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Stochastic perturbation of the y-ray angular correlation in the case of a quadrupole interaction
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The angular correlation of y rays emitted from a quadrupole nucleus perturbed stochastically by an

axially asymmetric electric field gradient has been derived explicitly. The average attenuation
coefBcients for the specific cases of the stochastic environment have been deduced from the general ex-

pression. Numerical results of the derived expressions are represented graphically.

PACS number(s): 02.50.—r, 71.70.Jp, 31.30.6s

I. INTRODUCTION

The joint probability of emission of two y rays in cas-
cade is a measure of the correlation function. After emis-
sion of the first y ray and before emission of the second,
the nucleus remains in its intermediate state for some
time. During the lifetime of the intermediate state, if the
nucleus is perturbed by the external environment, then
the angular correlation between the two y rays will con-
sequently be affected. This is called perturbed angular
correlation (PAC). The environment being large, its de-
tailed interaction with the system (the nucleus) is impossi-
ble to handle. One thus resorts to modeling of the envi-
ronment by a random process. Matching of the experi-
mental results with the theoretically calculated values of
PAC provides the value of the characteristic feature of
the random process or environment.

Time-dependent perturbation may be visualized as fol-
lows: The radioactive probe nucleus immersed in a liquid
acts as a Brownian particle and undergoes a large number
of collisions with the bath constituting the surrounding
molecules. During the lifetime of the intermediate state,
it does not traverse much. What is important is that the
orientation of the nucleus changes at each molecular col-
lision. The effect of such perturbation, which is time
dependent, could thus provide information about the ro-
tational diffusion constant. It is also observed that trans-
port properties (viscosity and difFusion coefficient) of a su-
perviscous liquid differ strongly from the properties of
"normal liquids" [1-3]. Therefore, PAC measurements
at different temperatures could also provide information
about the variation of the diffusion constant with temper-
ature at different viscosity regions.

The theory of time-dependent perturbed angular corre-
lation is succinctly described and the final expression of
the attenuation coefficient is written formally for arbi-
trary interaction in Ref. [4]. As the number of collisions
taking place within a given time is a random
phenomenon, the attenuation coefficient should be prop-
erly averaged out with respect to the number of col-
lisions. That is, one must consider an ensemble of nuclei
having faced a different number of collisions within a
given time. Next, one focuses one's attention on the na-
ture af the interaction Hamiltonian. If the nucleus is
considered a dipole, it must couple with the perturbing

field vector characterized solely by its magnitude and
direction. While in the quadrupole approximation of the
nucleus, it should couple with the field gradient in the in-

teraction Hamiltonian. In the coordinate system where
the electric field gradient (EFG) tensor becomes diagonal,
the interaction Hamiltonian is characterized by two pa-
rameters, namely, the quadrupole frequency and the
asymmetry parameter. After each collision, the orienta-
tion of the EFG is also changed; thus it necessitates
different coordinate systems in which the EFG becomes
diagonal. As the extranuclear perturbing field is random,
apart from the collisional average mentioned before, the
interaction parameters are random in nature at each
time. Therefore, the attenuation coefficient should prop-
erly be averaged out with respect to the direction of the
field and the magnitude of the strength of the field in the
case of dipole approximation or with respect to the direc-
tion of the field gradient and the magnitude of the quad-
rupole frequency and asymmetry parameter in the case of
the quadrupole approximation.

Different models have been proposed by different au-
thors in order to carry out the averaging process. A sto-
chastic model of the fiuctuating orientation type has been
given by Scherer and Blume [5]. Some authors do not
consider the fiips of the orientation axis; obviously, this
model will be true when the direction of the perturbing
field does not change appreciably within the lifetime of
the intermediate state. The PAC with the "fixed orienta-
tion type" but with a Gaussian distribution of the
strength of the extranuclear electric or magnetic field has
been calculated [6]. This model is popularly known as
the fixed orientation Gaussian approximation (FOGA)
model. The assumption of fixed orientation of the axis of
interaction is inherent in the Blume model [7] in which
the perturbing field is allowed to jump between two possi-
ble states. The attenuation coefficient of similar type for
a magnetic field jumping between three possible states has
been given by Spanjaard and Hartmann-Boutron [8].
Subsequently, Bosch and Spehl [9] have generalized their
model to include fluctuation of the orientation axis. In
all these models no consideration of correlation time of
the stochastic processes has been made. However, in
reality no process is free from their autocorrelation time.
The present authors [4] thus have calculated the expres-
sion of PAC when the environment is of fluctuating
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orientation type and the strength of the field is modified
as an Ornstein-Uhlenbeck process. With the quadrupole
approximation of the nucleus, Fraunfelder and Steffen
[10] have given the perturbation function for a nonaxially
symmetric interaction in a polycrystalline source. In
their derivation they [10]have assumed the fixed orienta-
tion type model. Later, Dattagupta and Blume [11]have
considered a model where the EFG does not change its
magnitude but can be oriented in any direction. Recent-
ly, Martinez, Sanchez, and Vasquez [12] have considered
the case of an axially symmetric quadrupole interaction.
However, no general expression of time-dependent per-
turbed angular correlation is available for an axially
asymmetric quadrupole interaction where both quadru-
pole frequency and the asymmetry factor are varying ran-
domly.

In what follows, we extend all these models to include
the cases where orientation and both parameters, namely,
quadrupole frequency and asymmetry factor, vary ran-
domly. In Sec. II the actual derivation of the attenuation

coefficient has been given. Next, we take two specific
cases of the random EFG and calculate numerically the
derived expressions of averaged attenuation factors. Fi-
nally, we offer a few concluding remarks in Sec. III.

II. DETERMINATION OF THE ATTENUATION
COE SCIENT

When two successive y rays are emitted in the k& and
kz directions, the general form of the angular correlation
function [13]is

W(k„k2, t)= g At, (l)Ak (2)Gk 'k '(t)
1' 2

N1, N2

X [(2ki+1)(2k2+1)]

»k, (&i Ni)I'k, '(&2 42»

where the perturbation factor is given by

Gk 't, '(t)= g (
—1) ' '[(2k, + l)(2k2+1)]'

rn, , mb
m,

' —m, Ã]

mb

I k2
(m, lA(t)lm. &(m,'lA'(t)lm, '& .

m~
(2)

A(t) =exp[ —(i/iil)@t ] . (3)

The operator 8 describes the interaction between the in-

I

The factors Ak, Ak are related to the matrix elements of
1 2

the interaction Hamiltonian inducing a transition be-
tween the nuclear states and associated with the emission
of the y rays in the k, and kz directions, respectively.
The angles 8„$, define the direction k, and, similarly,

N1N2
82, ttt2 for k2. The central quantity of interest is Gk k (t),

1 2

which is related to the matrix element of the operator
A(t) between magnetic states lm )s. The quantity A(t) is
the time development operator describing the develop-
ment of the intermediate nuclear state under extranuclear
perturbation through hyperfine interaction. Thus, A(t) is
given by (6 i 2(t)& y gn 2tg{6 —i 2

1 2 1 2n=0
(4)

where A, refers to the mean number of collisions per unit
time and

I

termediate nuclear state and extranuclear perturbation.
In this paper we assume the nucleus to be an electric
quadrupole; hence, in the interaction Hamiltonian 8 it
should couple with the EFG.

The detailed method of the averaging procedure men-
tioned in the Introduction and obtaining the expression

of the average attenuation coeScient (Gt, k (t) & in the
N1N2

1 2

case of an arbitrary interaction Hamiltonian has been
given formally in Ref. [4]. Here, we only quote the ex-
pressions

E{Gk 'k
' ln] =(1/42r)"+'

n

p dt, {6„'„'].
(0&I &t & . - &i„&t) t =&

1 2 n

x ~ (d;dn;d&;)I (,,g, lo;, ,q, lt, ; . .
i=0

The quantity {Gk k ]« t corresponds to the eval-NI N2

uation of 6„'k '(t) at n time points t, , t2, . . . , t„
1 2

(t ~t„~t„ i~ . . ~t, ~0). The variables o2, 2) refer to
the characteristics of the interaction Hamiltonian (ex-
plained below) and 0 corresponds to the direction for
which EFG is diagonal. The subscripts attached to them
refer to the time points {t, ] at which the collisions take
place. The quantity

I (oio '9ol0'gati 'Vilti . . ~n lnlt

in Eq. (5) is the joint conditional probability of having the
specified values of the characteristics of the interaction
Hamiltonian after choosing n ordered time points. The
hyperfine quadrupole interaction Hamiltonian 8 takes
the following form in the present case:

8=co {3I, I (2) /2)(I + +I —
) ],—
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where the quadrupole frequency co is defined by

co=eQV /4I(2I —1) . (7)

rt=(V~ —Vyy)/V~ . (8)

The quantity V,, is the double derivative of the potential
in the suitably chosen axes for which the EFG tensor be-
comes diagonal and the axes are chosen such that

This restriction implies that the asymmetry factor rI
would always lie between 0 and 1. In this frame of axes
where EFG is diagonal, if the ~p) refer to magnetic
states, then the nontrivial matrix elements of P are given
by

(IpiPiIp ) =fico[3p I(I+1—)],
(Ip'~P~Ip ) =%co(rt/2)[(I +p —1)(I+p)

(9)

X (Imp+1)(I+p+2) ]'i

X5 ~ (10)

We now evaluate Eq. (4) term by term with the interac-
tion Hamiltonian given by Eq. (6).

In expression (7), I, Q, and e are the nuclear spin, the
electric quadrupole moment, and the electronic charge,
respectively. The quantity g refers to the asymmetry fac-
tor and is given by

A. Class mth static interaction

The first term in Eq. (4), corresponding to n =0,
represents the class of nuclei having no fiip of the orienta-
tion axis. The quantity that is to be evaluated is

(1/4~) f jt f dtoodrlodQoP(ohio rto)Gk, 'k, '(t)

where Gk 'k '(t) is given by Eq. (2). We note that
1 2

~m ), ~m') are magnetic states corresponding to our fixed
z axis in laboratory frame although the matrix elements
of the interaction Hamiltonian are known [Eqs. (9) and
(10}]in the frame, say, z', where the EFG tensor is diago-
nal. Let ~p) be the eigenstates corresponding to the
frame where EFG is diagonal. Thus we must express the
matrix elements in terms of ~p ). We write

~m) =g~p)(p~m), (12)
P

where (p ~
m ) are known to be Wigner coefficients

D'~'(po, go, o), with (po, Po, o) being the Eulerian angles of
the direction Qo with respect to the z axis of the laborato-
ry frame. Inclusion of the identity

(13)
P

in matrix elements of A, A in Eq. (2) implies that we
would get the product of four Wigner coefficients. Then
we use the integration formula

D,",, QDbb QD„, Dgg, 0 0
A B E A B K C D E C D K=(8' ) g ( 1) (2%+1) 5 l 5 1 d, (14)

E

This formula is obtained using

A 8 C A 8 C
D,",. ( Q)D is( Q)=g(2C+1), 5, , D„.(Q),

the orthogonality of the Wigner coefficients, namely,

fD" .(Q)D~st. (Q)dQ=(8' /2j +1)5,g5 st5

and noting that

DJ .(aPy)=( —1) DJ .(any) .

(16)

(17)

When the integrated result is plugged into Eq. (2), the consistency criterion demands that Ni =%2. This condition is a
characteristic of the isotropy of the model. We could sum the expression over m„mb and dummy index E using the
property

r

a b c a b c'
g(2C+1),=5„.5~r,a p y a p y' (18)

and get the closed expression for the attenuation coeScient, when there is no Gipping, as

E[Gxx ~n=0] =f f dcoodrt~(to„rg}G~~,

where G&& is given by

(19)
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G(0)—
KK

4

( 1)(P P )
I I K I I K

p(4)p(&) I p(3)p(&) (p(1)lAlp(2)&(p(3)lA tip(4)
L r

(20)

The matrix elements of A and A ~ involve interaction pa-
rameters cop, 2)p. In Eq. (20}we use the symbol E as a sub-

script in G. In fact, the summation formula (18) results
in E) =I

2
=K (say).

superscript of lp & always run from 1 to 4 as in Eq. (20).
Since we are using Euler angles with respect to the labo-
ratory frame as arguments in the Wigner coefficients, we
need to insert identity operators of the type

B. Class with one Sip I
m&ml

g lm)&(m)l=I, g lm)&(m)l=I, (23)

The n =1 term in Eq. (4) is the following:

1

A,e '/(1/41r) f dt) g (dcO;dry;dA;)

XP ( cO(), 71p l 0;cO 1, 'g ) l
t ) )

X IGk 'k '(t)}, , (21)

where [Gk 'k '(t) }, is given by Eq. (2},with
X Gxx(t t, )Gxtc—(t) ) (24)

apart from the type (13). Thus here we will get eight D
functions, four of which have the arguments 00 and the
other four have the arguments 0&. Integrations with

respect to Qp and Q) are performed first. Then summa-

tions over m„mb, m&, m
&

are carried out to obtain

1

E[Gtcx ln =1}=f dt) g (dco dg )P( cpo2)pl0ico) n) lt0, 0

A(t)~A(t t, )A(t, )
—. (22) where G)'rz is given by Eq. (20).

During time 0 to t&, the EFG tensor is diagonal in one
frame and, after collision at t „as the orientation of the
EFG flips, we need another frame to calculate the matrix
element of A(t t, ). T—his indicates that we need two
subscripts of lp &, while dummy indices that appear in the

C. Class with n Hips

Noting the above systematics, one readily writes the
central quantity for general n, and the attenuation
coefficient can be written more neatly as

n
t„ n

(Gtctc(t)&= g A, e f dt f dt '' ' f dt) P (dco, dry )P(cop Y/pl0' co)2))tl'). . . ' co 2) lt )

n=0 0 0 0 0

XGxx(t t„)GtcK(t„——t„,) Gt'ctc(t) ) . (25)

We note that the attenuation coefficient can be expressed
in terms of G)'r)r', whose expression is given by Eq. (20)
when we consider the case of no flipping, namely, the
case described in Sec. IIA. This fact simplifies enor-

mously the algebra of evaluating the attenuation
coefficient. In order to evaluate GK(K, we need to see
more closely the matrix elements of A. If we define

&plAlp'&=&pie lp'&

+e g f &pie" "'lp"
& &p" Iplp'" &

~p

X&p"'le~ lp'&dX,

which is simplified to

(29)

a =co( it /fi) [3I,—I ], —

P=co( it/A)[I+ +I ]—, e=(ri/2),
(26}

&plAlp'&=e 'opp+e f e '&plplp'&e "'d& .

(30)

From Eqs. (9) and (10) it is clear that

then A( t} in Eq. (3}can be written as

A(t)=exp[a+eP] .

Since 0 ~ E ~ 0.5, for small c. we can write

A(t)=ea+C f e(1—),)apekadg+0(e2)
0

(27)

(28)

a =(it)co[3p I(I+1)], —

&P IPIP' & =( it )~rp, p+2~p'—,p+2

where y +2 is defined by

r ~2= [(I+p —1)(IW p )(I+p+ 1)(I+p+2)]'

(31)

(32)

In the representation lIp &, a is diagonal, as can be seen
from Eq. (9). Therefore,

Thus we get the following nontrivial matrix elements of
A up to order c.:
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&plAlp&=e ',
&plAlp+2&

=sy~~~2[+[ —,', (p+1)](e P*' —e P)(1—5 ~1)

X ( it )—doe P 5

(33)

(34)

(37). Hence, the final expression of the average attenua-
tion factor is given by Eq. (25) where G)'r)r' takes the fol-

lowing form:

I ECG(0)—
KK ~ (4) (1)

&1& (4& P
7

(4) (1)—(3) (2) (35)

Again, from the definition of the 3j symbol in Eq. (20),
one immediately gets

I I E
(3) (2) I

x&p'"lAlp"'&&p"'lAtlp' '& . (39)
and we have already seen that the nontrivial matrix ele-
ments for &p"'lAlp' '& exist for

(2) (1) (2) (1)+2 (2) (1)

Combining (35) with (36), we obtain the following:

p' '=p'" must be associated with p' '=p' ',
p' '=p'"+2 must be associated with p' '=p' '+2,
p' '=p"' —2 tnust be associated with p' '=p' ' —2 .

(36)

(37)

Thus, nonzero components that would appear in the sum-
mation of GKK will be

&p
( 1 )l A lp

(2)
& &p

(4)
l
A lp

(3) (38a)

&p"'l Alp"'+2 & &p"'l Alp"'+2 &',

&p'"IAlp"'-2&&p"'IAlp"'-2&'

(38b)

where the respective factors are given explicitly in Eqs.
(33) and (34). From condition (36), we can see that the

(&) (2)
factor (—1)()' )' will be absent from Eq. (20) and the
summation is over variables p"' and p' ' only; the vari-
ables p' ' and p' ' will be constrained by the condition

Equations (38a)—(38c) show that for static interaction
where there is no flipping of the orientation of the EFG
tensor, we have terms free from rt and terms proportional
to ri2. Considering the case where the EFG flips only
once, we get terms, in the attenuation coefficient, free
from 21, proportional to ri and ri . This implies that for n
flips, we get terms proportional to

~0 ~2 ~4 (~2) +)h1

Noting that 0 ~
21

& 1, we would expect the series to con-
verge rapidly with an increase in the number of flips.

Until now, we have made no assumption about the
conditional probability of the random variables t() and rt.
For the simplest case we assume that there is no correla-
tion of strength parameters, namely, to;, 2); at different in-
stants. This fact implies

P(t00 npl0i 1 21) It);;„, rt„ I t„)= g P(e);, ri; l t; ) .
i=0

(40)

With this assumption, the evaluation of the average at-
tenuation factor is considerably simplified and is given for
k =2 as follows:

00
g 'n t~

(G»(r))= X k e 'f Ck„f Ch , f „dt, G,",'(t t )G,",'(t —t „,) „—G'h"„, (t, ),
n=0 0 0 0

(41)

where

Ghh'= f f Grhhr(t, rrr, rt)p(rrr, rt)drrr dr) . (42)

the quadrupole frequency as well as the asymmetry pa-
rameter take the fixed specific values

We further assume that the correlation between these
variables is also absent at every instant. That is,

P(e1;lt;)=5(co; co), P(rt, l—t, )=5(rt, —2)), vi . (44)

P(co, ri) =P(co)P(rt) . (43)

This decoupling greatly simplifies the evaluation of G22'.
Next, we take two specific models of the random environ-
ment and calculate numerically the attenuation
coefBcients.

G22 (t,a), ri) =[ao+a, cosr+a3cos3r+a4cos4r)(0)

+(q /35)[r +r(sin3G. —3 sins)], (45)

After considerable algebra, for I=2, the expression of
G22' in Eq. (41) turns out to be

D. 5 distribution of the perturbing Seld

This model refers to the fact that although the direc-
tion of the interacting field is allowed to fluctuate at ran-
dom with uniform distribution in [0,4m], the size of the
interaction Hamiltonian remains fixed in time. Hence,

a0 =0.371 428 5, a1=0.057 142 8,
a3 =0.342 857 1, a4=0.228 5714 .

(46)

with r=coot and coo=3(0. The Alder coefficients [5(b)) ao,
a„a3, and a4 are obtained as
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E. Gaussian distribution of quadrupole frequene3

Next, we take another illustration where the probabili-
ty distribution of the quadrupole frequency is assumed to
be Gaussian at each time; however, the size of the asym-
metry parameter assumes a fixed specified value:

P(ci, ~t, )=(2'(co', & )
'~ exp[ —co, /2(co(') & ],

P(rI, ~t, ) =5(rl; —rI), Vi
(47)

where (coo) and tI are some fixed specified value. The ex-
pression of Gzz' in this case is obtained with the help of
Eq. (45) and it has the following form:

Gi2'(t, (too), r))=[ac+a, exp( —r /2)+ttiexp( —9r /2}+a~exp( —8r )]

+(t) r /35)[1+3[exp( —9r /2) —exp( —r /2}]], (48)

with r=(ohio)' t, and the coefficients ao, a„ai, and a~
are given by Eq. (46).

Numerical calculations of the average attenuation fac-
tors have been carried out for some illustrative cases. At-
tenuation coefficients (41) with Gzz' given by Eq. (45) (in
the case of a 5 function distribution of the quadrupole
frequency) for different values of (A, /too), il as a function
of (coot /2m) are shown graphically in Fig. 1. For the axi-
ally symmetric case, i.e., when g=O, the results match
those of Martinez, Sanchez, and Vasquez [12]. The at-
tenuation coefficients obtained with the help of Eq. (48)
(in the case of Gaussian distribution of the quadrupole
frequency) are plotted for different values of A. /(bio)'~, t)
as a function of ( co)o'~ t in Fig. 2. Calculation shows
that after some interval, the asymmetry parameter
displays its contribution to the average attenuation
coefficient. In the case of a Gaussian distribution of the
quadrupole frequency, the attenuation coefficient always
saturates to an asymptotic value for very large time,
when exponential factors dominate over the multiplica-
tive r factor. In Fig. 2 we display its behavior where
(bio)' t takes values up to 10. For very small values of
ri, (Gz2(t)) does not differ much from the symmetric
case. Increased values of the mean number of collisions
per unit time blur the sensitive dependence of the at-
tenuation factor on ri; however, expressions (45) and (48)
suggest that its dependence would be recovered with
large values of nuclear spin (in the case of a Gaussian dis-
tribution} or electric quadrupole moment in general.

III. CONCLUSIONS

We derived explicitly the expression for the time-
differential attenuation coefficient when the nucleus is ap-
proximated as a quadrupole interacting with randomly
fluctuating extranuclear EFG. We use the approximate
formula (28) in order to obtain the closed form expression
for the perturbation factor for arbitrary I. The first non-
trivial term involving asymmetry parameter g appearing
in the expression for the average attenuation factor is
proportional to ri /4. Since 0 & t) & 1, this approximation
therefore is not very severe. For static interaction, how-
ever, one can diagonalize the full Hamiltonian (6), and
obtain the unitary matrix that diagonalizes the Hamil-
tonian. In Eq. (20), one should then sum over the eigen-
vector variables. But there is no systematic expression
for eigenvalues as a function of I in the general asym-
metry case. Hence, in this way one cannot obtain the ex-
pression for PAC function for arbitrary I. For t)=0,
however, the expression (25) together with (39) is exact
since in the representation ~p ), the Hamiltonian is diago-
nal and assumes simple form. One would then get back
the result of Martinez, Sanchez, and Vasquez [12]. Ex-
pression (45), where the EFG does not change in magni-
tude but can be oriented in any direction, matches with
the result obtained by Dattagupta and Blume [11]for the
specific case. In the derivation we assume no correlation
of the strength (co;, rI, ) of the interaction Haniiltonian at
different times [assumption (40)]. This implies that the
time-difFerential attenuation coefficient (Gzz(t) ) may be
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FIG. l. Attenuation coefficients (G„(t)) for I=2 are plot-
ted against (copt/277), in the case of a 5 function distribution of
quadrupole frequency for difFerent values of (A, /coo) and q.

FIG. 2. Attenuation coefficients (G2z(t) ) for I=2 are plot-
ted against (coo)'~ t, in the case of a Gaussian distribution of
quadrupole frequency for diff'erent values of (A, /(coo) ' ') and t).
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obtained by solving the following inhomogeneous Volter-
ra integral equation of the second kind:

(G„(t))=G,",'e '+A, f (G„(t'))G,','(t —t')

Xe " ' 'dt' (49)

The structure of Eq. (49) suggests that the Laplace trans-
form of (Gzz(t)), namely, (G2z(p)), can be expressed
more compygtly in terms of the Laplace transform of
G22 (t}or G22 (p) as

-(0) -(0)
(Gz2(p)) =G2z (A, +p)/[1 —AG22 (A+p)] . (50)

For the two illustrative cases we ~ive explicitly the La-
place transforms of the kernel G22'(t). For the case of
the 5 function distribution of the perturbing field, it is
given by

-(0) -(0)
G22 (p) =(1/coo)G22 (p /coo} &

where
-(0)
G22 (p)=[ac/P+a, p/(p +1)+a~p/(p +9)

+a~p /(p + 16)]

+(ri /35)[2/p +6p/(p +9)
—6p/(p +1) ],

(51)

(52)

with p =p/coo. For the case of a Gaussian distribution of
quadrupole frequency, the corresponding expression
would be

-(0)
2 1/2

="'
G„(p)=(1/( ', )' ')G (p/( ', )' '), (53)

where

-(0)
G22 (p }=ao/p+(n/2}'~ [a&exp(p )erfc(p/~2)+a&/3exp(p /9)erfc(p/3W2}+a4/4exp(p /16)erfc(p/4&2)]

+(ri /35)I2/p +3(n/2)'~z[ —,', (1+2p /9}exp(p /9}erfc(p/3~2) —(1+2p )exp(p )erfc(p/~2)]

—3p[ —,', exp(p /18) —exp(p /2)]], (54}

with p=p/(coo)'~, and the symbol erfc denotes the
complement of the error function. Substituting expres-
sions (52) and (54) into Eq. (50), the Laplace inversion
will directly yield the closed form expression of attenua-
tion coefficient ( G22(t) ) for the above two cases.

The incorporation of correlation of the strength vari-
ables at different times would necessitate the introduction

of another parameter in the theory. Dependence of the
PAC function on that parameter is measurable when the
time-resolving power of the instrument will be very small.
With these refined expressions for the PAC function, it
would be interesting to study the transport properties of
superviscous liquid and compare with the experimental
results.
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