 . (70)

We are interested in this relation in the long-time large-L
limit where we can show, using (42),

K~
(o n+ (1))=y ~+ + — +0(L ) (71)

Here we want to be slightly more ambitious, and in this
case where P [m ] is characterized by [Cp A 2 ] we wailt to
try to enforce essentially all one- and two-point averages
of the form

fl„( 1 ) = (8 ( 1 )o " '(1) ) =0,

VI. THEORY FOR A20

Consider the theory where averages are over P[m]
given by Eq (23) w. ith all A„=O except for n =0 and 2.
We call this the n =2 theory. For simplicity, here we re-
strict the analysis to the case of equal times t=t, =t2.
The final results are presented in terms of the two quanti-
ties f (x) and

where ~„ is a time-independent integral given by

—f d [ 2n+2( ) q2n+2]

and

( (1) Zn+1(1)) — &(1)+01 1

&2L " L

(72)

(73)

A2(R1 —R2, t)
g(x)=

Sp(t)
(64)

where

~'„"=f" dx o2(x)o2" +'(x) (74)

In this case g(x) is a measure of the non-Gaussian
corrections. One has by construction f (0)=1. In this
analysis one sees that in evaluating two-point averages in
the scaling regime that g (0) is typically multiplied by fac-
tors of y. Since as R goes to 0, f goes to 1, and y blows
up, for consistency, we must eventually choose
g(0)= A2(11)=0. Since this result simplifies the subse-
quent analysis considerably, we enforce this condition at
the beginning.

The order-parameter scaling function is related to f
and g by

In evaluating the terms depending on the Laplacian of a,
we make use of the local dependence of o on m to write

V o=o2(Vm) +o,V m . (75)

( V 2 (1) 2n+1(1) ) d121 1 ~(1)' +2~S, " (76)

Using the results reported in the Appendix for evaluating
averages over gradients of fields, we obtain, to leading or-
der in I

F(x)=—[sin f+2yg) .2
(65) 0 0 2

Sp1 '= lim —V„Cp(R, t),
{77)

At the end of Sec. IV, it was suggested that for a prob-
ability distribution P[m] characterized by coefficients
[Cp, A 2, A 4, . . . , A„] one can impose n + 1 conditions of
the form

(8(1) (2) (3) . . ( +1))=0. (66)

A"'= lim —V' A, (R, t) .

Combining all of these results, the n conditions given by
(67) reduce to the simple result
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1

2m.S
(80)

or

d(2) —(
0 (81)

(l+n+ i]
0

[2Qi+ [)rI '(21+ I )+a'„(2n+ 1)]Qq],

(82)

where

Q, =y(f+2gy )+V F,
3

Qi= 2 [4nA~~)g +. 4fVf Vg

(83)

The condition Q„((12}=0,in the scaling regime, can be
rewritten in the form

8 (g&&+)(1)g&(+)(2) )

While Qz is not zero, it turns out to be small (
~ Qz ~

& 0.08)
for all x. It should also be noted here why the conditions
Q, =O and Q„(=0 are enforced in the n =2 approxima-
tion rather than replace one of them with the condition
02=0. The reason is that one can only satisfy 02=0 for
large x by choosing A2' '=0. Clearly, this choice then
precludes a nontrivial solution for the eigenvalue problem
determining f and g discussed below.

Nate, at this point, we have two parameters left in the
problem p and A P). We also have the constraint, since

So )+2A(z '=
—,
' and, since by definition, So ' ~0, that

Az ' ~
—,'. In our previous work, we found that p was

determined by a nonlinear eigenvalue problem. So also
we will find here that A i(

' is determined as part of a more
elaborate nonlinear eigenvalue problem.

For the coupled set of equations, it turns out to be con-
venient, instead of working with the independent vari-
ables f and g, to work with the physical observable F and
the quantity

4H= ——yg .
7r

+(Vf) [f+2gy (I +2f')]],
( 2n+1(1) 2(+1(2) ) y2n+2( 2+F( )x (85)

f and g are then given in terms of F and H by

(2) ( y2n+1 f dx (x)[g&~(x)] (86)

Similarly, Q„((12)=0 takes the form, to lowest order in

L
—1

f=sin (F+H)—7r

2

g = — Hcos —(F+H)—
4 2

(93)

(94)

21 + y'
l —1n+1 nl 22m Sp

X[4rrA'z 'gf+4Vg Vf+(Vf) (1+6gfy )]=0,
(87)

In terms of these variables, the basic equations take the
form

V F+(Mx VF(x)+tan (F+H)—
2

where

K —K Kn, l n l (88)
and

7T H =0 (95)
2 cos [(m/2)(F+H)]

It is clear that within our current approximation where
we have to determine two independent functions f and g
we cannot satisfy both sets of equations for all n and l.
Instead, we will satisfy (68) for n =1=0, (69) for all n and
1, and then check to see if Qz is small. Since, to lowest or-
der in L ', we have from (82), for n =1=0,

a()qb 2H'(F'+H')+—(F'+H') (1+b)=0, (96)

apq =2 (97)

where ao is given by (60}. It is convenient to introduce
the quantity q defined by

8A' '
2

pxF'=fy+2gy—+V F, (89)

where 2I p =LL, while (87) becomes, remembering
(2)
0

4m A z' 'gf+4Vg Vf+ ( Vf ) (1+6gfy ) =0 . (90)

and

b = — H tan (F+H—)—7r

2 2
(98)

Using this last equation, we can rewrite the expression
for 0& in the form

3

Qz= [8mAz()g+8n. SogVf. Vg

+2nSO(Vf) [f+2gy (1+2f )]]

Equation (96}can be solved for H' to obtain

bF' Q(F') +aoqb(1 —b)—H'= (99)

Again, in the short-distance regime we have an expansion
of the form

3
=4 y g[2~A(~)(1 f~)—(Vf) ]— F(x)=1—ax(1+Pzx+P3x + . . ~ ),

(91)
where now

(100)
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and

&q (q+2)
q+1

q(q +3) IM+ (~/6) [1+2/(q +2)']
[6(d —1 ) +3(2d + 1 )q + (2d + 1 )q ]

while 0 has the expansion

H(x)= —box(1+hzx+h3x + . ),
where

Aho=-
q

h„,„=O, and

q(q+1) (7q+9)
h, =

6(d —1) (q+1)' (q+3)2+ 3

(102)

(103)

(104)

(105)

0.6

F 0.5

0.3

0.2

0. 1

0
0 0.5 1.5 2.5 3.5

FIG. 2. Scaling function F(x) vs scaled distance x for d =3.
The dashed line is the Gaussian result, and the solid line is the

result for the n =2 model.

%e expect for large x that F and H will decay to zero
and we find that Eq. (95) reduces to the same linear equa-
tion satisfied by F in the Gaussian case. Therefore F for
large x is again given by (61), but with po replaced by p,

given by the solution for the coupled set of equations for
F and H. Then, since F'/F &&1, one sees that the physi-
cal solution for the equation determining H is given by

(106)

OI

0. 18

0.16

0.14

0. 12

0. 1

0.08

0.06

f = 4g—
Since for large x we also have

f+2g= F, —
2

we can solve for f and g to obtain

and

(107)

(108)

(109)

Q. 04

0.02

0
0

FIG. 3. Function H(x) vs scaled distance x for d =d =2 and 3.
The dashed line is the d =3 result, and the solid line is the d =2
result.
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X
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0
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FIG. 1. Scaling function I' (x}vs scaled distance x for d =2.
The dashed line is the Gaussian result, and the solid line is the

result for the n =2 model.

F&&. 4. Higher-order correlation function FF vs C for

d =2. The dashed line is the Gaussian result, and the solid line

is the result for the n =2 model.
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VII. HIGHER-ORDER QUANTITY C ~

F

We turn next to the higher-order correlation function
C 2 defined by Eq. (1). Using the techniques developed

above, it is easy to see that within the n =2 theory this
quantity is given in the scaling regime by

C~=y(1+2gfy ) 1—

or, in terms of the variables F and H,

FIG. 5. Higher-order correlation function F2 vs C~ for

d =3. The dashed line is the Gaussian result, and the solid line

is the result for the n =2 model.

1+b
cos[(~/2)(F+ H) ]

In the Gaussian approximation, we have

CG 1 —1.
cos[(n./2)F]

For large x, where F is small, this reduces to

CG P2

(112)

(113)

(114)

g= ——p
4

In this case, in connecting the small- and large-x solu-
tions, we obtain a double-eigenvalue problem for p and q.

The numerical solution of the coupled set (95) and (99)
has several points which require attention. While one
must, in a rough sense, choose p such that I' approaches
the form (61), one must also be careful to avoid those
values of q for which the argument of the square root in
(99) is negative. The solution F=H for large x divides
two unstable solutions for H. Another technical problem
is the matching of the short-distance expressions for H'
and F" resulting from (103) and (100) to those given by
(99) and (95).

The scaling functions F(x) and H(x) for d=2 are
shown in Figs. 1 and 2. The associated eigenvalues are
p=0. 8271. . . and q =0.54221. . . . Also included in Fig.
1 is F(x) found in the Gaussian case. The scaled length
in both cases is chosen such that F(x ) = 1 —apx +
for small x. This is equivalent to a change in the growth
law from L (t) to L(t)=(ap/a)L (t). It is clear that the
extended theory lies slightly below the Gaussian theory
for intermediate values of x. This is clearly in the direc-
tion of better agreement with the numerical results as
given by Fig. 1 of Ref. [17]. The three-dimensional re-
sults for F and H are given in Figs. 3 and 2, respectively.
The three-dimensional eigenvslues are given by
p =0.519 80. . . and q =0.774 59. . ..

It is not difficult to show that the expression relating
the nonequilibrium exponent A, to the eigenvalue p is still
given by A, =d n/4p Thi—s f.ollow. s primarily because,
for small F, the terms not involving a gradient in Eq. (95)
reduce to (n./2)E and are independent of M. Cxiven the
new values of p, we obtain A. =1.050. . . in two dimen-
sions and A, =1.489. . . in three dimensions. Given the
numerical results for A, reported in Ref. [8], one sees that
the two-dimensional result is now in poorer agreement
compared to the Gaussian case, while the three-
dimensional value is in somewhat better agreement com-
pared to the Gaussian result.

as first obtained by BBS. In the n=2 theory, in the
large-x limit where both F and H are small, we obtain

C g= (F H)—
8

(115)

We see then that the observed numerical behavior that
C 2 goes to zero faster than I' occurs only when we

satisfy the double-eigenvalue problem which selects
I' =H. We show, in Figs. 4 and 5, I' plotted versus C 2

as in BBS for two and three dimensions, respectively.
While we do not obtain C 2 going negative in two dimen-

sions as in the numerical studies, clearly the theory gives
much better agreement compared with the Gaussian
theory.

VIII. CONCLUSIONS

A more general approach to the theory of growth
kinetics, which goes beyond the limitations of the Gauss-
ian approximation for an auxiliary field, has been present-
ed. The theory is developed in terms of a rather general
probability distribution characterized by a set of func-
tions [ Cp, A 2, A 4, . . .]. It is shown that if one truncates
this set at low order averages of the original equation of
motion can be used to determine, for example, Co and A 2

in the n =2 approximation. It is very encouraging that
the simple set [Cp Ap ] can satisfy almost all of the con-
straints given by Eqs. (67)—(69). Indeed, one obtains
universal forms for [Cp/Sp, A2/SpI and general im-
provement in the theory compared to the Gaussian ap-
proximation where all A„=O for n )0. It is a bit surpris-
ing that the scaling equations determining f and g con-
tain just the two additional parameters p and A ~

' needed
to satisfy the coupled nonlinear eigenvalue problem.

This success raises a number of intriguing questions.
Can one continue to add additional functions A4, A6, . . .
and obtain improvement in the theory? If one includes
the A4 term in the analysis, can one satisfy all of the con-
straints given by Eqs. (67)—(69)? This seems likely. What
additional constraints can one then impose'? Why do the
set of equations labeled by general integers n snd l reduce
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down to just three independent equations in the scaling
regime? Why use the set of moments given by Eqs.
(67)—(69) to determine f and g? How can this process be
systemized? %hat is the general structure at work?
There is much work to be done in this area.
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AFFKNDIX

Matrix elements involving gradients for the n =2 approximation can be evaluated for general functions of 8 [m] and
E [m] in the form

&E(1)[V' m(1)]B(2))= —dp{ }Mtp+V Dp(12)Mp, —S(' }[A2 }(M3p+M,2)+2A2(12)M~)]

+V Cp(12)[A2 '(M2, +Mp3)+2A2(12)M, 2],
where

and

Dp(12) =Cp(12)+2A 2(12),

Sp = V Cp(12)lt

dp '= —V Dp(12)t,

M„,= &E„(1)a,(2) ), ,

A' '= A (11) .

(A2)

(A3)

(A4)

(A6)

Similarly,

&E(1)(Vm) 8(2) ) =dp }Mop+So{ '[A z }(M2p+Mpz)+2A2(12)M&& ]+4VAz(12) VCp(12)Mpz

+ [VCp(12)] [Mpp+ A p Mz2+2 A p(12)Mt3+ A P Mp4] . (A7)

The special case where 8 is a constant gives the one-point quantities

&E(1)V m(1)) = —d' '&E, &,
—S,"'A',"&E,)

&E(1)(V ) )=d' '&E) +S' 'A' }&E ) (A9)
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