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Chaotic cascade model for turbulent velocity distributions
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A coupled map lattice is introduced that simulates the time evolution of velocity differences in fully

developed turbulent Bows. The model considered is an extension of the Langevin theory to chaotic driv-

ing forces acting on a self-similar cascade of spatial levels. Compared to full simulations of the Navier-

Stokes equation, the amount of necessary computing time is negligible. Despite its simplicity, the model

is in perfect agreement with experimentally observed results, provided the chaotic driving force is gen-

erated by the fully developed logistic map with parameter value p=2. The shape of the velocity distri-
butions, the slight asymmetry, the stretched exponential tails, as well as the moment scaling exponents

g, come out in precisely the same way as in experimental measurements of high Reynolds number

Aows.

PACS number(s): 05.45.+b, 47.27.Jv

I. INTRODUCE EON

Understanding the spatiotemporal structure of tur-
bulent Quid fiows is a challenging problem of nonlinear
science that still lacks a complete solution. A
phenomenon of particular interest is the intermittent
behavior of fully developed turbulent flows [1-27]. Let

tt(r, t) =u„(x+r, t) —v„(x,t)

denote the difference of the radial component of the ve-
locity field at two points in the liquid that are separated
by a distance r. It has been observed in several experi-
ments that the probability distribution of u deviates from
a Gaussian function [1—4]. In particular, for rather small
r (in the dissipative range) the distribution possesses tails
that are approximately (but not precisely) of exponential
type. What is even more striking is the fact that in al-
most all experiments the probability distribution of u is
observed to be slightly asymmetric, although the average
of u is zero. This asymmetry results in the fact that all
higher-order odd moments of u are negative [1,2]. A typ-
ical experimental result for r in the subinertial range is
plotted in Fig. 1 (the experimental data are from [1]).
The figure shows a probability density measured by Cas-
taing, Gagne, and Hopfinger in a jet experiment at Rey-
nolds number Re&=852 for r lri=167, where g denotes
the Kolmogorov length scale. The distribution is normal-
ized and the horizontal axis is rescaled such that the vari-
ance satisfies (u ) =1. For comparison, the figure also
shows a normalized Gaussian function with variance 1.
One notices significant asymmetric deviations from the
Gaussian function. There have been several theoretical
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FIG. 1. Probability density of the velocity difference u as
measured in a jet experiment at Re&=852 for r/g=167 (dotted
line). Also shown is a normalized Gaussian with standard devi-
ation 1 (thick solid line). The thin solid line Stting the experi-
mental data perfectly is a density obtained from the coupled
map lattice introduced in Sec. II.

attempts as well as a large number of numerical experi-
ments to explain the shape of turbulent velocity distribu-
tions, but a truly satisfactory theory is still missing. Most
previous models yield only qualitative agreement with ex-
perimental observations, whereas the quantitative agree-
ment of, e.g., the asymmetry of the distributions is rather
poor.

Direct simulations of the Navier-Stokes equation are
certainly the most straightforward method to compare
with the experiments, but presently only simulations up
to Reynolds numbers Re&=100 are possible [5], whereas
the experiments reach Re&=3000 [1). Thus it is neces-
sary to consider appropriate models that yield a better
understanding of high Reynolds number flows. It should
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be clear that full simulations of the Wavier-Stokes equa-
tion can also be viewed as a type of experiment,
representing —within the numerical accuracy —the true
physics at low Reynolds numbers. The role of models
(such as the one of this paper) is to provide a simplified
setting in which some aspects of the turbulent dynamics
can be better understood.

In this paper a very simple but physically well-
motivated model for turbulent velocity differences at high
Reynolds numbers will be introduced. The model is an
extension of the Langevin theory to chaotic driving
forces. These driving forces act on a self-similar cascade
of spatial levels. The model is most conveniently formu-
lated in terms of a coupled map lattice that also contains
random ingredients, describing the fluctuations of the en-

ergy transfer from larger to smaller scales. The coupled
map lattice is very easily implemented on a computer,
and —compared to full simulations of the Navier-Stokes
equation —the necessary amount of computing time is
negligible. Despite this conceptual simplicity, the model
yields probability distributions of turbulent velocity
differences that are in perfect quantitative agreement with
experimentally observed results, provided the driving
force is generated by the fully developed logistic map
(see, e.g. , Fig. 1: the thin solid line, hardly visible behind
the data points, is a density obtained from the coupled
map lattice). This will be worked out for three different
experiments at different Reynolds numbers and for vari-
ous distances r. In particular, the asymmetry (skewness)
of the distributions comes out in the correct way. The
model also allows for some analytical treatment. For ex-
ample, it can be shown that the average of u vanishes,
whereas all higher odd moments of u are negative, in
agreement with the experimental results. Finally, not
only the probability distributions but also the scaling ex-
ponents g defined by the scaling relation

(u(r) )-r (2)

come out correctly: They exhibit the well-known non-
linear dependence on m that has inspired the construc-
tion of many intermittency models [7—22]. Within the
statistical error, the exponents obtained from the coupled
map lattice coincide with the experimental results.

Although the approach described in this paper is new,
the model still shares certain properties with previously
introduced models, such as the random-P model of Benzi
et al. [10,11],a Langevin model of Frisch and Morf [18],
and the shell model studied by Jensen et al. [12—16]. A
more detailed comparison with these and further models
will be given in the conclusion.

This paper is organized as follows. In Sec. II the cou-
pled map lattice will be introduced. In Sec. III the nu-
merically obtained probability distributions are compared
with the experimental data. Section IV deals with the ex-
traction of the scaling exponents g . In Sec. V some
analytical results are presented. Finally, the conclusion
contains a brief comparison with previously developed
models.

II. A COUPLED MAP LATTICE SIMULATING
TURBULENT VELOCITY DIFFERENCES

The model that will be introduced in this section is
based on a generalization of the Langevin theory to deter-
ministic chaotic driving forces. For one-dimensional sys-
tems, this generalization has been described for the first
time in [28] and has been further worked out in [29—33].
The relevant class of mappings are maps of Kaplan-
Yorke type, first introduced in [34]. To simulate a tur-
bulent fiow, the approach of [28] has to be extended to
infinite-dimensional (spatially extended) systems. More-
over, the self-similarity of the energy cascade as well as
the random fluctuations of the energy transfer have to be
taken into account. This will lead to the more advanced

spatiotemporal model of the present paper. To make the
paper self-consistent, some of the considerations of
[28—30] will be rederived in the first part of this section.

Let us consider a fixed position x in the liquid and a
fixed distance r. We may then simply write u (t) instead
of u(r, t) The d. ynamics of u (t) is basically determined
by two competing effects.

(i) In the absence of external or internal driving forces
velocity differences tend to relax to the laminar state
u =0. Thus we may write

u= —yu, y&0. (3)

(ii) There are time-dependent chaotic forces in the tur-
bulent liquid that drive the velocity differences and
prevent the relaxation to the laminar state. Let us denote
the resulting force (i.e., the difference of the forces at
x+r and x) by F(t). We obtain

u = —yu+F(t) . (4)

x„+,=T(x„) . (6)

Here T: X—+X is a chaotic map on some phase space X
and N is a function projecting from X onto the velocity
space. The simplest choice one can think of is to take for
T the logistic map T(x)=1—px on X=[—1, 1] and to
choose @(x)=c(x —(x ) ), where c is some coupling con-
stant and (x ) is the average of x„. Once again let us re-
mark that the analysis would apply in just the same way
to any continuously varying chaotic fiow F(t},as generat-

Equation (4) looks similar to a Langevin equation model-
ing dynamical Brownian motion, but certainly there are
major differences to this theory.

(i) The force F(t) is not Gaussian white noise, but a
chaotic force changing on a typical time scale ~.

(ii) The relaxation time scale y
' and the time scale r

of the force have comparable orders of magnitude.
(iii) In the Langevin theory u is the velocity. In our

model u is the uelocity difference.
From a numerical point of view, it is much easier to

deal with chaotic mappings than with chaotic Bows. For
this reason, let us discretize the time and assume that the
force F(t) is a deterministic chaotic kick force given as
follows:
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ed, for example, by the Lorenz model or by the Navier-
Stokes equation itself. The discrete model that is con-
sidered in Eq. (6} should be interpreted in the sense that
we assume that smeared over a time scale ~, the integrat-
ed driving force varies chaotically in a similar way as the
iterates of the logistic map or any other appropriate
chaotic dynamics do. The discreteness just helps to make
the theoretical and numerical analysis more convenient.

With the force (5), Eq. (4) can be integrated to give

x„+,=T(x„),

u„+,=au„+a(x„), (8)

where u„:=u ( n ~+0+) and A, :=e r'( 1. We obtain a
map of Kaplan-Yorke type [34]. Much theoretical work
has been done for maps of this type, dealing with various
aspects of the system such as ergodic and mixing proper-
ties [30], the dimension of the attractor [29,33,34,35],
higher-order correlation functions [32], and the Gaussian
limit case obtained in a suitable scaling limit [28,29,31].

From now on we will use 4(x)=x and assume that the
average (x ) vanishes, obtaining the simple form

x„+,=T(x„),

"n+ i =~un +Xn
(9)

=2 k
k (10)

Moreover, let Vk denote the volume occupied by the ac-
tive eddies at level k. On average, the active daughter ed-
dies at level @+1 occupy only a certain fraction of the
volume of the active mother eddies at level k:

Vk+1=&Vk

This is just the standard assumption of the P-model. For
space-filling (Kolmogorov-like) eddies, P= 1.

of a dynamical system representing the deterministic ana-
log of a linear Langevin dynamics. (Analogously, one can
construct more general mappings corresponding to non-
linear Langevin equations; see [28,47].} Notice the fact
that the force F(t) is not Gaussian white noise but a com-
plicated chaotic process. The kick strengths x„evolve
according to the mapping T in a deterministic way. As a
standard example, we will typically choose for T the fully
developed logistic map T(x)=1—2x .

Now let us extend the dynamical system (9) to incorpo-
rate spatiotemporal degrees of freedom. Quite similar to
the P model introduced by Frisch, Sulem, and Nelkin [9]
and further developed by Benzi, Paladin, Parisi, and Vul-
piani [10], we assume that fully developed turbulence is
characterized by the existence of a selfsimilar set of ed-
dies on various scales. The various levels of this cascade
are labeled by an index k. The larger k is, the smaller the
size of the corresponding eddy. In the foHowing we will
often call an eddy at level k the "mother eddy" and the
corresponding smaller eddies at level k+1 the "daughter
eddies. "

Let us denote by u„' ' the velocity difference of two
points in the liquid that are separated by a distance rk,
where r ksc laes (in the inertial range} as

Our basic model assumption is that the momentum
loss at level k serves as a chaotic driving force at level

k+1. Moreover, a particular one of the daughter eddies
at level k+1 gets only a random fraction g~P' of the
momentum loss of the mother eddy at level k, the other
part is transferred to other daughter eddies at level k+ l.
This can be expressed by the following coupled map lat-
tice:

x„+,=T(x„),

un+i =~iun +xn ~

(i) — (i)

u' ' =A, u'"'+cg'k "(1—
A, )u'

(12)

(k=2, . . . , X) .

Dividing by mk we obtain

c= mk —p
—1

~k-i
(14)

i.e., the coupling constant c is identified with the parame-
ter P ' of the P model.

The thin solid line in Fig. 1 shows a histogram of the
variable u„'"' at level k =6, obtained by iterating the cou-
pled map lattice for A,k =const=0. 85 and T(x)=1—2x2.
The density is normalized and the horizontal axis is re-
scaled such that the variance satisfies (u„' ' ) =1 (the
dependence on the constant c is trivially absorbed by this
rescaling). The curve is in perfect agreement with the ex-
perimentally measured velocity distribution (dotted line,
the experimental data are from [1]}. In particular, the
asymmetric deviation from a normalized Gaussian func-
tion comes out in a quantitatively correct way. From this
we conclude that the model system (12) is indeed a
promising candidate to model velocity differences in fully
developed turbulent Bows. A systematic comparison
with various experiments will be presented in the next
section.

Here gi„k' is a random variable on [0,1]. It is muitip»ed

by a coupling constant c. Moreover, in order to be as
general as possible, we allow the damping A, to depend on
the scale, expressed by the index k. The simplest choice
is to take for the g'„"' uniformly distributed independent
random variables, as generated by a pseudorandom num-

ber generator. But one may also generate them by the
binary shift map or other strongly chaotic maps on the
unit interval —the results presented in Sec. III do not de-

pend on details of this choice.
The physical meaning of the coupled map lattice (12)

is the following: During one time unit, the momen-
tum loss of the mother eddy at level k —1 is

mk, (1—Ak, )u„'" ", where mk, =pVk, is the mass
associated with this eddy. A random fraction of this
momentum (determined by the factor g'„" ") serves as a
driving force for the daughter eddy at level k. The
momentum balance for the daughter eddy is

mku„'+i =Akmku„'"'+g'„"mk i(1—&k ])u„'

(13)
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III. COMPARISON WITH EXPERIMENTS

To obtain a realistic model of a turbulent fluid flow val-
id for a large range of distances r, one has to specify how
the parameters A,k depend on the scale index k. The sim-
plest choice, namely, constant A,k, may be a reasonable
approximation for the subinertial range, i.e., large dis-
tances r (see Fig. 1). However, it is well known that for
smaller and smaller scales viscous effects become more
and more dominant. Hence, for decreasing distances r,
the damping y is expected to increase, which means that
A, =e r'"' decreases. The easiest choice to model this in-
crease of dissipation on smaller scales is to assume that y
changes linearly with the scale index k, or, in other

words, that A, k decreases exponentially:

oak
kk =e

Since from Eq. (10) we have k= —lnr/In2, Eq. (15) is
equivalent to a scaling law of the form

A(r)=r" .

The exponent a.=yor/1n2 is expected to be nonuniversal,
since it contains a typical time scale ~ of the system. %"e
estimate that ~ is of the same order of magnitude as the
inverse Reynolds number Re ', since
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FIG. 2. Logarithm of the probability density of u(r) measured for the jet experiment at (a) r/g= 100 (dotted line), (b) r /g= 23.6
(thick solid line), and (c) r/q=3. 3 (thick solid line). The figures also show probability densities obtained by iterating the coupled
map lattice for year =0.022 and (a) k =7, {b) k = 10, and (c) k = 17 (thin solid lines). Up to some stochastic Suctuations, the curves are
almost identical.
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Here v denotes the kinematic viscosity, U is a typical ve-

locity, and L is a typical length scale.
In the following we will use the coupled map lattice

with parameters A, k given by Eq. (15) to compare with ex-
perimentally observed velocity distributions. Neverthe-
less, other choices rather than the simple form (15) may
also yield good results.

Figures 2(a)—2(c) show various probability distribu-
tions of velocity differences measured by Castaing,
Gagne, and Hopfinger in the jet experiment at Reynolds
number Re~=852 [1]. The distance rlri varies from
rl7)=100 (a) to rig=23. 6 (b) and rig=3. 3 (c). On the
other hand, the figures also show histograms obtained by
iterating the coupled map lattice (12) for yam=0. 022,
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k=7 (a), k=10 (b), and k=17 (c). As usual, we have
chosen for the map T the fully developed logistic map.
The quantitative agreement with the experimental data is
remarkable; it is so good that the thin solid line corre-
sponding to the coupled map lattice is often hardly visible
[see, e.g. , Fig. 2(b)]. One should also keep in mind that
only two parameters are fitted: the parameter y O7

(roughly corresponding to Re ') and the index k of the
lattice (determining the distance r). Just as in the experi-
ment, where the Reynolds number is constant and the
distance is varied, in our simulation we keep the parame-
ter yo~ constant and vary the index k. Increasing k, we
observe the typical transition scenario from distributions
similar to a slightly asymmetric Gaussian function to dis-
tributions with stretched exponential tails. In contrast to
many other intermittency models, the coupled map lat-
tice yields the transition scenario in a quantitatively
correct way, i.e., the simulated distributions coincide pre-
cisely with the experimentally measured distributions.
Moreover, the amount of computing time necessary to
generate the histograms with the coupled map lattice is
much smaller than for other models.

In Fig. 3 a typical time evolution of the trajectory u„' '

is plotted for k=7 (a) and k=17 (b). For small scales
(k = 17) we observe the typical intermittent outbursts that
yield the stretched exponential tails of the distribution.
For comparison, the small window in Fig. 3(a) shows an
experimentally measured velocity signal in the wake of a
circular cylinder [4]. The stochastic characteristics of the
experimental signal looks very similar to that of the cou-
pled map lattice.

Another experiment where probability distributions of
velocity differences have been measured with high pre-
cision is a tunnel experiment at Re&=2720 [1]. Figures
4(a) —4(c) show the distributions measured for r/g =2971
(a), r/g= 1307 (b), and r/rI=11. 6 (c). Again it is possi-
ble to reproduce these distributions in a quantitatively
correct way with the coupled map lattice, now with the
parameter values yor=0. 0069 and k =15 (a), k =16 (b),
and k = 31 (c). As expected, the parameter yor has to be
chosen smaller now. According to Eq. (17), it is propor-
tional to Re '. Moreover, as expected for larger Rey-
nolds numbers, we have to choose larger lattice sizes k to
obtain quantitative agreement with the experiments,
since the number of selfsimilar levels of the energy cas-
cade is known to increase with increasing Reynolds num-
ber. Notice that relation (10) is well satisfied in the iner-
tial range, whereas in the dissipative range the index k
has to be increased slightly stronger in order to have op-
timum coincidence with the experiments, i.e., the cascade
from mother to daughter eddies is run through more fre-
quently in this range. Alternatively, we could replace Eq.
(15) by a more complicated dependence, where the damp-
ing y increases stronger in the dissipative range. In the
noninertial range k is just regarded as a parameter that
tells us how often the cascade from mother to daughter
eddies is went through. In this range there is no simple
scaling relation between r and k, and k has to be fitted to
obtain optimum coincidence with the experiments.

Finally, as a third experiment we looked at a duct How

at Re&=515 [2]. Again the experimentally observed
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FIG. 4. Logarithm of the probability density of u(r) mea-

sured for a tunnel experiment at Re&=2720 and (a) r/g=2971
(thick solid line), (b) r/g=1307 (dotted line), and (c) r/g=11. 6
(thick solid line). The experimental curves are very we11 repro-
duced by the coupled map lattice with yov=0. 0069 and (a)
k = 15, (b) k = 16, and (c) k =31 (thin solid lines).
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probability distributions can be exactly reproduced by
the coupled map lattice (see Fig. 5), now with the param-
eters @or=0.025, k =6 (a) and k =8 (b).

The three difFerent experiments indeed confirm that the
larger the Reynolds number, the smaller is the parameter
yov. and the larger is the necessary lattice size. But even
for the largest experimentally accessible Reynolds num-
bers Re&=3000, the lattice size is still smaller than -30.
That means, finite-size effectsof the lattice (i.e., of the en-

ergy cascade) still play an important role for experimen-
tally accessible turbulent flows.

IV. THE MOMENT SCALING EXPONENTS g

In the absence of a theory for turbulent velocity distri-
butions much of the theoretical and numerical work has
been concentrating on the scaling behavior of the mo-
ments (u(r) ) in the inertial range, where the various
models [6-12]predict scaling behavior of the form

(18)

with different values for the exponents g . The g have

loSIop(~)

I

10

been measured in several experiments [1—4], and in all
these experiments a characteristic nonlinear dependence
of g on m has been observed. The most popular ex-

planation for this behavior is the multifractal approach of
Benzi et al. [10), but also direct [5) and truncated [20]
simulations of the Navier-Stokes equations as well as the
shell model studied by Jensen et al. [12,15] confirm this
specific nonlinear type of behavior.

Our coupled map lattice does not only exactly repro-
duce the shape of the observed probability distributions,
but also the scaling exponents g come out in a quantita-
tively correct way. It is remarkable that the model yields
the correct exponents without fitting any parameters, ex-
cept that we adjust the parameter p such that the gen-
erally accepted value (3= 1 is reproduced.

The following numerical experiments was performed:
The coupled map lattice (12) was iterated 5X10 times
for yo~=0. 022 (this parameter value corresponds to the
jet experiment). The moments ( u ) were calculated as
time averages (just as it is done in the experiments). We
then plotted log2~(u )~ versus log2r= —k and deter-
mined the slope in the inertial range k E [8, 12] by linear
regression. The constant c=p ' was adjusted in such a
way that $3=1; then the other exponents g were deter-
mined with this value of the constant c. The experiment
was repeated 5 times with different initial values and
difFerent random numbers to estimate the statistical er-
ror. The numerical results obtained by this method are
listed in Table I and plotted in Fig. 6. The figure also
shows the experimentally measured exponents by Ansel-
met et al. [2] and Meneveau and Sreenivasan [3], as well
as the results obtained by Vincent and Meneguzzi [5]
from a direct simulation of the Navier-Stokes equation.
Within the statistical error, there is very good agreement
between the coupled map lattice and the experiments and
the direct simulation of the Navier-Stokes equation. For
all experimental and numerical data plotted in the figure,
the error is of the same order of magnitude as the vertical
scattering of the symbols.

0 TABLE I. Scaling exponents g as obtained from the cou-
pled map lattice.

Error

lOgIP P(u)

«7
-10 10

FIG. 5. Same as Figs. 2 and 4 for a duct fiow at Re&=515
and (a) r/g=110 and (b) r/q=36. 6. The experimental mea-
surements (dotted lines) coincide with probability densities ob-
tained from the coupled map lattice for y07 =0.025, (a) k =6,
and (b) k =8 (thin solid lines).

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0.69
1

1.28
1.54
1.79
1.97
2.18
2.28
2.46
2.54
2.72
2.80
2.97
3.06
3.23
3.34
3.51

0.01

0.02
Q.02
0.03
0.06
0.07
0.14
0.19
0.24
0.22
0.34
Q.31
0.43
0.39
0.52
0.48
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behavior enters via the mapping T just at the top of the
cascade (k=1). It is then propagated to smaller scales
according to Eq. (12},which has a linear structure. Cer-
tainly it is also possible to add nonlinear terms to Eq.
(12), i.e., to consider nonlinear generalizations of maps of
Kaplan-Yorke type, where the term A,u„ is replaced by a
nonlinear function g(u„). For one-dimensional systems,
this approach was introduced in [28] and further worked
out (for special examples of g) in [47,48]. However, since
already the simple linear form g(u„)=Au„yields a re-
markably good agreement with the experiments, we will
restrict the analysis of the present paper to the linear case
g(u„)=Au„.

To simplify the notation, let us define ck.=c(1—k„).
The entire coupled map lattice can be written as

FIG. 6. Scaling exponents g versus m as obtained from the
coupled map lattice. The figure also shows the experimentally
measured exponents by Anselmet et al. [2] and Meneveau and
Sreenivasan [3], as well as the numerical results obtained by
Vincent and Meneguzzi [5].

Two remarks are in order.
(i) The constant c=p ' is nonuniversal. Choosing a

different value yuan (i.e., changing the experimental setup
or the Reynolds number), one has to choose a slightly
different c to adjust g3 to the value 1. However, after this
adjustment the scaling exponents g appear to be in-

dependent of go~, at least within the statistical error.
The variation of c with ypT is actually rather small. For
the jet experiment, c '=p=0. 582, which is indeed close
to the value p=2 ~ =0.630 estimated by Benzi and
Vulpiani [17].

(ii) The scaling behavior of the moments seems to be
only approximate. For small rn, a plot of log( u ) versus
logt does not give a true straight line but a slightly
curved line, for large m the fluctuations are huge. Both
these phenomena are also observed for the experimental
data [2]. One should therefore better call the exponents

"quasiexponents" since they describe an approximate
scaling behavior for a lattice of finite size. Finite-size
effects (finite Reynolds number effects) seem to be quite
important to understand fully developed turbulent flows
in a quantitatively correct way. The view that the scaling
behavior of the moments is only approximate has also
been emphasized in [1,36,37].

V. ANALYTICAL TREATMENT

The coupled map lattice introduced in Eq. (12} allows
for some analytical treatment. This distinguishes it from
other standard types of coupled map lattices studied in
the literature, such as diSusively coupled logistic maps
[38—42] or Henon maps [43]. For these types of exam-
ples the dynamics can typically be investigated by numer-
ical means only, just in very rare cases it is also possible
to obtain some analytical results [44—46]. For the system
(12), on the other hand, several rigorous results can be
proved. The reason is that the nonlinear chaotic

u(k) ~ u(k)+c ~(k —1) (k —1)
un+1 —kun Ck 1pn un (19)

if we agree upon denoting the iterates x„ofthe map T as

p(o) (o)
xn 'Cpbn un (20)

For simplicity let us choose the initial values uo '=0,
k =1, . . . , K. Iterating the system (19), one notices that
at each level k the variable u„'"' can be written as a sum of
iterates x multiplied by appropriate coeScients a

n —k
u„'"'= y a,I"'x, . (21)

j =0

For example, at level k =1, one has
(1) gn —1 —jj 1 (22)

(see also [30]). The question of interest is the following:
Given the a'"', what are the a'"+"? Iterating Eq. (19),
we get

n —
1

(k +1) ~ gn —1 —jp(k) (k)
un —

Ck ~ k+1 yj uj
j=l

(23)

k —1
(k) gn —1 —i ga.

s=1

n —1
n —1

—i,

i =j+s
(25)

We recognize the following important result: Whatever
the precise choice for the relaxation parameters A. l, and
the random variables g'„', the velocity diff'erences u„'"' can
be written in the form (21), where the a'"' are positiue
coefficients: a'"') 0. The positivity follows from Eq. (25)
and the fact that

(27)

(we exclude the trivial case that all g'„' vanish). More-
over, since A, k &1, the a'. "' are bounded from above as
well (for finite k).

Putting Eq. (21) into Eq. (23), we obtain after a short cal-
culation

n —1

a (k + 1)
C

(k) ~ gn —1 —ip(k)aj ckaj ~ k+1 bi
I =k+J

This yields
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For the fully developed logistic map, sums of the form
(21) have been studied in detail in [32]. In particular, a
graph theoretical method was introduced that yields a
systematic procedure to calculate the moments and the
invariant density of the u„'"' in a perturbative way, pro-
vided the coei][cients a' ' are given. In our case, the
problem is slightly more advanced, since the a'. ' are ran-
dom variables rather than deterministic coefficients.
There is a complicated interplay between expectations
with respect to the invariant measure of T and expecta-
tions with respect to the random variables aJ' '. But, nev-
ertheless, the techniques developed in [32] can still be
used. In this paper, let us just apply one of the analytical
results of [32], which is of particular physical interest. A
more detailed mathematical analysis will be given else-
where.

For a given realization of the random coefficients aJ' ',
the moments of u„' ' are given as

(u(k)m) ~ . . . ~ u(k). . . u(k)(x . . . x )J1 Jm Jl Jmj =0 j =0

(28)

Here ( ) denotes the expectation with respect to the nat-
ural invariant measure dv of the dynamics T, which for
T(x)=1—2x reads

dv(x)= dx .1

1 —x
(29)

The map T is conjugated to a Bernoulli shift [49]; the
iterates can be written as

x„=—cos772 "9 (30)

Writing cosn2'u= —,'(e+' "+e ' "} and using the
fact that for integers n

(32)

one obtains [32]

(x x )=(—1) 2 $5(o(2 '+ +cr 2,0) .

(33)

Here g means summation over all 2~ possible "spin"
states ((r„.. . , (r~) with (r;=+1, and the 5 function
denotes the Kronecker delta defined by

1, n=rn
5n, m ='

0 otherwise . (34)

For the m-point function (x x ) appearing in Eq.
(28) one obtains

(x x )= dv(x }x x
Jm )

0 ji Jm

m j) Jm=( —1) du cosn2 'u cosn2 u .
0

(31)

&0, m even
(x& xj ) &0 (35)

Notice that there are nontrivial higher-order correlations
between the x . For example, from Eq. (33) we get

(x,'x,.+, ) = —
—,'X(x,')(x, +, ) =0 . (36)

In fact, for each rn &2 there is a certain set of tuples

(j, , . . . ,j ) (characterized by the graphs of [32]}where
(x xj )%0. For arbitrary realizations, the random

Jm

coefficients a'"' appearing in Eq. (28) are positive. Thus
Eq. (28) yields

=0 m =1
(u' ' ) &0 rn even

&0 m &3 odd.
(37)

This inequality remains valid if we finally perform the
average over the random variables g(„' as well. Hence we
have obtained a rigorous proof of the fact that all odd
moments of u are negative, except the first moment (the
average), which vanishes. Notice that this is just the
characteristic feature of the moments measured in fully
developed turbulent Quid flows: All higher odd moments
are observed to be negative [2]. Notice also that if we
had chosen for the x„statistically independent random
variables with average 0 rather than the iterates of the
fully developed logistic map, all odd moments of u would
vanish, and no asymmetry of the invariant density of u

would arise at all. Thus the agreement with the experi-
mental data would be much worse in this case. The
asymmetry is due to the fact that there are complicated
higher order correlations between the x„, for example,
those given by Eq. (36). In general, all these higher corre-
lations are described by the graphs introduced in [32].

We may call this phenomenon a "dynamical symmetry
breaking" effect: Although the map T as well as its in-
variant density is completely symmetric, the invariant
density of u is not. Not only the existence of this asym-
metry can be proved rigorously, but the numerical exper-
iments of Sec. III also show that it comes out in a quanti-
tatively correct way if one chooses for T the fully
developed logistic map. From this one may conjecture
that the dynamics T(x)=1—2x, conjugated to the Ber-
noulli shift in the sense of Eq. (30), plays a universal role
for fully developed turbulent flows, in just a similar way
as Feigenbaum's fixed point function [50] plays a univer-
sal role for the transition from ordered to chaotic states.
Notice that all three different experiments can be fitted
by the same mapping.

In [32] it was shown that among all smooth mappings
conjugated to the (—,', —,') Bernoulli shift the fully developed
logistic map T(x)= 1 —2x is distinguished: It possesses
the largest possible number of tuples (j(, . . . ,j ) for
which the higher-order correlation functions
(x~ x ) vanish identically. For example, the binaryJ) Jm

Special well-known cases of Eq. (33} are (xj ) =0 and
(x. x ) =

—,5(j„jz). Equation (33) implies the inequali-

ty
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shift map T(x)=2x modl with substracted mean has
much more non vanishing higher-order correlations:
Here all even higher-order correlation functions are
nonzero for arbitrary tuples (j„.. . ,j ), whereas for the
fully developed logistic map most even higher-order
correlation functions vanish identically (with the excep-
tion of those characterized by the graphs of [32]). In this
sense the map T(x ) = 1 —2x can be regarded as a dis-
tinguished dynamical system that possesses the strongest
random properties possible for a smooth deterministic
system. This may serve as a hint why the coupled map
lattice with this particular mapping yields such good
agreement with the experiments: For a fully developed
turbulent system we expect that the dynamics of the ve-
locity Geld tends to a state where, although completely
deterministic, it possesses the strongest possible random
properties. For smaller Reynolds numbers, on the other
hand, other mappings [such as the logistic map
T(x)= 1 —px with p (2] may be more appropriate.

VI. CONCLUSION

In this paper a coupled map lattice has been intro-
duced that simulates the time evolution of velocity
differences u in fully developed turbulent flows. The
model considered contains both chaotic and random in-
gredients. It yields probability distributions that deviate
from a normalized Gaussian function in a way that is in
perfect agreement with various turbulence experiments.
In particular, the asymmetry of the distributions (the
negativity of the odd moments} is reproduced correctly,
and the stretched exponential tails characteristic for in-
termittent behavior are obtained in a quantitatively
correct way. Moreover, the scaling exponents g charac-
terizing the scaling behavior of the moments (u(r) ) in
the inertial range take on the same values as experimen-
tally observed.

The model is based on an extension of the Langevin
theory to deterministic chaotic driving forces, which act
on a self-similar cascade of spatial levels. A priori the
model can be studied for any type of chaotic driving dy-
namics, but we obtained by far the best agreement with
the experimental measurements if the driving force is
generated by a dynamical system conjugated to the Ber-
noulli shift, the fully developed logistic map
T(x)=1—2x . In this case the negativity of the higher
odd moments of u can be proved rigorously. The coupled
map lattice is very easily implemented on a computer,
and the necessary amount of computing time is several
orders of magnitude smaller than for direct simulations
of the Navier-Stokes equation.

Let us emphasize once more that, although the madel
could also be studied for independent random variables
T(x)=+1, such a simplified dynamics cannot account for
the observed asymmetry of the probability distributions.
Any symmetric stochastic process as a driving force
yields just symmetric probability distributions. On the
other hand, in Sec. III we showed that the map
T(x)=l —2x correctly reproduces the observed asym-
metry for three different experiments, due to the dynami-
cal symmetry breaking effect discussed in Sec. V. Al-

though we cannot exclude the possibility that also other
maps yield good results, the map T(x)= 1 —2x seems to
be ideally suited to model the stochastic properties of ful-
ly developed turbulent velocity signals in a quantitatively
correct way. Of course, one could also replace the dy-
namics T by an asymmetric random process, such as, e.g. ,
asymmetric dichotomous noise [51,52]. However, then
the asymmetry is put in by hand, whereas in our model it
arises quite naturally from the underlying chaotic dynam-
1cs.

Here we have just described the results obtained with a
very simple coupling structure of the form given by Eq.
(12). The model, however, can be easily extended to a
more general setting. For example, one may wish to take
into account a small backward scattering effect of the en-

ergy [53,54]. This can easily be achieved by adding to the
right-hand side of E~. (12) an additional term of the form
brt'„"+"(I—kk+&)u„' +", where the rl'„"+" are further
random variables, and b «c. This extended model then
allows for some backward transmission of energy from
smaller to larger scales. Spectral closure models also sug-
gest that interactions of shells may go beyond those of
nearest neighbors [55]. Such higher-order coupling terms
could be easily introduced here as well. So far it is not
clear whether direct simulations of the Navier-Stokes
equation support long-range interactions in wave-number
space [56—59]. Another possible generalization of the
model is to let the parameters A, k fluctuate in time or to
generalize Eq. (3} to nonlinear evolution equations. On
the other hand, we found it quite appealing that already
the very simple form Eq. (12) yields such good coin-
cidence with the experiments.

Let us compare the model with other previously intro-
duced models. Frisch and Morf [18] consider a
Langevin-like equation and point out that intermittency
effects can be modeled by such a system if the driving
force is a more complicated process than Gaussian white
noise. This is also the basic idea of the present paper, just
that the approach is extended to spatiotemporal systems
and formulated in terms of a coupled map lattice, i.e.,
both space and time are discretized. The view that hy-
drodynamic behavior can be modelled by coupled map
lattices has been emphasized by various authors; see, e.g. ,
[38—42] and references therein. Even two-dimensional
mappings often reveal typical intermittency features; see,
e.g., [60,48].

The model introduced here shares certain properties
with the p model of Frisch, Sulem, and Neikin [9] and
the random p model of Benzi et al. [10],i.e., intermitten-
cy models based on multiplicative random processes [8].
In fact, the parameter p ' is identified with the coupling
constant c of the coupled map lattice [see Eq. (14)]. Very
roughly, we may regard the model as a dynamical exten-
sion of the random p model, since now the velocity
differences at level k obey a concrete evolution equation,
which is not present in [10]. One may also introduce a
more complicated (multifractal) probability distribution
for the random variable g'„"', as it is done in [10]. Howev-

er, this is actually not necessary in our model, since even
the simple choice of uniformly distributed g'„"' yields per-
fect agreement with the experiments. In fact, the proba-
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bility distributions plotted in Figs. 2, 4, and 5 ap ear to
be quite independent of the distribution of the „'; the
most important property is just that the g'„"' are positive
and that they exist on a finite support. For example, we
did not notice a significant difference if the uniform and
independent g'„"' are replaced by a chaotic dynamics

g„+'&=4(„'(1—g„"'), which generates a nonuniform den-

sity, and which possesses higher-order correlations. The
distributions plotted in Figs. 2, 4, and 5 are also indepen-
dent of the coupling c. This dependence is trivially ab-
sorbed by the condition that we look at distributions with
standard deviation 1.

The approach of this paper also shares some of the
ideas of Jensen, Paladin, and Vulpiani [12], namely, that
fully developed turbulence can be modeled by a dynami-
cal system of medium dimensionality d (d-20-50) ex-
hibiting chaotic behavior. Whereas Jensen, Paladin, and
Vulpiani consider a continuous time dynamical system
(previously introduced in [14,16]), the present approach is
based on a discrete time dynamical system, which leads
to a further simplification.

It is remarkable that the fully developed logistic map
T(x)=1—2x as a driving dynamics of the coupled map
lattice yields such good results. As the iterates of T can
be written as x„=—cosm2"u, i.e., as a cosine for which
the frequency increases exponentially, we are somewhat
reminded of the Fourier-Weierstrass ansatz chosen by
Grossmann and Lohse [20], although this is just a formal
analogy.

Finally, let us compare the model with the work of

Castaing, Gagne, and Hopfinger [1],which inspired very
much the development of the present paper. Castaing,
Gagne, and Hopfinger consider an empirical model that
fits the experimental data very well. However, the
diSculty of their model is that it predicts a nonvanishing
average of the velocity difference u, which has to be re-
moved afterwards by an artificial shifting of the origin of
the probability distribution. This difhculty does not arise
for the coupled map lattice (12). Here the average (u )
vanishes, and the asymmetry of the distribution {the
negativity of the higher odd moments) arises naturally as
an intrinsic property of the system.
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