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Exact results of a solvable general spin-1 model
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We have introduced a type of universal transformation between spin variables s; and 0; to map the

general spin-1 model onto the spin- —,
' Ising model and have employed the exact results of the latter to

find the exactly solvable cases of the spin-1 model. Our transformations are not one-to-one correspon-
dences between s; and o; and they are applicable to all lattices, depending on the lattice structure only

through the coordination number. On square, triangle, and honeycomb lattices the exact critical points
are shown in certain subspaces of parameter space (E, J, L, H, and 6).

PACS number(s): 05.50.+q, 75.10.Hk

I. INTRODUCTION

Recently the study of the general spin-1 Ising model
has received much attention [1—4]. This is because it ex-
hibits rich phase transition phenomena from the first or-
der to higher order and from usual critical points to mul-

ticritical points. As the special case of the general spin-1
Ising model, the Blume-Emery-Griffiths (BEG) model can
be used to describe phase separation and superfluid or-
dering in He- He mixtures [5] or phase separation and
ferromagnetism in binary alloys [6]. In the recent two
decades the general spin-1 model has been extensively in-

vestigated by means of a variety of approximation
methods such as mean-field theory [1,5,7,8], Bethe ap-
proximation [9], renormalization group techniques

[2,3,10], series expansion methods [11],and Monte Carlo
methods [12]. A few exact solutions have also been ob-
tained. Griffiths [13]and Berker and Wortis [3] have got
some exact solutions on square lattice. Very recently,
II olesik and Samaj [4] have mapped the general spin-1
model onto three- and two-state vertex models and found
its exactly solvable cases of the honeycomb lattice under
the certain constrained conditions. Their results can cov-
er the precious exact solutions [13—20]. Moreover, they
argued their method can be extended to lattices with ar-

bitrary coordination number. However, Lipowski and
Suzuki [21] suggest that it is not suitable for square lat-
tice. Maybe the structure of the honeycomb lattice (the
coordination number y =3) is essential to the method.

In this paper, we propose a kind of transformation be-
tween spin variables of the general spin-1 model and the
spin- —,

' Ising model, and thus map the spin-1 model onto
spin- —,

' Ising model with an external field under certain

constrained conditions, which determines the corre-
sponding subspaces of interaction parameters. Therefore
we can employ the exact solutions of the latter to acquire
the exact results of the former. The most important
features of our method are that the transformations be-
tween spin variables are not one-to-one correspondences
and they are applicable to all lattices and depend on the
lattice structure only through the coordination number.
We will show some exact results on square, triangle, and
honeycomb lattices. Unfortunately, we cannot exhibit
the three-dimensional solution of the spin-1 model be-
cause the exact solution of the three-dimensional spin- —,

'

Ising model has not yet been found.
The paper is organized as follows. In Sec. II, we per-

form our transformation of spin variable and map the
spin-1 Ising model onto the spin- —, Ising model with an

external field. In Sec. III, we present exact critical points
on two-dimensional square, triangle, and honeycomb lat-
tices in terms of the known exact results of the spin- —,

' Is-

ing model. Finally, in Sec. IV, we make a brief con-
clusion and give some discussion.

II. MAPPING SPIN-1 MODEL
ONTO SPIN-

2
ISING MODEL IN A FIKI.D

The Hamiltonian of the general spin-1 Ising model is
written as

—PM= J g s,-s +L g —,'(s, +s )s, s
&ij ) (i j)

+E g s, s +Hgs, —b g.s2-, s, =0, +1,
(t;j)

'Mai1ing address.

where P= 1/k Ts(ks is the Boltzmann constant) and
(i,j ) denotes the nearest-neighbor spin pairs, the sum-
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mations g&,. &
and g&, &

are carried out over all nearest-

neighbor pairs and spins, respectively. J, L, and E are the

reduced "interaction" parameters, H, the external field

and b, the crystal field. When L =H =0 in the Hamil-

tonian (1) the model reduces to the BEG model [5], and

when L =E =H =0 to the Blume-Capel model [7].
As we mentioned, Kolesik and Samaj [4] have mapped

the spin-1 model onto three- and two-state vertex models
on honeycomb lattice and found the exactly solvable
cases of the general spin-1 model under following con-
strained conditions:

e (e —e )—2(e coshL —e )=0,
g 3+eH —s[g (e

—J+K 1)g]3

(2a)

H+~ [g —(e + —1)g] =(), (2b)

where

eJ+K s—[eL+H( —J+K 1)

+e (L—+H)(e J+K L —
1 )]

1+eJ+K h[e—L+H+e (L+—H)]

or

e (e J—e )—2(e coshL —e J)=0,
J+L+ J L2——J)3

e J(e2J e 2J)[eH(e J—+L e
—J)2+e H(e J —Le——J}2]

(3a}

(3b)

Equations (2a) and (2b) completely cover the known solv-
able cases [13-20]of the BEG model

e+coshJ—1=0,
L =H=O,

or

J=L =H=O.

We now proceed to perform a way to get the exactly solv-
able cases. Let us first write down the reduced Hamil-
tonian of the spin- —,

' Ising model in the presence of a field.

J= L/2=1(:—=J',
H =h=y J'+H',

it will lead to

(10)

—p%= —p%' —c, ,

where

where M indicates the total number of nearest-neighbor
spin pairs, N the total number of sites and y is the coordi-
nation number.

Comparing (9) with (1},it is easily seen that if one let

P%'=J' g—o;o, +H'go;, o;=El,
(;j&

C) =MJ'+NH' . (12)

o;=—s, +s, +1. (7)

where o,. (i =1,2, . . . , N ) is the spin variables. Since the
Ising model has been exactly solved on two-dimensional
lattices, we expect a map between the spin-1 model and
the spin —,' model to present the exact solution of the
spin-1 model via the latter.

We introduce the following transformation between
spin variables s,. and u;:

cr, =2s; —1,2

we will obtain

1 when s, = —1,0

(14)

The Eq. (11) shows the map between both models via

transformation (7).
Similarly, if we choose the following transformations:

0.;=—s; —s;+1 (13)

and

Obviously, we attain

1 when s, =1,0
—1 when s;= —1,

0' —1 when s; =1,
1 when s;=El

CT —1 when s;=0,

(15)

(16)

+J' g s; sJ +(yJ'+H') g s;
(ij & (i&

(yJ'+H'} gs; +MJ'+NH—',
(i&

(9)

which shows both spin states with s; = 1,0 correspond to
a spin state o; = 1. Therefore the transformation (7) gives
a non-one-to-one correspondence relation between spin
variables of the two models.

Substituting (7) into (6) produces

—P&'=J' g s;sJ. —J' g (s;+s )s,s.

respectively.
The transformations (13) and (14) also give non-one-

to-one correspondence relations between spin variables.
Following the same procedure as before, we reach
—P%'=J' g s;s.+J' g (s,.+sz)s, sz

(i J& &i j&

+J' g s; sJ (yJ'+H') gs;—
(i,j &

(&'
(yJ'+H') g s; +M—J'+NH', (17)

(i&

for the transformation (13},and
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—Pgj'=4J' g s;s (—2yJ' 2—H') gs; +MJ' N—H',
&i j ) &i)

(18)

for the transformation (14). In the Hamiltonians (17) and
(18) if we set

where

P%—'J =J'o;crj+ (o;+o }+—[lnP(cr; }+lnP(cr )] .
H' 1

y
' ' y

The above expression can be transformed into
J=I./2=K =J',
—H =A=y J'+H', (19) —P&,' =Jo;o + —(cr, +o, ) + A,H

(28)

and

E =4J',
in which J, H, and A are determined by the set of equa-
tions:

J=I.=H=O,

5=2y J' —2H',

respectively, we will derive

—P%= —P%' —C,

and

—p%= —p%' —C2,

(20)

(21)

(22)

2H'J'+ +—lnP(+1)=J+ + A,
y y y

J' — +—lnP( —1)=J— + A,
2H' 2 2H

r y y
1—J'+ —[lnP(+1)+lnP( —1)]=—J+ A .
y

The solution is

(29)

(30)

(31)

where Ci is determined by (12), and

C2 =MJ' —NH' . (23)

The Eqs. (21) and (22} also show the connection between
both models via transformations (13) and (14).

In order to study the characteristic of phase transition,
we first write down the partition function of model (1)

A =—[lnP(+1)+lnP( —1)]=—ln2,1 1

y y

H=H'+ —,'[lnP(+1) —lnP( —1)]=H'+ —,'ln2 .

(32)

Using Eqs. (27}—(32},we finally obtain the following form
as usual:

Is, =O, +1I
exp( —p&[s, I ) . (24)

Z=e g exp J g cr;cr
Io,. =+1I &i,j )

Let us suppose the constrained conditions (10), (19),
and (20), are satisfied, thus we can employ the Eqs. (11),
(21), and (22) to rewrite (24}as follows:

Z=e g P(o, )P(cr2) P(oN)exp( —P&'[o, I )

I~ =+1I

—C+ AM

+—g (o;+cr~)+ g A .H

(l',j) &l,j)

exp J g o;o., +H go;
Icr,. =+1I &i j ) &i )

(33)

=e g exp[ —P%'Io;]++ lnP(cr, )]
Ia,.=+1I l

=e g exp J' go;o
I~,. =+1I

+H' g o;+glnP(o;) (25)

Now, the general spin-1 model is completely equivalent
to the Ising model with nearest-neighbor interaction pa-
rarneter J and an external field H. We would like to em-
phasize the equivalence occurs only in the subspaces of
parameter space determined by (10), (19), or (20) and the
periodic boundary condition should also be considered.
As we see once again our transformations depend on the
lattice structure only through the coordination number.

where C =C, or Cz depending on the use of (10), (19), or
(20). P{o;) denotes the degeneracy arising from the
transformation between s; and cr;. Obviously, we here
have to choose P(1)=2 and P( —1)=1. When
P(1)=P( —1)=1, the expression (25) reduces to the usu-
al case.

For the purpose of comparison, we prefer to change
(25) into a usual standard form through a further trans-
formation. We write the partition function (25) as

Z=e c g exp —P g&,',
Icr,.=+1I (i,j&

III. EXACT RESULTS

We now employ the equivalence of both models to
yield the exact results of the spin-1 model. In order to
obtain the specific results, we first consider the case in
which Eq. (10) is satisfied (case 1). Thus, Eq. (33) takes
the form

—C +AMZ=e ' g exp J g o, cr, +H go, , (34)
I(7,. =+1I &l,j)

(26)
where —Ci+ AM=MJ NH +(N/2)ln2, J—=J'=J,
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and H =H'+ —,
' ln2 =H —yJ+—,

' ln2. As we have known,

the critical point (J,',H;) of the spin- —,
' Ising model on

square lattice is determined by [22]

tanh J,' =&2—1,
(35) Square Triangle Honeycomb

TABLE I. Summary of results for the square, triangle, and
honeycomb lattices where tanhJ s

=v 2 —1 (J s =0.4407),
tanhJT =2—&3 (J T —=0.2747), and tanhJ H= 1/&3
(JH —=0.6585).

Pl

Jis=J s Lis= 2J s &is=J s

Hfs= Js —
—,'1 ~fs= J,' —

—,
' n2.

P2
(36)

Similarly, on triangle and honeycomb lattices, the critical
points (J r, H r ) and (J H, H z ) of the spin- —,

' Ising model
are determined by [23)

tanhJ z =1—v 3,
(37)

H T=O

and

P3

H =0.
S

Using Eqs. (10), (32), and (35) yields the critical point
Pls(Jis L ts Kis His ~is) of the general spin-1 Ising
model, where

K'*,

H',*

L*

H~

E',
H,'

Js
—2J*s
Js

4J,*—
—,
' ln2

s —-' ln2S

Js
2Js
Js

—4J s+-,' ln2

4J s —
—,
' ln2

0
0

4Js
0

8J s+»2

Jg
6J*—

2
ln2

6J,*——' ln2

JT
2J

—6J T+ —' ln2

6J T
—

2
ln2

0
0

0
6J *+ln2

JH
—2J H

JH
3J~ ——' ln2

3JH —
~

ln2

2JH
JH

—3JH+ 2
ln2

3J * ——' ln2

0
0

4Ja
0

12J ~+ln2

tanhJ ~=1W3,
H a=0,

(3&)

HiT=6J T
—

—,
' ln2,

Jia=J a

a*,~=6J *,——,
' ln2,

2J I & Eia Ja

(39)

H;a =3J p
—

—,
' ln2, h*,a =3Ja —

—,
' ln2 .

(40)

respectively. Therefore, we get the critical points of the
spin-1 model P, T(J;r,L', r, K fT,H,'T, b, ») (fo«riangle
1«tice) and P»(Jf„,L»,K», Hf~, hfH) (f«honey-
comb lattice), where

Jir=J r

for case 3. The results are all summarized in Table I. We
have noticed that Griffiths [13)and Berker and Wortis [3]
have presented the transformation (14) through a sym-
metric consideration and got the critical points P3s, P3T,
and P3H. However, the other two transformations (7)
and (13} and thus the corresponding critical points P&

and P2 have not yet been mentioned. Berker [24] has
also introduced a similar transformation that maps
higher spin Ising models onto spin half for arbitrary lat-
tices, and used it to obtain accurate (but not exact) criti-
cal temperature for all high spins. Guided by the same
idea, we again find two transformations between spin
variables. One is

Next, we consider the other two cases (case 2 and case 3)
given by (19) and (20), respectively. Using the similar
procedure, we will respectively attain the fallowing re-
sults:

the other is

0=—t+—2 5
i 4

(43)

(44)
J2s=J s

JzT=J T

J2a=J a

L2, =2J s, E~s=J s,

H2s = —4J s+-,' ln2, ~2s=4J s=-,'»»

L2~ —2J T, E2T —J T,

L2a 2J h & +2a Ja&
(41) 0'=' —1 whent = ————1 3 (45)

where t, =+—,', 2—,
' is the spin variable of the spin- —', mod-

el. They result in

1 when t; =
—,', —,

'

H* = —6J*=—' ln2,T 2

H2a= —3Ja+ —,
' ln2,

for case 2, and

52T=6J T
—

—,
' ln2,

2a=3J a —
—,
' ln2,

and

1 when t,. =+—,
'

—1 when t; =+—,', (46}

J3s =0,
J3T=O,

J3a =o

H3s =0,

H3T=O,

03a =0,

L3s =0, E3s 4J s~

L3T —0, X3T—4J T,

1.3a =0, E3a =4J a,
53s =8J s+ln2,

~3T 12J T+ln2,

63a =6J a+ln2,

respectively, and map the spin- —', model onto the spin- —,
'

Ising model under certain constrained conditions. Of
course, we can attain the exact critical points of the spin-
—,
' model on special subspaces of parameter space.

IV. CONCLUSION

We have mapped the general spin-1 model onto the
spin- —,

' model through transformations (7), (13), and (14).
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Since the transformations between spin variables are not
one-to-one correspondence, it requires to introduce the
transformation degeneracy to the calculation of the parti-
tion function. %e have also found the critical points on
square, triangle, and honeycomb lattices in terms of the
known exact results of the spin- —,

' Ising model.
The important features of our transformations are that

they are not one-to-one correspondences s,- and a,- and

they are applicable to all lattices, depending on the lattice
structure only through the coordination number. That
means that the transformations are universal. In detail,
once we know the exact solution of the spin- —,

' Ising mod-

el on arbitrary dimensionality and structure of lattices,
we can obtain the exact results of the spin-1 Ising model

through for example (10), (32), and (35). The method can
be extended to higher spin models.

As we see, our results are worked out on a "smaller"
subspace of parameter space (J,L,E,H, iJ, ) and, thus, they
are certain special solvable cases of the general spin-1
model. Especially, when we only consider the honeycomb
lattice, our subspaces are the special solutions of (2). In
addition, in our method presented here, we have not
found a tricritical point.
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