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Chaos and the quantum-classical correspondence in the kicked pendulum
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The problem of determining the quantum signature of a classically chaotic system is studied for the
periodically kicked pendulum. In parallel with the observation that chaos creates exponential growth of
intrinsic fluctuations in classical, macroscopic, dissipative systems, we find that the quantum variances
initially grow exponentially if the corresponding classical description is chaotic. The rate of growth is
connected to the corresponding classical Jacobi matrix and, thereby, to the largest classical Liapunov ex-

ponent. These connections are established by examining the correspondence between the quantum
Husimi-0 Connell-Wigner distribution and the classical Liouville distribution for an ensemble. Explicit
results for the kicked pendulum are presented.

PACS number(s): 05.45.+b, 03.65.Bz

I. INTRODUCTION

In a series of recent papers [1—3], it has been demon-
strated that the covariances of the intrinsic fluctuations
in classical, macroscopic, dissipative systems initially
grow exponentially when the system is chaotic. The con-
nection between chaos and the growth of fluctuations de-
pends upon the central role played by the Jacobi matrix
[3] in both the theories for chaos and for fluctuations.
This quantity is simultaneously responsible for determin-
ing: (a) whether or not the largest Liapunov exponent is
positive (we take this characteristic to be the definition of
chaos for systems with bounded phase-space flows), and
(b) the rate of time evolution of the fluctuation covari-
ances. To establish this connection, it is necessary to ex-
tract the classical, macroscopic description from an un-
derlying mesoscopic description given by a master equa-
tion [4]. As a result, it is seen how the macroscopic equa-
tions emerge from the mesoscopic description in an ap-
propriate limit. In addition, other limits [5,6] provide the
dynamics for the associated intrinsic fluctuations.

It has already been observed [3] that the quantum-
classical correspondence for a potentially chaotic, conser-
vative, classical system can be expressed in terms of the
correspondence [7] between the time evolution of the
Wigner distribution and the Liouville equation for the
time evolution of a classical phase-space distribution. It
was shown [3] that the initial rate of growth of quantum
variances was directly tied to the time evolving Jacobi
matrix for the classical motion. In this paper, we refine
this connection by focusing on the Husimi-0Connell-
Wigner [8,9] distribution and its more precise correspon-
dence with Liouville's equation for an initially Gaussian
ensemble. The Gaussian ensemble reflects the unavoid-
able uncertainty in initial conditions. This uncertainty is
intrinsic to both the quantum and the classical descrip-
tions. We also show that statistics obtained from the
time evolution of the Husimi-0 Connell-Wigner distribu-
tion can be realized numerically much more efficiently by
following the time evolution of an appropriately con-
structed, initially Gaussian, wave packet. This cir-

cumstance parallels the relative ease with which it is pos-
sible to numerically implement the Fokker-Planck equa-
tion and its associated Langevin equivalent.

In this paper, these general and rather formal con-
siderations are exhibited by the periodically kicked pen-
dulum [10]. It is important to emphasize that our ex-
ponential growth results are not in conflict with the well-
known diffusive growth rates so often quoted in the
literature [11,12] for the chaotic parameter domain of the
kicked pendulum.

' This difference is a result of effectively
different initial conditions and we show that for initially
sharp Gaussian distributions, there is always an initial ex-
ponential growth stage, possibly followed by a transition
into a diffusive stage. This is dramatically exhibited in
our numerical results where we show, for the ultrasuper-
critical parameter regime, the exponential growth of the
variances around a subcritically stable elliptical center.
We also obtain a quantitative connection between the
rate of growth of the quantum variances during the ex-
ponential stage and the transient expansion rate [13—15].

With these results, we establish the efficacy in charac-
terizing "the quantum signature of classical chaos" by
the initially exponential growth of quantum variances for
initially sharp wave packets.

II. THE CENTRAL ROLE OF THE JACOBI MATRIX

A. Classical chaos

In this section, the central role played by the Jacobi
matrix is reviewed. Consider a macroscopic description
given in terms of N coupled nonlinear ordinary
differential equations

—x (t)=F (x(t))
d
dt

in which the index i has X possible values and the forcing
functions, F;, are generally nonlinear. Even partial
differential equations can be rendered in this form, at
least approximately (e.g., by mode expansions followed
by Galerkin truncations). If the flow described by Eq. (1)
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is bounded, then we take as the definition of chaos the ex-
istence of a positive largest Liapunov exponent, A, . This
means that very small initial differences, b,x(0), in initial
conditions grow exponentially, at least until the threshold
for nonlinearities is crossed:

—p(x, t)= g g (K„'"'„„(x)P(x,t)) .8 "
( —1)"

J

b,x(t) —e 'hx(0) . (2) C. The macroscopic limit of the Kramers-Moyal expansion

Underlying this exponential growth is the Jacobi matrix
for the flow, J;&, defined by

aF, (x(t))
&;k(x(t) )=

Bxp t)

It is easy to show that b,x(t) satisfies the equation

—bx, =J,„(x(t))bx„,d

which has the solution

The 0 scaling of the W moments given in Eq. (7) leads
to the Q~oo macroscopic limit approximation for the
master equation given by

—P(x, t)= — [K&"(x)P(x,t)] .
a

dt clxk

This partial differential equation has the very special
property that it is first order in both the t derivative and
in the xk derivatives. This means that it can have Dirac
5 function solutions

b,x(t)=expr f dsJ(x(s)) hx(0),
0

P(x, t) =5(x—x(t)),

in which x; (t) satisfies the equation

(10)

in which expr( ) denotes the forward-in-time time or-
dered exponential. Together, Eqs. (2) and (5) demon-
strate the fundamental dependence of the largest
Liapunov exponent on the time evolving Jacobi matrix.
We return to this issue in Sec. IV D.

B. The Kramers-Moyal expansion for the master equation

Any macroscopic description such as given by Eq. (1)
describes deterministic dynamics without any account be-
ing made for possible fluctuations. Since the underlying
microscopic dynamics is both molecular and thermal,
there are necessarily intrinsic fluctuations associated with
the deterministic dynamics. One very general way to for-
malize this physical circumstance is to extract Eq (1).
from an underlying mesoscopic dynamics given by a mas-
ter equation [4]. This equation describes the time evolu-
tion of a probability distribution, P (x, t ), for the fluctuat-
ing values of x(t}

—P(x, t)= Jd x'[W(x, x')P(x', t) —W(x', x)P(x, t)],

—x (t)=E"'(x(t)) .
d
dt

F =X'".
l l

(12)

D. Central limit theorem treatment of the fluctuations

Obviously the macroscopic limit is too severe since it
completely eliminates the fluctuations. A central limit
theorem exists for the fluctuations [4]. This limit is also
called the van Kampen system size expansion and is an
expansion in the smallness parameter 0 ' . The time
evolution for the probability distribution, 4(y, t), for the
scaled deviations, y, from the deterministic solutions,
x(t), is given by the linear Fokker-Planck equation (by
linear, we mean a linear streaming term, the E;"' term)

Thus, we can say that the macroscopic description, Eq.
(1), has emerged from the underlying master equation if
we identify the macroscopic forcing functions, F, , with

the first W moment, K,"', i.e.,

in which W(x, x') denotes the transition rates from x'

values to x values. For processes called jump processes,
W(x, x') is nonzero only for molecular sized transitions.
This property can be formalized by introducing the W
moments, X; ",-', , defined by12''n

d"x'(x' —x )
ll l2. . . & l

1
1

1

X(x,' —x, ) (x —x; )W(x, x')
n

c&(y, t) =——B

Bt

where

x=x(t)+0 '
y

and

R,' '(x(t))= lim QK~ '(x(t)) .

K,"'(x(t))y 4(y, t)
Byl Bxj

82
+— [R,' '(x(t) )4(y, t )],

2 By, By,

(14)

(15)

&
—(n —&)

7 (7)

in which 0 denotes the system size and in which the fall
off of the higher moments with system size is indicated.
This leads to the Kramers-Moyal expansion [4] for the
master equation as an infinite order partial differential
equation

This limit theorem provides the dynamics of the fluctua-
tions in the small fluctuation regime. This is reflected by
the fact that the streaming term of the equation is linear
in the y 's. Moreover, both the first and second 8' mo-

ment factors are evaluated as functions of the determinis-
tic solutions x(t). Note, in particular, [cf. Eq. (12)] that



49 CHAOS AND THE QUANTUM-CLASSICAL CORRESPONDENCE. . . 3685

the y. coeScients in the first term on the right-hand side
are precisely the Jacobi matrix elements for the deter-
ministic flow.

K. The time evolution of the covariance matrix

master equation to order ln(Q)/Q. This is actually better
than for the central limit theorem result, although it
reduces to it when the fluctuations remain small, as, for
example, during nonchaotic dynamics.

When the fluctuations are large enough, the macro-
scopic limit fails to emerge because

The covariance matrix for the fluctuations at time t is
defined by

K,'"(x)AK,'"(x(t)} (19)

C, (t)=(y,y, &, , (16) and

in which ( &, denotes averaging with respect to the dis-
tribution 4(y, t}. The time evolution of C," follows
directly from the Eq. (13):

C—k(t) =J;,(t)CJk(t)+ C;, (t)Jk, (t)+R,',"(t) .
t

(17)

We have previously shown [3] that chaos in the deter-
ministic flow implies exponential initial growth of the co-
variances at a rate that is twice the largest positive
Liapunov exponent for the deterministic flow. This is
directly a result of the presence of the Jacobi matrix in
Eq. (17).

In this context, it is natural to choose all of the Cjk(0)'s
to be zero and to let them grow from the inhomogeneous
R '(t) terms.

F. Kurtz' limit theorem
for the nonlinear Suctuation regime

When the covariances of the fluctuations have grown
sufficiently large, the linear Fokker-Planck equation, Eq.
(13), loses its validity. For jump processes satisfying Eq.
(7), it has been shown that sample paths determined by
the linear Fokker-Planck equation approximate sample
paths for the underlying master equation to order 0
However, when the fluctuations have grown too large for
the linear approximation, another limit theorem has been
proved from jump processes by Kurtz [5,6]. It is given by
the nonlinear Fokker-Planck equation (by nonlinear we
mean a nonlinear streaming term [4])

P(x, t)= ——(K' "(x)P (x, t) )
a

at I '
ax,

—(x, &, =(KIi'(x}&,AK,"'((x&, }, (20}

—x=K;"'(x)+(noise terms) .
dt

(21)

The form of the noise terms is uniquely determined by
KJ"(x) and K '(x). While this may look like we have

simply added noise terms to the deterministic equations,
it is inuch more subtle than that. It is only an approxi-
mation to the underlying master equation, and the master
equation, or an equivalent mesoscopic description, is re-
quired in order to deduce the contribution to the noise
terms made by K J '(x).

III. CHAOS AND THE QUANTUM-CLASSICAL
CORRESPONDENCE LIMIT

where ( &, now denotes averaging with respect to
Pf(x, t) Tha. t is to say, there are no longer autonomous
equations solely in terms of (x&, describing the macro-
scopic dynamics. Nevertheless, while K,"'(x(t) ) no

longer plays a role, its functional form still does through
the presence of K "(x) in Eq. (18). Thus, the precursor
to the classical dynamics, had it emerged, plays a dom-
inant role in the evolution of the fluctuations, along with

K,.',"(x).
Generally, numerical integration of this description is

required because analytic solutions to Eq. (18) do not ex-
ist. Elsewhere [1]we have shown that it is far more tract-
able and efficient numerically to simulate a nonlinear
Langevin equation that is equivalent to the Fokker-
Planck equation, Eq. (18). This equation often takes the
simple form [3]

2

+— (K '(x)Pf(x, t)),
2 x( x~.

(18)
A. Wigner-Liouville correspondence

in which the two 8'moments are functions of the proba-
bility space variables I and not of the deterministic solu-
tions x(t). We have also denoted the probability distribu-
tion by Pf (x, t) to signify that the large scale fluctuations
are included in this description. Kurtz showed that sam-
ple paths determined by the nonlinear Fokker-Planck
equation approximate sample paths for the underlying

I

The analysis of quantum-classical correspondence fol-
lows lines of reasoning [3] remarkably parallel to those
just reviewed for intrinsic fluctuations in macroscopic
dissipative systems. We begin by examining the tradi-
tional Wigner-Liouville correspondence, originally put
forth by Wigner [7]. The Wigner distribution, defined in
terms of the wave function, 4, by

n

1~(&i, . . . , &„,pi, . . . ,p„)= J f dyi dy„%'(x, +y„.. . , x„+y„)%(x,—y„.. . , x„—y„)
Am.

Xexp 2—(p,y, + . +p„y„) (22)
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is not a positive definite distribution in the phase-space
variables, x and p, but its partial integral reductions:

fdp, dp„wand f fdx, . dx„W~ ~

n 2

4(p, v, 0)= g exp — —Zo v22
, 4m. 2g

with

(31)

are, respectively, the correct probability distributions for
the coordinates, x, and the momenta, p.

Consider a Hamiltonian system with Hamiltonian
&(~p, , )'&'"&(~,)'&'"=~ 1 1

20 2
(32)

2

H= g + V(x?, . . . , x„) .
k =1 2mk

(23) C. Symplectic structure of Hamiltonian dynamics

Wigner showed [7] that the time evolution of W is given
by

Hamiltonian dynamics is symplectic, which implies the
change of variables:

n—W= g
k=1

J?k aW
mk axk

1+ +A 1S Odd

X

av aw

A,
)
+

2l

k J ~ k ~

ap?

BA)+ +A,„V

ax '''ax
1 n

+A, —1
n

x, for i =1,2, . . . , n

p, „ for i =n +1,n +2, . . . , 2n .

Let the matrix I be defined by

0 E
—E 0

(33)

(34)

(35)

BA)+ +A,„w

ap? ap
(24)

in which 0 is the n Xn zero matrix and E is the n Xn
identity matrix. Hamilton s equations now can be ren-
dered as

n—Wo= gBt

p„aw, av aw,+
m k axk axk apk

In the limit Pi~0 we obtain Liouville s equation d aH—z;=I;.
dt ' 'J azj

(25)
The Hamiltonian Jacobi matrix is

(36)

PkXk-
dt mk

av(x, , . . . , x„)
dtPk

=
ax?,

(26)

Since this equation is first order in each of its derivatives,
it can have Dirac delta function solutions [cf. Eq. (10)]
that follow classical trajectories given by

aH
Zj Zk

(37)

z, =z, (t)+Pi'~2rl, (38)

where

in which the sum over k is implicit, and the scaling be-
comes

It is in this sense that we see classical physics emerge
from the underlying quantum description in the A~O
limit.

p; for i =1,2, . . . , n

91 v; „ for i =n+1,n+2, . . . , 2n

(39)

(40)

B. Central limit theorem treatment of the quantum fluctuations

In parallel with the treatment for fluctuations given in
Sec. II D, we introduce the scaling [3]

X; =X;(t)+A' P;,
p, =p, (t)+R'i v, , (29)

in which A now plays the role of the smallness parameter
previously played by 0 ' . The fluctuations distribu-
tion, 4(p, v, t), satisfies the time evolution equation

0 V+ p,- +0 (fi' ), (30)
Bt mk BPk BX~-BXk BVk

follows from Eqs. (33) and (34). The quantum fluctua-
tions equation, Eq. (30), now takes the simple form

4(rt, t) = I, (t)rt, — —a ae(~ t)
Bt

' " '
Br],

(41)

dt Cij ik Ckj Cik jk

where

in which the Jacobi matrix, J, is a function of t through
its dependence upon the classical solutions to Eqs. (26)
and (27). This implies that the covariance matrix time
evolution equation is

which is the analogous of Eq. (13). The initial distribu-
tion must satisfy Heinsenberg s principle, i.e.,

c„=&q,q, &

and has initial value [cf. Eq. (17)]

(43)
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C(0)=
o E 0

0 E
0 2

(44)

which contains n X n dimensional blocks.
From the results presented in Sec. II, we should expect

the initial exponential rate of growth of the covariances
to be closely related to twice the largest classical
Liapunov exponent determined for the corresponding
classical flow.

This linear description of the fluctuations becomes in-
valid once the fluctuations have grown so large that the
threshold for nonlinearities has been crossed. In that
eventually, instead of using an analogue to Kurtz'
theorem for nonlinear fluctuations, we simply solve the
Schrodinger equation directly. In Sec. II this would have
amounted to solving the Master equation directly rather
than the approximate Langevin equation, Eq. (21)

D. Husimi-O' Connell-Signer distributions

I Jdx'dp'W(x', p')

Xexp
(x' —x ) (p' —p)

2o 2P~

(45)

Heinsenberg's principle requires P&A/2cr. O' Connell
and Wigner [9] have shown that the time evolution for
the smoothed Wigner distribution, to lowest order in o
and P, is

W is not positive definite. The Husimi-0Connell-
Wigner distribution function is positive definite [8,9].
The Gaussian smoothing of the Wigner distribution in
one degree of freedom takes the form

W, (x,p, ~)

tion into the one at time t. The Green function for this is
just the Dirac 5 function solution for a classical trajecto-
ry emanating from an arbitrary source point in phase
space. The convolution of this with the initial distribu-
tion is the answer to the problem. However, if instead,
the description is given in terms of an autonomous equa-
tion for the smoothed Liouville distribution, smoothed
with an initial, Gaussian distribution, then one gets the
O' Connell-Wigner equation, Eq. (46), to orders p and cr .
The physical interpretation in both the quantum and the
classical cases is that the Gaussian smoothing of W, or
the equivalent Gaussian smoothing of the Liouville distri-
bution, reflect an unavoidable uncertainty in the initial
conditions. In short, absolute mathematical precision is

physically forbidden. The connection between the
Husimi-0 Connell-Wigner distribution function and the
Liouville distribution for an ensemble establishes the
proper context for quantum-classical correspondence.

In Sec. II F, we recalled that it is easier to numerically
implement a stochastic Langevin equation than it is to in-

tegrate a partial differential equation, i.e., Kurtz' non-

linear Fokker-Planck equation. In the quantum case we

find it easier to implement the Schrodinger time evolution
of an initially Gaussian wave packet than to numerically
integrate the O' Connell-Wigner equation. The results
from this approach are given in Sec. IV.

In Sec. II, we found that an approximate treatment of
the nonlinear fluctuation regime is given by the nonlinear
Langevin equation, Eq. (21). While no comparable paral-
lel equation is presented in this section for the quantum-
classical correspondence, because we use Schrodinger's
equation directly, it is nevertheless of interest to ask what
its form might take. Two possibilities, requiring deeper
investigation, are (1) The van Vleck construction as
developed by Heller and Tomsovic [16],and (2) a stochas-
tic Schrodinger equation construction developed by Car-
michael [17] (this construction is similar to earlier work,
by Faid and Fox [18],on a stochastic quantum theory for
spectral line shapes).

—.w~ = ——p+p , a a
Wsat ' m ap ax

av, a'v a a
ax

+ ax' ax ap
(46)

IV. THE PERIODICALLY KICKED PENDULUM

A model system that has been extensively studied both
quantum mechanically and classically is the periodically
kicked pendulum. It has Hamiltonian [2]

O' Connell and Wigner explicitly used p=fi/2cr in the
first term on the right-hand side and omitted the cr con-
tribution in the second term. This led them to the obser-
vation [9] "the time dependence of 8's, in contrast to
that of W, is not given by the classical expression [Eq.
(25) of Sec. III A] but contains a correction term of order
A' . But this is not a quantum e8'ect:. . .."As we also see,
it is really just a p effect corresponding to the momen-
tum variance, but in addition there is also a o. effect
from the coordinate variance, as in Eq. (46).

By applying O' Connell and signer's analysis for the
time evolution of 8'z, to the Liouvillean evolution of an
initially Gaussian phase space ensemble, we Snd that
there is perfect correspondence to orders p and cr . For
any initial distribution, one can use the Green function
for Liouville's equation to propagate the initial distribu-

2

H = —5 —ml. coocosg,
~e

2m'' (47)

in which the periodic Dirac 5 function, 5, appears

5 j——
J= 00

(48)

T is the period of the kicks and the pendulum is a mass-
less rod of length L with a point mass m attached at the
end. %e have introduced I. and m in order to underscore
our emphasis on the quantum-classical correspondence,
in particular, the quantum behavior of a genuinely classi-
cal pendulum. In about half of the literature 8=0 is the
up position and in the other half, as here, 8=0 is the
down position.
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A. The classical map

I„+,=I„—K sinO„,

8„+,=(8„+I„+,)mod2m. ,

(49)

(50)

The classical map generated by integrating the dynam-
ics implied by Hamiltonian I is called [10] the "standard
map"

(8(0))=—a,
(Ps(0) ) =A—b,
(a8'(0) ) —=~',

(60)

(61)

(62}

which agrees with the choice of 2's in Eq. (45). This wave

packet has expectation values and varianees given by

in which
(SP', (0))=

4o
(63)

and

a=mL co T

T
mL

(51)

(52)

I= Pg,

K=aP .

(53)

(54}

This is the map from just before the kick n to just before
kick n +1.

For all values of K below 1.0, some initial conditions
lead to chaotic trajectories and others lead to nonchaotic
trajectories. As K increases, the proportion of phase
space associated with chaotic trajectories increases. The
critical value, K =0.9716. . . , is the value above which
the chaotic regions are interconnected, i.e., global chaos
containing islands of nonchaotic trajectories around
stable elliptical centers. As E exceeds a value somewhat
less than 5, the last stable elliptical center disappears and
there is global chaos without islands.

B. The quantum map

The quantum map is expressed by expanding the wave
function in terms of the free rotor eigenstate [2,10]

(55)

A„(n+1)= g A (n)i" ~J„(x)exp

(56)

in which ~ and w are defined by

mL coT
(57)

AT7=
mL

(5&)

We have studied the quantum map for initially Gauss-
ian wave packets. The initial wave packet is given by [2]

' —1/4

A„(0)=
2o

exp(iba)

X exp( ina)exp[ —o(b n) ], — —{59)

This produces the quantum map for the coeScients from
just before kick n to just before kick n +1 [2,10,11].

We showed [2] that if the system is suSciently subcritical
and if both variances are sufBciently small then the wave

packet propagates as a Gaussian wave packet for hun-

dreds of kicks. An example [2] of this behavior is given
for 1=10 , o = 10 , 8(0)=n l2, P (0)=1.0, ~= 10,
and 7 =10 . Since Pe(0) is 10 times bigger than A', we

consider this to be an example of a macroscopic classical
pendulum. It is very subcritical since K =10 . For this

case, it is impossible to distinguish a phase-space plot of
the classical map from a plot of the angle and angular-
mornenturn expectation values for the quantum map, for
hundreds of kicks. Since the wave packet approximately
evolves as a Gaussian for all of these kicks, the angle
variance grows algebraically so that after n kicks [2]

n T
o (n)=o 1+

4o-4
(64)

If we choose parameter values such that we are subcrit-
ical but have a classically chaotic trajectory, then we see

exponential growth of the variances in the corresponding
quantum treatment. An example of this is given for an
initial condition which is very close to a hyperbolic
separatrix [2]. The parameters are 8=~ and
P&=0.251320 initially, and a=5X10 and P=50 so
that K =0.25. The largest Liapunov exponent is known
to be A, =0.046. In order to compare the corresponding
quantum treatment, we have used an initially Gaussian
wave packet with A =10, o.=0.01, o.

6)
=o., and

o~=A/2o-&. A plot of the natural logarithm of the
angular-momentum standard deviation (the square root
of the variance) versus kick for the first 30 kicks is shown
in Fig. 1.

Figure 1 i11ustrates several generic features. The first

ten kicks exhibit an almost exponential growth from a
kick 1 value of e up to the value at the tenth kick,
e . This is a multiplication by e =10', or
nearly 1 —,

' orders of magnitude. Figure 2 shows the plat
of the natural logarithm of the angle's standard deviation
versus kick. Here we see a multiplication by e" ' = 10'
for kicks 1 —10. Again, the quality of the initial exponen-
tial stage is high, even though one may object that a mere
factor of 10' is not too impressive. A uniform angular

For the parameter values used above, it takes 200 kicks
for the variance to double. This sort of growth of the
variance is typical of what one expects very generally, in

the absence of classical chaos. The chaotic situation is

dramatically different, except for so-called "rationally
resonant" cases [19,20].

C. Exponential growth of the variances
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FIG. 1. A plot of the natural logarithm of the angular-
momentum standard deviation versus kick for an initially
Gaussian wave packet with fi= 10 ', 0 =0.01, cr &=0,
crt =A/2o e, a=5 X 10 ', and P=50. The initial wave packet is
centered at 8=m and Pe=0.251 320.

distribution has a standard deviation of 1.8. . . radians.
Figure 2 shows a maximum at the tenth kick of
e '=2.01 rad. Thus, the angular standard deviation
has efiectively saturated by the tenth kick. Since the ini-
tial standard deviation was 10, as is indicated for kick
0 in the figure, the overall increase by a factor of
10 =200 is all that could be expected. We return to
this point below when we show results for a smaller ini-
tial standard deviation. This means cr& must be smaller
and so must A' so that A/2crs is smaller as well. All of this
makes the numerical integration in the quantum case
much more demanding.

Clearly, after ten kicks, say, the angular distribution
has broadened out so much that it has saturated the
available interval of width 2m.. The expectation value of
the angle for this wave packet becomes essentially n (the
"up" position). As a function of time, this expectation
value bears no resemblance to the classical map's se-
quence of angles, a chaotically random sequence of
large-angle jumps. Thus, there is no longer any
correspondence between the quantum wave-packet expec-

1.0

—1.0—
A

C4

V~ —3.0—
C

+ +
+

+ +
+

+
+

+
+

+ +

+
+

+
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/
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FIG. 2. A plot of the natural logarithm of the angle standard
deviation versus kick for the same parameters used in Fig. 1.

tation value trajectory and the single classical trajectory.
However, if instead we look at an initially Gaussian, clas-
sical ensemble with initial standard deviations era and cr~
then the classical map creates the time evolution of this
classical ensemble. We find that the classical ensemble
initially broadens, also exponentially, and eventually sat-
urates the available domain. Averages over this ensemble
show remarkable quantitative correspondence to the
averages generated by the corresponding wave packet.
Figures 3 and 4 show angular-momentum distributions at
kicks 2, 4, 6, 8, and 10 for the quantum wave packet and
for the classical ensemble, respectively. The reason for
the saturation at kick 10 of the exponential stage of
growth for the angular momentum is now evident. The
angular-momentum distribution is bounded by KAM
(Kol'mogorov-Arnol'd-Moser) curves which are reached
by the distribution. The correspondence between the
quantum wave packet and the classical ensemble in this
regard is remarkable. Nevertheless, Figs. 3(e) and 4(e)
show quantum inferences absent in the classical ensem-
ble. There is some penetration of the KAM boundaries
quantum mechanically but it is extraordinarily small for
our parameter values [21].

In Figs. 5 and 6, respectively, we show the plots for the
natural logarithms of the angular-momentum standard
deviation and the angle standard deviation produced by
the initially Gaussian, classical ensemble. The quantita-
tive agreement with Figs. 1 and 2 is so good that they are
visually indistinguishable for the first 29 kicks. Even the
relative values for kick 0 and kick 1 are the same as in
Figs. 1 and 2. From the classical perspective we can un-
derstand these features as follows. In the classical phase
space there are one-dimensional, stable, and unstable
manifolds. Initially, the unstable manifold is primarily in
the direction of the angle expansion. Thus, the first kick
primarily extends the distribution along the angle axis.

When there is not chaos in the classical trajectory, or
in its nearby neighboring trajectories, then the quantum
wave packet and the classical ensemble remain sharply
peaked, nearly propagating as Gaussians, and distinction
between trajectory and ensemble is negligible [2]. When
chaotic trajectories densely populate the neighborhood of
a particular trajectory, then both the quantum wave
packet and the classical ensemble have first moment tra-
jectories that bear no correspondence to this particular
classical trajectory. Instead, the correspondence is be-
tween an initially Gaussian wave packet and an initially
Gaussian classical ensemble.

It is much easier to study the exponential stage of
growth for the classical ensemble than for the quantum
wave packet. In Figs. 7 and 8 we show the growth of
both the angular-momentum standard deviation and the
angle standard deviation for os=10 ' and Iv~=10
Quantum mechanically, this would require that
Pi=10 ', which, for us, is numerically prohibitive. Nev-
ertheless, all of our other results support the claim that
the initial stage of exponential growth of the variances is
the same for the quantum wave packet and for the classi-
cal ensemble. We see from the figure an exponential
stage lasting 17 kicks and exhibiting a multiplication fac-
tor of 10 for the angular-momentum standard deviation,
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and of 10 for the angle standard deviation. Note that
for the angle standard deviation there is a large increase
with the first kick so that the overall multiplication factor
from kick 0 to kick 17 is more than 10 . Again, this is
what is to be expected for 0.&=10 and a saturation
value for the angle's standard deviation of order unity.

In Figs. 9 and 10 we show, respectively, the quantities
in Figs. 1 and 5 for 500 kicks. In fact, the close
correspondence between the Gaussian wave packet and
the classical ensemble ceases after 29 kicks and they each
develop their own characteristics. Thus, eventually there

is even a breakdown of the correspondence between
quantum wave packet and classical ensemble as a result
of the difference in the origin of their fluctuations. For
the classical ensemble, the fluctuations are exclusively a
result of the distribution in initial conditions. For the
quantum wave packet, there is an additional source: the
incessant quantum perturbations in the dynamics of each
and every kick. The differences seen in the figures have
been subjected to scrutiny regarding numerical precision.
%e believe they are real and do not reAect numerical er-
ror propagation.
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FIG. 3. The angular-momentum distribution for the parameters used in Fig. 1 is shown after kicks 2, 4, 6, 8, and 10, respectively,
in plots (a), (b), (c), (d}, and (e}.
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D. Transient expansion rate

How does the slope of the exponential growth stage of
the standard deviation compare with the Liapunov ex-
ponent'? As was stated above, the Liapunov exponent for
the choice of parameters governing Figs. 1-6 is
A, =0.046. However, the slope is 0.48 (as determined
from kick 1 to kick 9, which is nearly straight in Fig. 1).
This is an order of magnitude larger. The explanation in-
volves the concept of a transient expansion rate.

For maps, the connection between the Jacobi matrix
and the largest Liapunov exponent discussed in Sec. II,

1 —a cos8„
J =

P 1 —aP cos8„

The largest Liapunov exponent, A, , is defined by

A, = lim —in[abs(trace M„)],1

n~oo 5

(65)

(66)

in which we see the natural logarithm of the absolute

takes on a more computationally accessible form. Let the
Jacobi matrix for the nth kick of the classical map given

by Eqs. (49)—(54), J„,be defined by
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FIG. 4. These are the same plots as in Fig. 3 except that they are for the corresponding classical ensemble.
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FIG. 5. A plot of the natural logarithm of the angular-
momentum standard deviation versus kick for an initially
Gaussian classical ensemble corresponding to the wave packet
used in Fig. l.

FIG. 8. A plot of the natural logarithm of the angle standard

deviation versus kick for an initially Gaussian classical ensern-

ble such as used in Fig. 6 but with cr z= 10 ' and o p
= 10

1.0

value of the trace of M„, which is the nth order iterate of
the time evolving Jacobi matrix

3K

M„=J„J„—) J2J, . (67)
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FIG. 6. A plot of the natural logarithm of the angle standard
deviation versus kick for an initially Gaussian classical ensem-

ble corresponding to the wave packet used in Fig. 2.

—1.0

Only the largest eigenvalue of M„contributes in the lim-

it. The value k=0.046 is the large n limit of the right-
hand side of (66) for a single classical trajectory emanat-

ing from the initial conditions 0=m and P& =0.251320.
The transient expansion rate is generated somewhat

differently. First of all, we evaluate the largest eigenvalue
of M„ for each kick n. Then we do it again for another
initial condition drawn from the classical Gaussian en-

semble with o =0.01, o e=cr, o p =6/2cr& Thes.e values

are averaged together to produce the transient expansion

rate, k„, given by

1—ln(largest eigenvalue of M„) (6&)

in which ( ) denotes the ensemble average. We discover
that X9, for example, is 0.48, in very good agreement with

the slope in Fig. 1, but that A, 50 is 0.046, in excellent
agreement with the asymptotic value for the largest

—5.0
R.

V
—9.0—

—3.0

—5.0
CV

V —6.0

0.0 5.0 10.0 15.0 20.0

Kick

FICx. 7. A plot of the natural logarithm of the angular-
momentum standard deviation versus kick for an initially
Gaussian classical ensemble such as used in Fig. 5 but with
o.z= 10 and ap = 10
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FIG. 9. This is the same as Fig. 1 but for 500 kicks.
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0 p =h/2crii, a=5 X 10 ', and P=200. The initial wave packet
is centered at 8=m and Pe =0.251 320.

FIG. 10. This is the same as Fig. 5 but for 500 kicks.

Liapunov exponent. By the 50th kick the ensemble has
spread out and is sampling the entire attractor, but up to
the ninth kick it is actively expanding locally and does
not represent a global sampling. Instead, it reflects the
local rate of expansion near the initial conditions, aver-
aged over an initially very sharp Gaussian ensemble. Fig-
ure 11 depicts the transient expansion rate. In the early
stages, i.e., for small n, the larger expansion rates associ-
ated with the exponential growth stage, are clearly visi-
ble. Asymptotically, the expansion rate approaches the
largest positive Liapunov exponent value.

In Figs. 12, 13, and 14, we show, respectively: the nat-
ural logarithm of the angular-momentum standard devia-
tion versus kick, a blowup of the initial segment, and the
transient expansion rate for a supercritical quantum case
with E =2. Notice especially in Fig. 12 that there are
two stages for the growth rate, the first one which is an
exponential growth stage, and a second one, the nature of
which is elucidated below. In Fig. 13, we show an ex-
ponential stage of three kicks for A'=10 in plot a, and
an exponential stage of five kicks for iii=10 in plot b.
This illustrates how decreasing the initial variances [cf.
Eq. (63)] increases the extent of the exponential stage of
growth. The corresponding classical ensemble behaves in

the same way, almost exactly the same for nearly a hun-

dred kicks.

E. The diffusive growth stage

That "initially exponential growth of the quantum

standard deviations" is the generic signature of classical
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FIG. 13. A blowup of the initial segment of Fig. 12 for
R= 10 in plot (a), and for fi= 10 in plot (b).

FIG. 11. A plot of the transient expansion rate versus kick
for the parameters used in Fig. 1.

CHAOS AND THE QUANTUM-CLASSICAL CORRESPONDENCE. . .
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FIG. 14. A plot of the transient expansion rate versus kick
for the parameters used in Figs. 12 and 13.

chaos in a corresponding quantum analysis is not the
characterization found in the extant literature. Rather, it
is said, a diffusive growth stage is generic [10—12], except
at rational resonances [19,20]. By diffusive is meant that
the angular-momentum variance grows linearly with kick
number. In the rationally resonant cases, for which
r=(M/N)4' in which M and N are integers, the vari-
ance grows quadratically with kick number. Both of
these growth rates are simple power laws, like for the
propagating Gaussian wave-packet rate, Eq. (64). None
is as dramatic as the exponential growth rate. Instead of,
for example, doubling the variance in 200 kicks, the vari-
ance may grow by 10 in ten kicks.

Figure 15 shows the kinetic energy versus kick for a
quantum eigenstate, the ground state, which for small E
values surrounds a stable elliptical center. This is the
case exhibited in the literature as representative of the
generic situation [10—12]. Since the ground state has a
vanishing angular-momentum expectation value, we may
view this plot as a plot of the growth of the angular-
momentum variance. The other parameters used [10—12]

FIG. 16. A plot of the kinetic energy versus kick for a Gauss-

ian wave packet centered initially at zero angle and zero angular

momentum with standard deviations o=0.01, o.6=0, and
o.p =A/2o z. All other parameters agree with those used in Fig.
15. The straight line is for a corresponding classical ensemble

of 100000 points.

are %=0.15(&5—1)/2, a=10/2n. , and P=2n. , so that
K =10, an ultrasupercritical case. Note that fi is much
larger than what we have used. There is no hint of an ex-

ponential growth stage. In Fig. 16 we show the growth
of the kinetic energy for a Gaussian wave packet initially
centered at zero angle and at zero angular-momentum ex-

pectation values, just as for the ground state. This
Gaussian wave packet has standard deviations given by
o =0.01, oe=o, and cr~=fi/2os. The indefinitely long

straight line shows the growth of the kinetic energy for a
classical ensemble of 100000 elements. The quantum
curve agrees with the classical up to a break time of order
10 kicks, although the compressed time scale in Fig. 15
erroneously suggests a linear growth stage of perhaps 50
kicks.

Both the ground state and this Gaussian wave packet
fail to exhibit an exponential growth stage. This is a
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FIG. 15. A plot of the kinetic energy versus kick for the
quantum free rotor ground state. The parameter values used
here are 8=0.15{&5—1)/2, a=10/2m, and P=2m, so that
K =10.

FIG. 17. A plot of the natural logarithms of the angle stan-

dard deviation and the angular momentum standard deviation

versus kick for a classical ensemble corresponding to the wave

packet used in Fig. 16 except that here we have cr&=10 ' and

0 p=10
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FIG. 18. A plot of the transient expansion rate for the case
shown in Fig. 17.

consequence of the initially broad distribution in angle
for the ground state, and the immediate growth to com-
parable size of this Gaussian wave packet for the
effectively large standard deviation value 0 =0.01, given
the large value of I)l. In Fig. 17, are shown results for a
classical Gaussian ensemble based on ca&=10 ' and
cr p =10 ' instead. Both the growth of the standard de-

viation for angle and for angular momentum are shown.
For 14 kicks there is a dramatic exponential growth with
a multiplication factor of 10' . Note the sharp transition
from exponential growth to diffusive growth for the
angular-momentum standard deviation at kick 14. This
transition is triggered by saturation of the angle distribu-
tion.

Figure 18 displays the transient expansion rate versus
kick. At kick 14, the transient rate is 1.8, which is very
close to the slope of the exponential stage in the figure.
This is not too much larger than the asymptotic value,
1.609. Since this is an ultrasupercritical E value,
Chirikov's formula is very accurately satisfied [13-15].
Because of the global chaos we have a nearly uniform ex-
pansion rate for the attractor. This is in contrast with
the situation for subcritical I(. for which we found an or-
der of magnitude difference between the transient and
asymptotic values.

el spacing distributions [12], and eigenfunction scarring
by unstable periodic classical orbits [16]. Much beautiful
work has been done on each of these characterizations.
In this paper, we present a third paradigm, the initially
exponential growth of quantum variances for initially
very sharply defined wave packets. This characterization
is intimately connected to the problem of quantum-
classical correspondence.

The present alternative paradigm is not in conflict with
the well-known [10—12] difFusive growth of the kinetic
energy for the quantum ground state, nor with the quad-
ratic power-law growth for rationally resonant states
[19,20]. Instead, these different behaviors result from ini-
tial conditions very different from those used by us to ex-
hibit the exponential growth stage. Our initial conditions
are designed to maximize quantum-classical correspon-
dence. They reflect the physically unavoidable uncertain-
ty in initial conditions, both quantum mechanically and
classically. We find that corresponding to our initially
very sharply peaked Gaussian wave packets are initially
very sharply peaked classical Gaussian ensembles. Only
for the classically nonchaotic domain do these two repre-
sentations reduce to correspondence with a single classi-
cal trajectory, provided the Gaussian forms are sharp
enough. For the chaotic domain, we find that during the
initial exponential growth stage of the standard devia-
tions, there is remarkably good correspondence between
the wave packet and the ensemble, but eventually even
this correspondence finally breaks down as a result of
fundamental differences in the fiuctuations.

We have also accounted quantitatively for the slope of
the exponential growth stage. It is intimately tied to the
time evolving Jacobi matrix for the classical ensemble,
averaged over the ensemble. The transient expansion
rate was introduced to illustrate and formalize this con-
nection. Asymptotically, the transient rate becomes the
largest Liapunov exponent.

This work elucidates how the classical concepts of
phase space, exponential sensitivity to initial conditions,
and Liapunov exponents may be incorporated in a quan-
tum description. The key ideas are the central role of the
Jacobi matrix and the natural correspondence between
Husimi-0 Connell-Wigner distributions and Gaussian
Liouville distributions.

V. CONCLUDING REMARKS

Two well-established paradigms for the "quantum sig-
nature of classical chaos" are energy (or quasienergy) lev-
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