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Logarithmic decay of P4 breathers of energy E 1
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In a numerical experiment until t = 2 x 10 it is shown that P breathers of energy E & 1 and
after an initial stage of their formation decay logarithmically in time. This result is consistent with
and extends the one of Kruskal and Segur that small-amplitude P breathers of energy E « 1 decay
asymptotically as (int) . Analytic arguments are presented in support of our numerical result. It
is estimated that a P breather of energy E 0.97 at t = 10 in approximately 10 time units will
radiate away half its energy and at t = 10 will still have an energy E 0.25.

PACS number(s): 03.50.—z, 02.60.Lj, 02.30.Mv

Since the P4 equation

does not possess the Painleve property [1] the P4 field
theory in 1+1 space-tixne dimensions is considered not
to be completely integrable. Also, and in consequence,
it is believed that exact nonradiating breather solutions
[localized in (finite) space, oscillating in time and in-
terpreted as kink-antikink bound states] do not exist
[2,3]. Once because of this more mathematical aspect,
and on the other hand, because P theory is an inter-
esting and important model in various fields of physi-
cal research as condensed-matter, nuclear, molecular and
elementary-particle physics [4], the time evolution of sup-
posed approximate P breathers (commonly also named
P4 pulsons) has been studied in numerical experiments by
various authors [3,5,6], however only for relatively small
times not greater than 10s to 104. [Time and length are
dimensionless in (1).]

In 1987, Kruskal and Segur, using asymptotic expan-
sions, showed that exact small-amplitude P4 breathers
indeed do not exist and that the energy of approximate
small-amplitude P4 breathers with energies E « 1 and
frequencies ur tending to ~2 (from below) decays loga-
rithmically in time: E(t) (lnt) i as t -+ oo [7]. This
result and our own numerical observation [6] that in a
certain region of non-small axnplitudes P4 breathers ap-
pear to decay "much slower than exponentially in time, "
suggest the examination, more quantitatively, of how P4
breathers of considerably large amplitudes or energies,
say E 1, decay in time. Such investigation is the
purpose of the present report. The value E 1 takes
into account that the maximum energy of a P4 kink-
antikink bound state at rest cannot exceed the energy

s ~2 = 1.8856 which is twice the energy of a P4 kink at
rest and that during the formation of a breather &om a
kink and an antikink a considerable axnount of energy is
lost by radiation.

As a starting point we take our previous result [6] that
a P4 kink and a P4 antikink, for t = 0 at rest and at
a xnutual distance equal to 1.6 &om each other', develop
into a quasistable breather. This defines the initial curves

x —0.8 x + 0.8
P(z, t = Q) = tanh —taW

2 2

P, (z, t = 0) = 0, (2b)

for the numerical solution of (1) which will be carried out
on the finite interval —a & x & a until t = 2 x 10s by the
method of characteristics [8]. The boundary conditions
inx= +a are

P.(z= +a, t) + P,(z= +a, t) =0 (3a)

and then through nuxnerical integration the total energy

E(t;b) = H(x, t)dx = 2 H(x, t)dx
—6 0

(4b)

Like the parameter a, also b must be chosen large enough
such that the breather is located in —b & x & b. The
normal choice will be b = a. However, for testing the
numerical results, e.g. , that a and b have been chosen
large enough and that the boundary condition (3a) is
appropriate, a choice b & a may be of interest (see below).

and correspond to the assumption that the breather
emits its radiation in the form of traveling waves of ve-
locity e = +1, equal to the characteristic velocity of the
wave equation (1). A test that this assumption is rea-
sonable and that the boundary parameter a is chosen
large enough is that considerable reflection in z = ka
or "boundary eKects" are not observed in the numerical
solution.

We profit by the symmetry of the problem with re-
spect to x = 0 [y(—x, t) = y(x, t), y (—x, t) = y (z, t)
and P (—x, t) = —P (z, t)] and execute the numerical
solution only on the interval 0 C x & a, replacing the
boundary condition (3a) in z = —a through

Q (z=Q, t) =0.
From the numerical solution P(x, t), Pq(z, t), and P (z, t)
we calculate the energy density of the system
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The integral

t,2

R(t»t, ;b) = —2 4.(b, t)g, (b, t)Ct (4c)

measures directly the amount of radiation emitted by the
breather to x & ba—nd to z ) b (hence the factor 2)
during the time ti & t & tq [7] and is calculated through
numerical integration. Conservation of energy requires
that the relation

E(ti, b) —E(tg, b) = R(ti, tg, b) (4d)

be fulfilled for (sufficiently large b and) all non-negative
times ti and t~, in particular for ti ——0 and tq ——t.

Both, since the numerical integration of Eqs. (1), (2),
and (3) is performed until large times, and on the other
hand, since the expected very slow decay of the breathers
requires a high accuracy of the numerical solution, spe-
cial care for a good convergence must be taken. In the
beginning, until t = 5000, the convergence has been
checked explicitly, by use of two different steplengths
6 = At = Ax = 0.05 and 0.1 and two boundary pa-
rameters a = 100 and 200. The results are shown in
Table I. For each time t and parameter set (b, , a, b) two
values of the energy E(t;b) are given, the first (smaller
one) at the time when P(0, t) takes on its first maxi-
mum and the second (larger) value when P(0, t) takes
on its first minimum, both immediately after the time t
indicated at the top of the column, i.e., approximately
in the time interval [t, t + 5]. The difFerence between
these two values of E(t;b) is almost time independent
and about 0.004 for 6 = 0.1 (it is still about 0.0035 for
t = 2 x 10s) and about 0.001 for b, = 0.05, indicat-
ing that this difference vanishes as A~ for 6 -+ 0. For
a = b = 100 and 6 = 0.1, the greater one of the two
values of E(t; b) at a given time is closer to the values
obtained with 4 = 0.05 and therefore closer to the ex-
act result than the smaller value for the energy E(t;b)
Another argument to conclude so is that the sum of the
larger value for E(t; b) and of R(0, t; b) is approximately
1.156 for all three parameter sets with 6 = 0.1 and ap-
proximately 1.157 for 6 = 0.05, i.e., about 0.0015 and
about 0.0005 below E(t = 0;b) = 1.15755... . For this
reason, we always shall consider the energy at the first
minimum of P(0, t) after the indicated time t. The difFer-
ences E(t; b = 100) —ipp —E(t; b = 100) —happ as well as
R(0, t; b: 100) —ipp —R(0, t; b = 100) —happ are equal to
0.0032 at time t = 203.6 corresponding to 6% of the en-

ergy loss AE(203.6) = 0.0547. They take on maximum
values at time t = 600 which correspond to about 20%%uo of

the breather's energy loss at that time and then dimin-
ish (cf. first and third line in Table I). Thus we believe
that the boundary condition (3a) is reliable and will not
affect the breather's energy loss significantly. Further-
more, corresponding values of any two lines in Table I
approximate each other when time increases. Altogether
we think the parameters 4 = 0.1 and a = 6 = 100 make
up a reasonable choice for a long-time numerical solution
of (1), (2), and (3). Throughout the following we shall
suppress the argument b in the energy (4b) and radiation
(4c).

The principal numerical results are shown in Table II.
In the second column the energy (4b) of the breather and
in the fourth column the radiation (4c), emitted during
time [O, t] to

i
x i) b = a = 100, are given. The third

column shows the energy loss of the breather, calculated
from E(t) and E(0) where E(0) = 1.157558... = 1.1576
is obtained from (4b) for all sets (b, , a, b) used in Table I.
One sees that (4d) is fulfilled very well for all times. This
can be considered as another and now permanent test
of the accuracy during the whole numerical integration.
Columns 5 and 6 show the numerical values of two fits
for the energy,

and

14.395
—2.2372 + T + 2 ln(3.0966 + T)

(5a)

12.8
1.5048+ T' (5b)

where T = ln(t + 10s). Both fits are of the form (7d)
below and lead to agreement within 0.7% with E(t), for

5 x 10 . One concludes that the energy of the breather
decays logarithmically in time. In view of the good agree-
ment between the numerical results E(t) and formulas

(5a) and (5b), especially for larger times t ) 10s and since
we did not observe any less stable behavior at smaller am-

plitudes [6] it is tempting to extrapolate the fits to very
large times. One then finds that the energy decays to ap-
proximately 0.48 at t = 10 and 0.25 at t = 10 . These
decay times are by many orders of magnitudes larger than
previous estimates of the breather's "half-life, " based on
an exponential decay [5,6]. The dimensionless time t in
the normalized equation (1) corresponds to real physical
times t/m where the square mass m~ is the coefficient of
—P in the physical P4 equation [9]. For example, with the
characteristic velocity c = 2.998 x 10iP cm/sec =1 in (1)
and 6 = 1.054 x 10 erg sec=1, one obtains for m = 1

GeV/c the physical time t/m = 6.58x10 ~st sec. In this
case the time t = 10 in (1) during which the breather

TABLE I. Energy (4b) and radiation (4c) obtained from the numerical solution of (1), (2), and (3) for various sets of a, b

and A = At = Ax.

0.1
0.05
0.1
0.1

100
100
200
200

b
100
100
100
200

t = 600
E(t; b)

1.0250 1.0294
1.0302 1.0313
0.9996 1.0034
1.0611 1.0656

R(o, t; b)
0.1260
0.1257
0.1518
0.0896

C = 2000
E(t; b)

0.9911 0.9951
0.9962 0.9972
0.9812 0.9853
1.0079 1.0120

R(o, t; b)
0.1606
0.1599
0.1?07
0.1437

t = 5000
E(t; b)

0.9754 0.9797
0.9804 0.9816
0.9707 0.9742
0.9838 0.9878

R(o, t;b)
0.1765
0.1757
0.1813
0.1681
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TABLE II. Energy (4b), energy loss AE(t) = E(0)
—E(t) 1.1576 —E(t) and radiation (4c), obtained from

the numerical solution of (1), (2), and (3) with a = 5 = 100
and b = Et = bz = 0.1. EI(t) and Eq(t) present the results
from the fits (5a) and (5b).

5x10
10

Sx10
10

3x10
5x10
8x10

1.1x10
1.4 x 10
]..7x10'
2x10

10
1010
10"
1020
10~~

E(t)
0.9797
0.9711
0.9472
0.9281
0.8872
0.8645
0.8432
0.8258
0.8137
0.8046
0.7970

LE(t)
0.1780
0.1865
0.2104
0.2295
0.2704
Q.2931
0.3144
0.3318
0.3439
0.3530
0.3606

R(0, t)
0.1765
0.1851
0.2094
0.2288
0.2687
0.2918
0.3136
0.3313
0.3438
0.3530
0.3608

EI(t)
0.9796
0.9761
0.9534
0.9332
0.8882
0.8639
0.8410
0.8255
0.8139
0.8046
0.7970
0.6449
0.5270
0.4833
0.2790
0.2553

E2(t)
0.9796
0.9761
0.9536
0.9336
0.8886
0.8643
0.8413
0.8257
0.8140
0.8046
0.7969
0.6424
0.5218
0.4770
0.2692
0.2454

0. 25-

loses half its energy corresponds to 6.58 x 10 ~4 sec. This
time is large when compared with a typical decay time
(about 10 s sec) of strongly decaying particles, e.g. , of
the p meson or of pion-nucleon resonances.

Figure 1 shows the numerical solution 8$(x, t)/Bx at
the early time t 2 x 10s (full curve) and at the large
time t 2 x 10s (dashed curve). Both curves correspond
to a phase of the breather's oscillation. when P(0, t) takes
on minimum values of 0.300 and 0.454, respectively. The
wavy form of P (z, t) for

~
z

~

) 10 at t - 2 x 10
shows that relatively much energy is still being radiated
away and the breather is still in the stage of formation.
At t = 2 x 10 almost no radiation is perceptible, and
the breather is located in

~
x

~

+ 10. Its amplitude
max~ P (x, t)

~

at that time is somewhat smaller and its
width only slightly larger than at t = 2 x 10 .

The amplitudes of the oscillations about the selected
vacuum 4 = +1 decay quite similarly as the energy. In
x = 0 the field function P(0, t) oscillates between 0.303
and 1.440 at t = 5 x 10, between 0.426 and 1.382 at
t 10 and between 0.454 and 1.369 at t 2 x 10 .

Kruskal and Segur had already found [7] that the en-

ergy E of small-amplitude P4 breathers (s = Q2 —A&2 m
0 or E ~ 0) decays like

where A is a positive constant and 8 = 4~2s+0(ss) [9].
A similar result was given for the leading order of energy
emission &om a small-amplitude sine-Gordon breather y
in a sinall perturbation &I&ps, a « 1 [10].

To support our numerical result we now shall discuss
decay laws of the form

(7a)

with arbitrary, but real positive constants A, B,A, and
p. Setting z = E " and p = „" one finds through
one partial integration

t z(t)
z(t) e '~ l —p z~ e 'dz = pABt~',

Z(to)
(7b)

The result (7b) is still exact. On the left-hand side (lhs)
the integral can be neglected against the first term for
large z(t) [although both terms diverge for z(t) -+ oo or
E(t) ~ 0]. This approximation is the better the larger
B and the smaller

~
p ~

are. An important additional ob-
servation now is that for suKciently large B the interval
where the integral is negligible may extend to the whole
interval 1 = z(to) + z(t) & +oo. Namely, for t = to
all three terms in (7b) vanish trivially. For B )) 1 and
monotonically increasing z(t) + 1 the first term on the lhs
of (7b) increases much faster in time or with z(t) than
the integral and if B )) ~p~ soon becomes the leading
term on the lhs of (7b). Thus, neglecting the integral in
(7b), one gets

15-
p ln z(t) + Bz(t) = 1n(pABt + C), (7c)

05-

where C = C(to, z(to)) is the constant of integration.
Since on the lhs the logarithmic term is much smaller
than the term linear in z(t), an iterative solution gives

—0 E(t) =
1/ p.

1 (pAnBt + C) + y lII I ( ~II ~)
(7d)

—0. 15—

—0

Ji

2 5 i I i s i e i ~ i
~

y i I i i e s s e J s e I I i i I e i ( I I s s I s s

—100. 00 -50. 00 0. 00 50. 00 100. 00
X

FIG. 1. The derivative P (x, t) of the breather's field func-
tion at an early time t -2x10 (full curve) and at t = 2x10
(dashed curve).

(7c) and (7d) are exact for A = y, + 1 or p = 0. (7d) re-
mains still valid in the leading order when in (7a) instead
of AE" a power series with leading term AE" for E —+ 0
is considered.

One sees that the parameters B and p are much more
important than A and A except that ~A

—
p~ should not

be large. For example, the fits (5a) and (5b) are of the
form (7d) (the denominator can be written as ln(pAB) +
pl BnT+' —pin[In(pAB) + T'], T' = ln(t+ &&)) with
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p = 1, A = 0, A = 1.5368, B = 14.395 and p = 1, A = 2,
A = 0.3518, B = 12.8, respectively. (5a) and (5b) have
quite different values of A and A, but equal or similar val-
ues of p and B. Since B is large, p = —2 or 0 and E + 1,
the conditions for validity of the approximations (7c) and
(7d) are satisfied; a logarithmic decay is observed already
for E + 1, and not only asymptotically for E &( 1. For
E & 1 these approximations begin to lose their validity
because the two terms on the lhs of (7b) begin to com-
pete more and both terms on the lhs of (7c) will do so.
Furthermore, in this energy region (and during the ini-
tial stage of formation in general) the system corresponds
rather to a kink-antikink system, colliding with low ve-
locity, than to a formed breather, and the decay of the
energy is no longer determined by (6). [Therefore the fits
(5a) and (5b) are not good for relatively small times. ]

We should like to know whether the values for B in our
fits (5a) and (5b) correspond with the asymptotic one of
Ref. [7]. From (6) where A = 0 one obtains asymptoti-
cally E(t) ~ I &

as t -+ oo where we have used

2s ~E as e -+ 0 or E -+ 0. The numerator in E(t)
here is approxiinately only half the numerator in (5a) or
(5b). The reason that our result is still not in the asymp-
totic region would be unlikely in view of the discussion
just given. Indeed, formula (15) and the following one
[without number and with its right-hand side (rhs) bi-
linear in P] in Ref. [7] show that there should stand a

-2
factor exp —

2 instead of exp 2 in formula

(16) of Ref. [7], i.e. , in (6) above. Then the general result
(7d) implies E(t) ~ ~ i &

as t m oo, and our

numerical results for 0.8 + E + 0.97 [yielding B = 14.395
for A = 0 in (5a)] are in good correspondence with the
asymptotic approximation found for E i 0 in Ref. [7].

This quantitative agreement together with the exten-
sion of the asymptotic approximation to higher energies
as shown above is another —now a posteriori —indication
that, first, the boundary condition (3a) does not affect
the breather's energy loss signi6cantly and, secondly, our
numerical results, though obtained with a relatively large
steplength 6 = 0.1, describe the energy loss with con-
siderable accuracy. The latter is also suggested by the
good agreement between b,E(t) and R(0, t) for all times
as shown in Table II if one observes that the integrals
(4b) and (4c) are obtained from difFerent integrations
over space and over time, respectively. In conclusion, P4
breathers even of nonasymptotic energies are classically
quasistable objects. This is relevant for their semiclas-
sical quantization [9, 11] and for the structure of bound
states in field or particle theory [4]. Besides, the results
provide an interesting physical example that in certain
circumstances an asymptotic approximation may be valid
in a quite larger interval [z(t) 1] than a priori expected
[z(t) -+ oo].
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nent assistance in the execution of the numerical calcu-
lations.
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