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Monte Carlo simulation of the Boltzmann equation for steady Fourier flow
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The planar Fourier Bow for a dilute gas of hard spheres is studied by means of the direct-
simulation Monte Carlo method to solve the Boltzmann equation. Two different types of boundary
conditions are considered. In the conventional conditions, the gas can be seen as enclosed between
two baths at equilibrium at wall temperatures. In the alternative conditions, both baths are out of
equilibrium in states close to the one of the actual gas. It is shown that these alternative conditions
are more appropriate to analyze bulk transport properties, as they reduce the boundary efFects.
The deviation of the heat Bux from the Fourier law is small, even for large thermal gradients. In
addition, the velocity distribution function is obtained and compared with the exact solution of the
Bhatnagar-Gross-Krook model.

PACS number(s): 51.10.+y, 05.20.Dd, 05.60.+w

I. INTRODUCTION

The steady planar Fourier flow is one of the simplest
macroscopic states for analyzing transport processes far
&om equilibrium. The physical situation corresponds to
a system enclosed between two parallel infinite plates a
distance L apart and kept at different temperatures T
and T+. Starting from an arbitrary initial state, the sys-
tem reaches a steady state after a certain transient pe-
riod. This steady state is characterized by a thermal
gradient along the direction normal to the plates and a
constant heat flux. At the level of the Navier-Stokes ap-
proximation, the heat flux and the thermal gradient are
related through the phenomenological Fourier law

NS p)
t9y

'

where y denotes the coordinate along the direction nor-
mal to the plates and z is the thermal conductivity coef-
ficient. The Fourier law is expected to hold in the small
gradient limit and in the bulk region, i.e. , far away from
the boundaries.

An interesting problem is to test the validity of the
Fourier law beyond the linear regime in the bulk domain.
This question has already been considered in computer
simulations [1—3] as well as in kinetic theory descriptions
[4—8]. Ciccotti and co-workers [1] performed molecular-
dynamics simulations for a dense Lennard-Jones fluid in
steady Fourier flow by using stochastic boundary condi-
tions. No significant deviation from the Fourier law was
observed up to gradients of the order of 1.8 x 10s K/cm for
argon. Subsequently, Mareschal and co-workers [2] con-
sidered the same problem for a dilute hard-sphere gas,
using molecular-dynamics and an approximate moment
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method to solve the Boltzmann equation. They also con-
cluded that the validity of the Fourier law extended out-
side the small-gradient domain. In these simulations the
size of the system was small and, consequently, the influ-
ence of boundary effects on heat transport could be im-
portant. In addition, a homogeneous simulation method
for producing heat flux in absence of a thermal gradient
has also been proposed [3]. Nevertheless, its applicability
might be restricted to situations very close to equilibrium
[9]. On the other hand, these boundary effects are ab-
sent in an exact solution to the Boltzmann equation for
Maxwell molecules [4]. In this solution, which applies to
arbitrary thermal gradients in the bulk, the velocity mo-
ments of the distribution function are polynomials in the
gradient. In particular, the pressure is constant and the
heat flux is a linear function, i.e., it is exactly given by
the Fourier law. Similar conclusions are obtained from a
solution of the nonlinear Bhatnagar-Gross-Krook (BGK)
kinetic model for general interactions [5]. Furthermore,
the tractability of the BGK equation allows one to obtain
explicitly the velocity distribution function [6]. Compar-
ison of this solution with the one obtained numerically
from the BGK equation for finite geometry [7] shows that
the boundary effects give rise to a decrease of the heat
flux with respect to the one given by the Fourier law. The
reliability of the BGK model in the planar Fourier flow
problem is supported [8] by comparison with molecular
dynamics results [2].

A natural question is whether the exact validity of
the Fourier law in an unbounded system of Maxwell
molecules described by the Boltzmann equation extends
to other interaction potentials. This question has an aKr-
mative answer when the Boltzmann equation is replaced
by the BGK approximation. Here, however, we want
to consider the details of the Boltzmann collision term.
Since the numerical solution of the Boltzmann equation
by finite difference methods would be inadequate from a
practical point of view, it is preferable to use the so-
called direct-simulation Monte Carlo (DSMC) method
[10]. This method is much more efficient from a computa-
tional point of view than the molecular-dynamics method
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for dilute gases.
In this paper, we use the DSMC method to solve the

Boltzmann equation for a system of hard spheres in the
planar Fourier How. In the conventional boundary con-
ditions, the gas is assumed to be enclosed between two
baths at equilibrium at different temperatures. Under
these conditions, a particle leaving the system is replaced
by a particle coming from a bath at thermal equilibrium.
Consequently, a mismatch between the velocity distribu-
tion of the reemitted particles and that of the particles
located near the walls and moving along the same direc-
tion exists. In order to inhibit these boundary effects,
we propos~ alternative stochastic boundary conditions.
Now, the gas is assumed to be enclosed between two
baths out of equilibrium described by the corresponding
BGK solution to steady planar Fourier How. A particle
leaving the system is replaced by a particle coming from a
(fictitious) gas in a nonequilibrium state similar to that
of the actual system. Thus, the previous mismatch is
expected to be much smaller.

The organization of this paper is as follows. A brief
description of the planar Fourier flow and a summary
of the results obtained from the BGK model are given
in Sec. II. The DSMC method and some technical de-
tails are presented in Sec. III. The two types of bound-
ary conditions mentioned above are described in detail
in Sec. IV. In Sec. V we analyze the transient regime
starting from three different initial conditions: two of
global equilibrium at the wall temperatures, and one of
local equilibrium. The final steady state is seen to be
independent of the initial state, although the relaxation
time towards the steady state is shorter in the case of a
local equilibrium initial state. Once the steady state is
reached, the quantities of interest are computed as time
averages. Section VI is devoted to the profiles of tem-
perature, pressure, and heat Hux. It is observed that the
temperature jurnp at the walls is smaller in the case of
nonequilibrium boundary conditions than in the case of
ronventional boundary conditions. Further, the devia-
tion from the Fourier law is less noticeable in the former
case. In Sec. VII, the velocity distribution furiction in the
bulk obtained from the simulation is compared with the
one given by the BGK model. In general, the agreement
is good although some discrepancies appear in the high
velocity region. Finally, the conclusions are summarized
in Ser. VIII.

dp 6'uy
pdt Oy

(2.1)

d'uy t9Py y

dt Oy
(2.2)
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+v Tf = J[f f], (2 4)

where

J[f, f] = d» dkgI(g, &)[f'fi —ffi] (2.5)

is the collision operator. In this equation, I(g, k) is the
differential cross section and g = v —vi~ is the relative
speed. At this kinetic level, the densities of conserved
quantities and the Huxes can be expressed as velocity
moments of f:

p=mn=m dvf, (2.6)

Here, p, pu, and pe are the densities of mass, momentum,
and internal energy, respectively, d/dt = 0/Bt+u V is the
substantial time derivative, P is the pressure tensor, and
q is the heat flux vector. After a certain transient period,
the system is expected to reach a steady state. In this
regime, the balance equations imply that u» Pyy &

and qy
are constant. Since the walls are fixed, the macroscopic
velocity uy vanishes in the steady state.

The balance equations (2.1)—(2.3) do not constitute a
closed set. In situations near equilibrium, they become
the Navier-Stokes hydrodynamic equations by assuming
the Newton law for the pressure tensor and the Fourier
law, Eq. (1.1), for the heat Aux. In order to get mi-
croscopic expressions for the transport coeKcients and
analyze the domain of validity of the Navier-Stokes con-
stitutive equations, it is appropriate to consider a dilute
gas as a prototype system. In this case, a kinetic descrip-
tion is sufhcient to characterize the state of the system
by means of the velocity distribution function f (r, v; t)
This function obeys the Boltzmann equation, which reads
[12 -14]

II. PLANAR FOURIKR FLOW pu = m dvvf, (2.7)

Let us consider a system enclosed between two parallel
plates located at y = 0 and y = L. Both plates are main-
tained at constant temperatures T and T+, respectively.
The system is assumed not to be influenced by the ac-
tion of gravitation, so that we can take T+ & T without
loss of generality. Under these conditions, the system is
driven out of equilibrium and a thermal gradient and a
heat flux appear. If only gradients along the y direction
exist and in the absence of convection along the x and z
directions, the general hydrodynamic balance equations
[11] become

pe = snkgT = dv(v —u)'f, (2 g)

P = m dv (v —u)(v —u) f, (2.9)

2
dv (v —U) (v —11)f (2»)

Here, m is the mass of a particle, n is the number den-
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sity, k~ is the Boltzmann constant, and T is the tem-
perature. The ideal gas equation of state, p = nk~T,
is verified locally, p = 3trP being the hydrostatic pres-
sure. The Navier-Stokes transport coefBcients can be ob-
tained from the Chapman-Enskog method to solve the
Boltzmann equation [12,13]. In particular, the thermal
conductivity coeKcient for hard spheres of diameter 0 is

()rmkB +)
64 m~g 2 (2.11)

Thus, according to the Fourier law, qNs (x BTs~2/By for
a dilute gas of hard spheres. Consequently, the profile of
T ~ is linear in the steady state described by the Fourier
law.

The Chapman-Enskog method provides the so-called
normal solution to the Boltzmann equation [12]. The
normal solution describes the state of the gas in the hy-
drodynamic regime, namely, for times much longer than
the mean &ee time and for distances from the walls much
larger than the mean free path. In that regime, all the
dependence of f on r and t is given through a functional
dependence on the hydrodynamic fields n, u, and T. On
the other hand, in situations not accounted for by the
normal solution, the Boltzmann equation must be solved
subject to specific initial and boundary conditions. The
boundary conditions corresponding to the particular ge-
ometry of the problem can be written as [12]

f(r, v) = n(m/2z k~T) ~

&I&pl

x Ct H((1 —t)sgn(„)t-'~'
0

( 1 —t ('l
x exp ]-

e~s
(2.15)

where

g = (m/2kgT)'~'v (2.16)

is the velocity relative to the local thermal velocity. Upon
writing Eq. (2.15), the local mean free path has been
identified as

where e(y) is a local mean f'ree path. The dimensionless
parameter e measures the relative variation of tempera-
ture over a mean &ee path and characterizes the depar-
ture &om equilibrium. Although the solution is valid for
arbitrary values of e, the pressure tensor coincides with
that of equilibrium and the heat flux is linear in e, so
that the Fourier law is exactly verified.

More detailed information for this normal state can
be obtained for arbitrary potentials if one uses the BGK
equation as a kinetic model of the Boltzmann equation
[5,6]. Again, the moments are polynomials in e and,
in particular, the heat lux is linear. Moreover, an ex-
plicit form for the velocity distribution function can be
obtained [6]:

e = — (2kgT/m)')
5 pk~

(2.i7)

= H( —v) f dv' ~v' ~Kv(v v')H(v' ) f(y = Lv'; t),

(2.i2)

II(v„)(v„if (y = 0, v; t)

Equation (2.15) shows that the distribution function is a
highly nonlinear function of the reduced thermal gradi-
ent. The series expansion of f in powers of e is asymptotic
but not convergent [6].

= H(v„) f dv'( „')K (v, v')H( v„')f(y = y, v';t), —

(2.i3)

BlnT
) =—e(

Bg
(2.14)

where H is the Heaviside step function. When a particle
with velocity v' hits the wall at y = L, the probability
of being reemitted with velocity v in the range dv is
given by K+ (v, v') dv. The kernel K (v, v') has a similar
meaning at y = 0. The specific details of the boundary
conditions are contained in the kernels. In the case of
the Fourier problem, K~ must be consistent with the
temperature walls T~.

As mentioned in the Introduction, an exact solution of
the Boltzmann equation for Maxwell molecules in steady
planar Fourier flow has been found [4]. As this solution
belongs to the normal class, no explicit boundary condi-
tions appear. All the space dependence of the velocity
moments is given in terms of the local density and tem-
perature and the local thermal gradient. The last can be
defined in a reduced form as

III. SIMULATION METHOD

As stated in the Introduction, our main goal is to assess
the validity of the Fourier law for a dilute gas of parti-
cles interacting via a potential other than the Maxwell
interaction. Since no analytic solution of the Boltzmann
equation for this problem is known, we attack the prob-
lem by using a numerical approach. The most convenient
method is the DSMC method [10]. In the simulation,
the system (made of W particles) is split into cells of
sizes much smaller than the mean free path. Time is ad-
vanced in discrete timesteps At, much smaller than the
mean free time. The &ee motion and the collisions are
uncoupled over the interval Dt: (i) All the molecules are
displaced according to their velocity components. Those
molecules crossing the boundaries are reentered with ve-
locities sampled from a distribution given by the bound-
ary conditions. (ii) Before proceeding to the next free
displacement, a representative set of collisions, appropri-
ate to At, is computed in each cell. The pre-collision
velocities are replaced by random post-collision veloci-
ties. The choice of the representative set of collisions is
governed by the potential model considered. Further de-
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tails of the method can be found in Bird's monograph
[IO].

Given the geometry of the planar Fourier flow prob-
lem, the cells are taken as layers of width Ay and only
the y coordinate of the particles needs to be stored. To
check the validity of the Fourier law beyond the Maxwell
interaction, specific interaction models must be consid-
ered. Here, we will restrict ourselves to hard spheres.
The standard definition of mean free path in that case is

1
UIQ VI 'gX (3.9)

rather than the peculiar velocity v, —u in Eqs. (3.6)—(3.8)
because in the steady state u = 0, except for statistical
fluctuations. Moreover, P = P„= (3—p P—») because
of the geometry of the problem. The following global
quantities are also computed:

1

v 2nmo2
' (3.1) N

j 1
p = 3m — V. (3.1O)

Notice that E = ~~~irk, where the BGK mean free path
E is given from Eqs. (2.11) and (2.17). We take the mean
free path A, corresponding to the average density N

1P» —m —) v, „, (3.11)

dyn(y), (3.2)

(3.3)

From the simulation data, the following quantities are
computed at every time. The number of particles in layer
O.' 1S

N

X =) 8 (y), (3.4)

as length unit. Thus, the value of I /A can be interpreted
as an inverse Knudsen number. Other units are: m = 1
(mass unit), (2IctsT+/m) ~ = 1 (speed unit), T+ ——1
(temperature unit), and n = 1 (density level). Hence-
forth, all the quantities will be expressed in these units.
Each different physical situation is characterized by its
values of L and T . In terms of the above units, the
reduced thermal gradient, Eq. (2.14), reads

1 X 2
~I'g 2 m —J V7' Vi y (3.12)

The two f1rst quantities are proportional to the total mo-
mentum and energy per particle, respectively.

Obviously, the accuracy, but also the computer time
of the simulation, increase as N increases and Ay and
bt decrease. In our simulations, we have taken N/I =
500, Ay = 0.1, and At = 0.00396. We have observed
that the results are especially sensitive to a bad choice of
At. Figure 1 shows the time evolution of u„ for the case
L = 40, T = 0.05 and three choices of At. The data
obtained with At = 0.01776 clearly differ from those
obtained with At = 0.0088 and At = 0.0044 and exhibit
an unphysical growth of the average velocity. However,
the data obtained with the two smaller values of At agree
well within the statistical fIuctuations.

where y, is the y-coordinate of particle i and 8 (y) is
the characteristic function of layer u, i.e. , 8 (y) = 1 if y
belongs to layer o. and is zero otherwise. Similarly, the
mean velocity, the temperature, the pressure, and the
heat Qux of layer n are evaluated, respectively, as

IV. BOUNDARY CONDITIONS

In a bounded system, the boundary conditions play an
essential role in determining the nonequilibrium state.

1u„= ) 8 (y;)v;y,
i=1

(3.5)

(3.6)
() 0();&

P„„=m~ —by
~

+8 (y;)v;„,
(N
~, L )

(3.7)
() 015

n 50 1 00

(N= —,'~
~

—by
~ ) 8 (y*)v,'v. .. (3.8)

where v; is the velocity of particle i. %e have used v,.

FIG. 1. Time evolution of the global average velocity u„ in
the case I = 40, T = 0.05 for three choices of the time step:
bt = 0.01776 ( ), b.t = 0.0088 (

———), and b, t = 0.0044

( ). In all cases, the initial condition is of global equilibrium
at, temperature To ——T+ and the boundary conditions are of
Type I.
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In the context of the Boltzmann equation, these condi-
tions are specified by the kernels Ky [cf. Eqs. (2.12) and
(2.13)]. In the case of complete accommodation with the
walls, K~(v, v') does not depend on the incoming veloc-
ity v' and can be written as

O~ I
' I I I I I j& I I I I I I I I

j
I I I &11' 1 I

j 1 ~~I2.

1.0

K~ (v, v') oc !v„!y~ (v) H(pv„), (4.1)

where the proportionality constant is obtained by nor-
malization. The function p+(v) can be interpreted as
the probability distribution of a (fictitious) gas in contact
with the system at y = L. The function p (v) allows a
similar interpretation. Equation (4.1) means that when
a particle hits a wall, it is replaced by a particle leaving
&om the fictitious gas. These functions account for the
temperature of the walls, i.e.,

0.0
0

FIG. 2. Plot of the reduced kernels Ky((„) for boundary
conditions of Type I (dashed line) and of Type II ( solid line)
in the case L = 5, T = 0.05. The Buctuating lines are
simulation results for conditions of Type II.

kgT+ 3 m dv v &py v (4.2)

Usually, the functions py(v) are chosen as Gaussians:

( m
V+(v) =

l k T I
exP(-('),

( 27I kg Ty )
(4.3)

~+(v) = (('+(')
e+!(y I

!j,2' k~T~ )
x dt H((1 —t)sgn(„) t

0

(
x exp (4 4)

E~(& t )
Here, e~ is the value of ~ corresponding to a temperature
T~ and the thermal gradient predicted by the Fourier
law. In our units,

where ( = (m/2kgTy) ~2v. These boundary conditions
are used in molecular-dynamics simulations [1,2] and in
kinetic theory analysis [7,8,14]. Under these conditions,
the system is understood to be enclosed between two
baths at equilibrium at temperatures T+ and T, respec-
tively. This type of condition is adequate if one is inter-
ested in studying realistic boundary effects [15]. How-
ever, they might not be the most convenient ones when
the interest is focused on the transport properties in the
bulk.

In order to inhibit the boundary effects, we propose
here an alternative type of boundary condition. The idea
is to imagine that the two fictitious gases are in nonequi-
librium states resembling the nonequilibrium state of the
actual gas near the contact surfaces. Since the distnbu-
tion function of the actual gas is not known a priori, we
assume that the fictitious gases are described by the dis-
tribution function given by the BGK approximation, Eq.
(2.15). Thus, if the enclosed gas were also described by
the BGK equation, no boundary effects would be present.
More specifically, this second type of boundary condition
1s

ponents of the reemitted particle.
In the following, we will refer to the boundary condi-

tion (4.3) as a condition of Type I and to the boundary
condition (4.4) as a condition of Type II. Figure 2 shows
the reduced kernels

( ) —1/2 OO OO

K~((„) =
! ! dv dv, K~(v, v')
j, 2k~Tg)

(4 6)

for boundary conditions of Type I (dashed line) and of
Type II (solid line) and the case L = 5, T = 0.05.
While K ((„) = K+(—(„) for conditions of Type I, a
strong asymmetry appears for conditions of Type II. In
the latter case, particles reemitted from the hot wall

((„(0) have typically larger velocities (relative to the
thermal velocity) than particles reemitted from the cold
wall ((„)0). The noisy lines correspond to simulation
results obtained using boundary conditions of Type II af-
ter about 74000 collisions with the cold wall and 22000
collisions with the hot wall. As expected, the collision
frequency with the walls is larger in the case of the cold
wall, where a smaller thermal velocity is compensated by
a larger population.

Both conditions are schematically illustrated in Fig. 3.
The dashed line represents the temperature profile pre-
dicted by the Fourier law without temperature jumps at
the boundaries. The solid lines outside the system repre-
sent the temperature profiles of the fictitious gases, while

Z/2 1/2 —1/2
T~

L
(4.5) (a)

For the sake of simplicity, we have assumed in Eq. (4.4)
statistical independence among the three velocity com-

FIG. 3. Sketch of boundary conditions (a) of Type I and

(b) of Type II.
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the solid line inside the system is a qualitative represen-
tation of the expected profile. Although the boundary ef-
fects (represented by the temperature jumps at the walls)
are unavoidable, they are expected to be less important
in the case of boundary conditions of Type II.

steady state lies between 100 and 200. In the sequel,
we consider the initial condition (c) and assume that the
steady state has been reached at t = 200. In order to re-
duce the influence of fluctuations, we follow the evolution
of the system until t = 400 and take averages over 500
snapshots equally spaced between t = 200 and t = 400.

V. TRANSIENT RECIME

By application of either of the above boundary con-
ditions and after a sufBciently long time, the system is
expected to reach a steady state independent of its initial
preparation. In order to determine when the steady state
has been reached, it is convenient to analyze the transient
regime starting from different initial conditions. We have
considered initial distribution functions of the form

( m l '~' mv'' "'" = "'(") ' 2 k T ( )
'

' '
2k T ( )

' '

(5.1)

where the initial local number density no(y) and temper-
ature To(y) have been chosen in three different ways: (a)
no(y) = n, To(y) = T+, (b) no(y) = n, To(y) = T,
and (c) no(y) oc 1/To(y), To(y) = T (1 + cy/L)2~s,c:—(T+/T )s~ —1. The two first conditions correspond
to a gas initially at equilibrium at the same temperature
as that of one of the walls. In the third condition, the gas
is initially prepared in a local equilibrium state described
by the Navier-Stokes equations, namely, a constant pres-
sure and a linear profile of T ~ . As an illustration, Fig.
4 shows the time evolution of the global quantity p in the
case L = 10, T = 0.05 for the three initial conditions
and boundary conditions of Type I. The collisions with
the walls are responsible for the absence of conservation
of the total momentum and energy. Figure 4 shows that
with conditions (a) and (b) the total energy monotoni-
cally decreases and increases, respectively, until reaching
a common plateau; with condition (c), the total energy
is initially quite close to the steady value.

From Fig. 4 and similar analysis of the evolution of
u„and q„, we conclude that the relaxation time to the

0 ~ 5 I I I I I I

VI. HYDRODYNAMIC PROFILES:
TRANSPORT PROPERTIES

To study the transport properties in the steady state,
the following cases have been considered in the simula-
tions: (a) L = 10, T = 0.05; (b) L = 10, T = 0.01; (c)
L = 5, T = 0.05; and (d) L = 20, T = 0.05. In cases
(a)-(c), boundary conditions of Types I and II have been
used, while only conditions of Type II have been used
in case (d). As an exact consequence of the conserva-
tion of mass, momentum, and energy, the corresponding
fluxes must be spatially constant in the steady state, in-

dependent of the size and the boundary conditions of the
system. We have checked that this fact is verified in our
simulations. On the other hand, the conservation of mo-
mentum is compatible with P = P„g const. In the
exact solutions of the Boltzmann equation for Maxwell
molecules and the BGK equation in an unbounded sys-
tem, one has P» —— P», which implies p = const.
The pressure profile obtained from simulation in the case
L = 10, T = 0.05 and conditions of Types I and II is

plotted in Fig. 5. The dashed lines are parabolic fits.
It is apparent that a pressure gradient exists with both
choices of boundary conditions. However, the shape of
the pressure profile is clearly different in each choice.
Since boundary effects are expected to be less irnpor-
tant for conditions of Type II, we can conclude that a
pressure gradient opposite to the temperature gradient
is present in the bulk region of a hard-sphere gas. Sur-
prisingly, the boundary effects seem to inhibit the inho-

rnogeneity of pressure. It is interesting to note that the
value of p averaged over space, i.e. , p, is very close to th»
value of P» when using both boundary conditions. This
means that an equipartition theorem practically holds:

) (v. ) (v„), where ( ) denotes a global average value

0.4 0.235
I

~ t & I I I I I I
I

I 1

0.3

0.2

0. 1

0.210

0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I0.
50 100 150 200

FIG. 4. Time evolution of the global average pressure p
in the case I = 10, T = 0.05 for boundary conditions of
Type I and three choices of the initial condition: (a) global
equilibrium at temperature To ——T+, (b) global equilibrium
at temperature To ——T, and (c) local equilibrium described
by the Navier-Stokes equations.

0.185 I I I I I I I I I I I I f I I I I I I ! I I I I

0.0 0.2 0.4 0.6 0.8 1.0
y/L

FIG. 5. Steady-state profile of the local hydrostatic pres-
sure p in the case I = 10, T = 0.05 and boundary condi-
tions (a) of Type I and (b) of Type II. The dashed lines are
parabolic fits.
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1.0 I I I r ~ I I I I
I

I I I 1
I

I I 1 r
I

I r 1.0 r r r r r r r r r I I I
I

I I r I

0.6 I 0.6

0.2

0..0 I I I I I I I & I I I I I I I

0 0 0 2 0 4 0 6 0.8 1.0
0.0 r r I I I r I I I r I

0.0 0 2 0.4 0.6 o.e 1.0

FIG. 6. Steady-state temperature profile in the case
L = 10, T = 0.01 and boundary conditions (a) of Type I
and (b) of Type II. The dashed line is the profile given by the
Navier-Stokes equations vrith no-slip boundary conditions.

FIG. 7. Steady-state profile of T in the case L = 10,
T = 0.05 and boundary conditions (a) of Type I and (b)
of Type II. The straight lines are linear fits in the region
0.1 ( y/I ( 0.5.

per particle.
The most relevant hydrodynamic profile in this prob-

lem is that of the temperature. This profile is shown in
Fig. 6 for the illustrative case I = 10, T = 0.01. The
dashed line is the profile predicted by the Fourier law in
the no-slip approximation. We observe that the temper-
ature jumps at the walls are less important in the case of
boundary conditions of Type II. This confirms the fact
that these boundary conditions have a smaller influence
on the transport properties than conditions of Type I. In
our units, the Fourier law, Eq. (1.1), for a dilute gas of
hard spheres can be written as

BT 3/2
(6.1)

t9y

As a consequence, T / must be linear in the steady state.
Figure 7 shows the profile of T ~ for the case I = 10,
T = 0.05. In this representation, it is observed that
both profiles are quasilinear. In order to compare the
heat flux computed from simulation with the one given
by the Fourier law, a bulk region where one can evaluate
BTs~2/By should be specified. This region must be sep-
arated &om the walls by distances larger than the mean
free path. For hard spheres, the mean free path near the
hot wall is larger than the one near the cold wall. In all
the cases considered, we have chosen the bulk region as
0.1L & y & 0.5L. The straight lines in Fig. 7 correspond
to linear regressions of T ~ in that interval.

The values of the most relevant quantities of the prob-
lem are shown in Table I for all the cases considered. The
parameters ei and e2 are the values of the reduced ther-
mal gradient, Eq. (3.3), at y = 0.1L and y = 0.5L, respec-
tively. They give a measure of the departure from equi-
librium of the region used to evaluate the Fourier heat
flux, Eq. (6.1). In Fig. 8, each value of the ratio q„ /q„
is represented by a horizontal bar. The height is the sta-
tistical error and the width is the range e2 & e ( ei. In
all cases, the magnitude of the actual heat flux is smaller
than that of the Navier-Stokes prediction, this efFect be-
ing more noticeable in the case of boundary conditions
of Type I. This indicates that boundary effects tend to
decrease the heat flux across the system, in agreement
with results derived from the BGK equation [7]. Any-
way, in the case of boundary conditions of Type II, the
deviation from the Fourier law is smaller than 10'%%uo even
for values of e as large as 0.8. It is important to point out
that the deviation is about 33% in the case of boundary
conditions of Type I, which are the ones used in pre-
vious simulations [1,2]. Since boundary efFects are not
completely eliminated by conditions of Type II, it is dif-
ficult to elucidate the contribution to the deviation from
the Fourier law due to hydrodynamic nonlinear effects.
However, comparison between cases (b) and (c) for con-
ditions of Type II allows one to conjecture that the above
contribution is smaller than 5'%%uo for values of the reduced
thermal gradient e around 0.8.

TABLE I. Simulation values of the most relevant quantities for all the cases studied. The sta-
tistical error is indicated in parentheses, in units of the last decimal place.

Boundary condition
I

L T
10 0.05
10 0.01
5 0.05
10 0.05
10 0.01
5 0.05
20 0.05

+vs
0.1920(2)
0.1565(2)
0.1714(4)
0.2123(3)
0.1864(2)
0.1962(4)
0.21rI4(2)

p
0.1922(2)
0.1575(2)
0.1754(4)
0.2098(6)
0.1843(6)
0.192(1)
0.2174(3)

0„
0.0440(2)
0.0410(2)
0.0593(4)
O.O585(3)
0.0584(4)
0.0915(6)
0.0335(2)

62

0.26
0.32
0.53
0.27
0.32
0.48
0.15

E1

0.46
0.59
0.76
0.52
0.63
Q.84
0.26

NS

0.0458
0.0442
0.0787
0.0599
0.0609
0.0995
Q.Q335
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FIG. 8. Ratio between the heat flux given by the Fourier
law and the actual heat flux for all the cases studied. Each
value is represented by a horizontal bar of height equal
to the statistical error and width equal to the range of
the reduced thermal gradient e corresponding to the region
0.1 ( y/L ( 0.5. The empty and filled bars correspond to
boundary conditions of Types I and II, respectively.

0
0y

FIG. 9. Reduced distribution function R((„) for a reduced
thermal gradient e = 0.334. The two fluctuating lines corre-
spond to the layer at y = 0.30L in the case L = 10, T = 0.05
(solid line) and to the layer at y = 0.42L in the case L =- 10,
T = 0.01 (dashed line), both with boundary conditions of
Type II. The smooth dashed line corresponds to the exact
solution of the BGK model.

VII. VELOCITY DISTRIBUTION FUNCTION

Besides the hydrodynamic quantities, the velocity dis-
tribution function can also be evaluated from the simula-
tion. Given the geometry of the problem, it is convenient
to define the reduced marginal distribution

n (m/2vrkBT) exp (
—mv&/2ka T)

where the reduced velocity is defined in Eq. (2.16).
must be emphasized that in Eq. (7.1) the quantities n,
T, and f are local. As said before, the state of the gas in
the bulk is described by the normal solution to the Boltz-
mann equation. In this solution, all the space dependence
of f is entirely contained in its functional dependence on
the fields n and T. This means that, for a given value of
e, R((„) must be independent of the details of the simu-
lation. At the Navier-Stokes order, one has [13]

(7.2)

~ = 0.68. The simulation line corresponds to the layer at
y/L = 0.20 in the case L = 5, T = 0.05.

VIII. DISCUSSION

In this paper we have addressed the planar Fourier flow
problem for a dilute gas of hard spheres. The physical
situation is that of a fluid enclosed between two paral-
lel plates separated by a distance I and maintained at
temperatures T and T+. Since no analytic solution of
the Boltzmann equation is known for this problem, we
have solved it by means of the direct-simulation Monte
Carlo method. Our main goal has been to analyze in the
steady state the transport properties in the bulk region.
In particular, we have been basically interested in check-
ing the validity of the Fourier law in situations far from
equilibrium. The Fourier law is exactly verified in the
exact solutions of the Boltzmann equation for Maxwell
molecules [4] and of the BGK model for general interac-

The function R is plotted in Fig. 9 for e = 0.334. The
two noisy lines correspond to the layer at y/L = 0.30 in
the case L = 10, T = 0.05 and to the layer at y/L = 0.42
in the case I = 10, T = 0.01, both with boundary
conditions of Type II. These two lines agree well within
statistical errors. This confirms that in both cases the
boundary effects are not important in the region we have
taken as the bulk. On the other hand, both lines are
clearly different from the Navier-Stokes prediction, Eq.
(7.2), in spite of the fact that the heat Aux is well de-
scribed by the Fourier law. Figure 9 also shows the func-
tion R obtained from the BGK solution, Eq. (2.15). We
observe that the BGK solution reproduces satisfactorily
the general behavior of the distribution function. Never-
theless, some discrepancies are apparent in the region of
high velocities and near the maximum. These differences
tend to increase as e increases, as shown in Fig. 10 for

.0 I I I I ! I I I !
I

I I ! I I I I I I
I

I I I I I I I I I
I

I I I I I I I I3.
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0
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FIG. 10. Reduced distribution function R((„)for a reduced
thermal gradient ~ = 0.68. The solid line corresponds to the
layer at y = 0.20L in the case L = 5, T = 0.05. The dashed
line corresponds to the exact solution of the BGK model.
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tion potentials [5]. Both solutions refer to an unbounded
system. In previous molecular-dynamics simulations of
bounded systems (finite I ) [1,2) the deviations kom the
Fourier law have been found to be small, even for large
gradients. In those simulations, however, the influence of
the boundary effects on the transport properties is not
clearly elucidated.

In order to get a bulk domain, i.e., free from boundary
effects, the natural idea is to take values of L much larger
than the mean &ee path, i.e., small Knudsen numbers.
There are, however, two drawbacks: (i) the relative tem-
perature difference should be increased to keep a 6nite
thermal gradient, and (ii) the number of particles and
of layers in the simulation should increase, which is not
convenient &om a practical point of view. The bound-
ary effects can also be diminished by choosing appropri-
ate boundary conditions. In the conventional boundary
conditions, used in previous works, each time a particle
leaves the system, it is reemitted with a velocity sampled
&om a Gaussian probability distribution. An alterna-
tive idea is to consider a probability distribution for the
reemitted particles similar to the actual velocity distribu-
tion function of the gas. More speci6cally, we have taken
the analytic solution of the BGK model of the Boltz-
mann equation to de6ne these new boundary conditions.
In our simulations, we have considered Knudsen numbers
of 0.05, 0.1, and 0.2 and temperature ratios of 0.01 and
0.05.

We have checked that the boundary effects are appre-
ciably inhibited, but not eliminated, by the use of the
boundary conditions. In contrast to what happens in the
exact solutions of the Boltzmann equation for Maxwell
molecules [4] and the BGK equation [5], the pressure is
not constant in the bulk. The pressure gradient happens
to be opposite to and of a much smaller magnitude than
the thermal gradient. This is a nonlinear effect that is ab-
sent in the case of Maxwell molecules. On the other hand,
when considering global average values, an equipartition
theorem approximately holds: (vz) = (vz) (v2). Con-

cerning the temperature profile, it becomes quasilinear
when plotting T ~, in agreement with the prediction of
the Fourier law for hard spheres. By identifying the bulk
region as the one lying between 0.1L and 0.5L, we have
computed the heat fIux given by the Fourier law. Com-
parison with the heat flux measured directly in the sim-
ulations shows good agreement. We have estimated that
for reduced thermal gradients close to 1, the deviations
from the Fourier law not attributable to boundary ef-
fects is smaller than 5%. This conclusion does not imply
that the state of the system is near equilibrium. In fact,
the velocity distribution function obtained from simula-
tion is highly distorted with respect to local equilibrium.
Further, the distribution in the bulk region is practically
independent of the details of the simulation and depends
essentially on the local density, temperature, and ther-
mal gradient. This is in accordance with the spirit of a
normal solution. In addition, a comparison with the ex-
act solution of the BGK model indicates good agreement,
although the latter exhibits a smaller distortion.

Although in this paper we have restricted ourselves
to dilute gases, we expect that the alternative boundary
conditions introduced here are more useful than the con-
ventional ones for studying transport properties in the
bulk, even for dense fluids. Finally, the results obtained
here encourage us to consider the planar Couette flow
problem, where the corresponding BGK solution is also
known [16].
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