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Modulational instabilities in the discrete deformable nonlinear Schrodinger equation
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We study analytically and numerically modulational instability for the discrete deformable non-

linear Schrodinger (NLS) equation which represents a natural link between the properties of the
integrable Ablowitz-Ladik model and the nonintegrable discrete NLS equation. We show how dif-

ferent discretizations of the nonlinear interaction change modulational instability in the lattice and,
correspondingly, conditions for localized modes to exist.

PACS number(s): 03.40.Kf, 46.10.+z, 63.20.Pw

Many nonlinear systems exhibit an instability that
leads to a self-induced modulation of an input plane wave
with the subsequent generation of localized pulses. This
phenomenon is known as modulational instability and it
is responsible for many physically interesting effects such
as the filamentation of laser beams, the formation of en-
velope solitons in nonlinear optical fibers, and cavitons in
plasmas as well as the breakup of monochromatic ocean
waves. Although the modulational instability problem
has been deeply studied in the case of continuous non-
linear models such as the sine-Gordon and nonlinear
Schrodinger (NLS) equations (see, e.g. , Refs. [1—5] to
cite a few), only a few papers exist for the case of discrete
models [6—10]. One of the main efFects of modulational
instability is the creation of localized pulses [ll], so that
modulational instability may be considered as the leading
mechanism for energy localization in homogeneous non-
linear systems (see, e.g. , [12,9,13]). In lattice systems,
however, different discretizations of the same continuous
system may have different efFects on modulational insta-
bility leading to different conditions for the existence of
localized modes.

The aim of the present paper is just to investigate the
modulational instability problem for the discrete NLS
models by studying interplay between the nonlinear on-
site and intersite interactions as a mechanism for chang-
ing modulational instability and conditions for the local-
ized modes to exist in a lattice. As a particular exam-
ple, we consider the following discrete version of the NLS
equation:
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with positive e and A. Equation (1) is a Hamiltonian
system with the following noncanonical Poisson brackets:
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This model was introduced by one of us (M.S.) in Ref.
[14] (see also [15]) and it can be viewed as a deformation
of the standard discrete NLS (DNLS) equation

(4)

Indeed, by using the parametrization A = (p —e)/2 one
can see that for e = p Eq. (1) reduces to the standard
DNLS equation (4) with the canonical Poisson brackets,
while for e = 0 it gives the Ablowitz-Ladik (AL) model
[16]
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which is an integrable discrete version of the NLS equa-
tion with a noncanonical ("deformable" ) Poisson struc-
ture. The fact that the AL system appears as a deforma-
tion of the standard discretization of the NLS equation
holds true also at the quantum level and this fact can be
used to continuously deform the energy levels of one sys-
tem into the other. (For a detailed analysis of the quan-
tum problem of these lattice models see Refs. [14, 15,
17].) Besides these mathematical aspects, there is a deep
physical motivation for the inclusion in Eq. (1) of both
the on-site nonlinearity of the standard DNLS equation
and the intersite (ofF-diagonal) nonlinearity characteriz-
ing the AL model [14, 15]. This can be seen by consider-
ing the simplest quasiclassical equation which describes
the propagation of molecular excitations (see, e.g. , Ref.
[18] and references therein),

i (dQ„/dt) + ~„@„+J„(Q„+,+ @„g)= 0, (6)
where @„is the complex mode amplitude of a particular
molecular vibration, u is the on-site frequency of this
vibration, and J is the next-neighbor resonance interac-
tion energy. Taking into account on-site nonlinearities in
Eq. (6), first we should modify the local frequency u„as
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4J M (do + ldi ~g (7)
and this kind of anharmonicity corresponds to a stan-
dard polaron model (i.e., in fact, to the DNLS model).
Similarly, coupling of the resonance interaction to low-

frequency (on-site) vibrations leads to [cf. Eq. (7)]

J -+ Jo+ Ji I@

and the combination of Eqs. (7) and (8) with Eq. (6)
gives exactly the generalized (deformable) NLS equation
(1). Another application of the model (1) may be found
in nonlinear optics: The discrete (and, in particular, de-
formable) NLS equation describes interactions of partial
TE modes in an array of (focusing or defocusing) wave
guides (see, e.g. , Ref. [19]). Thus, in spite of the fact
that the AL model itself seems not physical (see discus-
sions below), it may appear indeed as a particular case
of a more general and physically better justified discrete
model (1).

To analyze modulational instability for Eq. (1), first
we note that it has the exact plane-wave solution g„(t) =
go exp (i8 ) with 8„= qna —u t, where q denotes the
wave number of the carrier wave and the frequency ~
obeys the nonlinear dispersion relation

u = 4 D sin (qa/2) —ego —2Ago cos(q a),

a being the lattice spacing. The linear stability of the
nonlinear plane wave can be investigated by looking for
solutions in the form g„(t) = (Qo + b„)exp(i 8„), where
the complex function b„(t) is assumed to be small in com-
parison with the amplitude of the carrier wave. In the
linear approximation an equation for b„(t) yields the dis-
persion relation for the evolution of small perturbations,

[0 —2(D + Ago) sin(qa) sin(Qa)]

= 4(D + Ago) sin (Qa/2) cos(qa)
x [4(D + Ago) sin (Qa/2) cos(qa)
—4Ago cos(qa) —2ngo], (10)

where the wave number Q and frequency 0 characterize
linear properties of the modulation wave. The disper-
sion relation given above determines the condition for
the stability of a plane wave with the wave number q in
the lattice. This stability condition explicitly depends
on the nonlinearity parameters e and A. For e & 2 A the
instability conditions are very close to those described
for the standard NLS model [6], i.e. , for positive e and
A a plane wave may be unstable to small modulations
provided cos(qa) & 0, and in the case ego & 2D all the
waves with the wave numbers q & z /2a become unstable.
The most interesting properties of modulational instabil-
ity may be observed for e ( 2A. In this case the instabil-
ity region appears for high-frequency oscillations as well,
so that we can expect to find two types of localized modes
with the frequency lying respectively below or above the
linear spectrum band. All possible types of instabilities
are shown in Fig. 1 as the shadow regions on the (q, Q)
plane. It is important to note that the AI model itself
[its instability region is shown by the dashed line in Fig.
1(c)] does not display the dependence of the threshold of
the modulational instability on q. This result seems not
physical and, in particular, it does not correspond to any
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FIG. 1. Regions of niodulational instability on the (q, Q)
plane for a = 1 and (a) e & 2A and neo & 2D, (b) e & 2A

and ego & 2D, (c) e & 2A and nPO & 2D, and (d) e & 2A

and a@0 & 2D. The dashed line in (c) shows the thresh-
old for modulational instability in the case of the AL model
(instability region lies on the left of the dashed curve).

kind of instabilities observed in realistic lattice models of
solids (see, e.g. , Ref. [6]).

To investigate modulational instability numerically, we
have integrated Eq. (1) with a fourth-order Runge-Kutta
scheme and selected several sets of initial data. Figure
2 shows the time evolution of a modulated plane wave
with the initial parameters marked as a, 6, c, and d in
Fig. 1(c) and for the initial condition Q„(t) = [@p +
@icos(Qn)] cos(qn), with Qo fixed to 0.5 and gi ——0.01.
It is clear &om these figures that for the parameters se-
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lected modulational instability may be displayed for low-

frequency as well as for high-&equency oscillations. This
simply means that in the model under consideration there
exist duo kinds of nonlinear localized modes with in-phase
and out-of-phase oscillations of the neighboring particles
in the lattice. Figures 2(a) and 2(c) confirm these pre-
dictions showing creation of two types of localized modes
from a fiat initial condition due to modulational instabil-
ity.

As has been mentioned above, one of the main eKects
of modulational instability is to create spatially localized
modes. In the model (1) localized modes may exist with
the frequencies lying below (for e ) 0) as well as above
(for 0 ( e ( 2A) the linear frequency gap. For the former
modes the particles oscillate in phase with their neigh-
bors, whereas for the latter modes the particles in the
localized state oscillate with opposite phases (in the re-
cent work [10] these modes have been called "staggered
localized states"). To understand the origin of the high-
frequency (out-of-phase) localized modes in the model

(1), we make the substitution Q„(t) = (—1)"III„(t)e'
where u = 4D is the cutoE &equency of the linear spec-

trum band. If we assume the envelope function II[„(t)
slowly varying, then we obtain the continuous NLS equa-
tion

j(/[II/gt) —Da (8 [I[/Oz ) + (e —2A)]II[~ II[ = 0,

where the function III(x, t) is considered as slowly varying
function of its arguments t and x = an. As is well known,
the NLS equation (11) supports spatially localized (soli-
ton) solutions provided the efFect of dispersion has the
same sign as that of nonlinearity. For our case this means
e ( 2A, i.e., the same condition under which the modu-
lated plane wave becomes unstable. When such a mode
is strongly localized, its motion in a nonintegrable lattice
is afFected by an efFective periodic potential which is sim-
ilar to the well-known Peierls-Nabarro (PN) potential for
dislocations. From the physical point of view, the ampli-
tude of the PN potential may be viewed as the minimum
barrier which must be overcome to translate the disloca-
tion by one lattice period. Recently, the appearance of
the PN potential for localized modes has been discussed
in Ref. [20]. The analysis and the main conclusions of
that study may be easily extended for the model (1) as
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FIG. 2. Time evolution of small-amplitude modulations for p = 2.0 and e = 0.8. The plots (a), (h), (c), and (d) correspond,
respectively, to the set of the parameters taken at the points a, b, c, and d in Fig. ].(c).
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well.
In the other case, e & 2A, the NLS equation (11) has no

localized solutions, instead solitary waves may propagate
as dark solitons on a modulationally stable background
4'(t) = @eexp(iOt), where 0 = (e —2A)@o. It is inter-

, esting to analyze how the "nonintegrable contribution"
to the integrable AL model may change proper-

ties of dark solitons. This may be already seen taking into
account the next-order terms in Eq. (11) which describe,
as a matter of fact, a contribution of the higher-order
dispersion into the continuous model due to the eKect of
discreteness [cf. Eq. (11)],

i(84/Bt) —Da'(8'4/Dx )
—(Da /12)(cl 4'/Bx )

+(e —2A)]@]'0 —Aa']C ]'(8'0 /Bx') = 0. (12)

Properties of dark solitons in the model (12) may be ana-
lyzed in the so-called small-amplitude approximation (see
details in Ref. [21]) looking for a solution of Eq. (12)
in the form, 4'(x, t) = [4e + A(x, t)] exp[iOt + iP(x, t)],
where the amplitude A is assumed to be small in com-
parison with the background amplitude A &( 4'o. For
the amplitude A and phase P we obtain a system of
two coupled equations which may be analyzed by ap-
plying an asymptotic expansions A = e Ao+ ~ A~ +. . . ,

P = ePe + e Pq +. . . , and introducing new ("slow" ) vari-
ables w = e t and z = e(x Ct), wh—ere e is a small param-
eter and C is the velocity of linear waves propagating on
the plane wave background C2 = 2a2(e —2A)(D+ A@o2).

As a result, in the lowest order in the small parameter e

we obtain the Korteweg —de Vries equation for the ampli-
tude Ao,

a soliton solution

Ap(z, r) = —(12v Gz/Gz)sech [v(z —Vw)], (14)
where V = —2v Gz/C is the soliton velocity in the ref-
erence kame moving with the sound speed C and v is
an arbitrary parameter. In the case when G2/Gq is posi-
tive, the solution (14) corresponds to a dark soliton of the
standard type. However, it is important to note that for
the case (e/A —2) & 6(1+6) /4, where 6 = A4 e/D,
the function Gz becomes negative and the soliton (14)
changes the sign, and it transforms into a bright soliton
on a pedestal (i.e. , a dark soliton of the reverse-sign am-
plitude [22]). Therefore, such a transformation of dark
solitons is one of the effects which may be expected in
the nonintegrable deformable NLS equation (1).

It is known that integrable models display a recurrence
for periodic boundary conditions and, for example, this
effect was studied numerically [23] and analytically [24]
for the continuous NLS equation. As a matter of fact,
the influence of the discreteness effect on the recurrence
phenomenon in integrable and nearly integrable lattice
models is not understood yet and, as a matter of fact,
the model (1) seems to be the most suitable one for this
purpose: It has two integrable simplifications, for the
continuous limit and at e = 0, when the recurrence should
be recovered.

In conclusion, we have analyzed modulational instabil-
ity in the framework of the discrete model (1), and we
have shown how the interplay between the nonlinear on-
site and intersite interactions may change modulational
instability properties and, consequently, the conditions
for the localized (bright and dark) nonlinear modes to
exist in the lattice.

2C(OAp/87 ) + GyAe(BAo/Bz) —G2(B Ap/Bz ) = 0,

where Gq —— 4a 4o(e —2A)(3D + 4A@o) and G2
a4 (D+ A@o2)2 —(D/6)(e —2A)@o2 . Equation (13) has
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