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Instability in a classical periodically driven string
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The existence of instability (in the sense of unlimited growth of energy) in a classical periodically
driven one-dimensional string is proven mathematically and demonstrated numerically.

PACS number(s): 03.40.Kf, 03.50.Kk

(4)

(5)

for all t. The solution V (t,x) fulfills the following initial
conditions at the time t =0:

Recently much work has been devoted to the question
of a possible instability of periodically driven bounded
classical and quantum systems [1]. There are well known
examples of systems that are classically unstable whereby
their quantum counterpart displays stable behavior. One
of the most prominent of them is the so-called kicked ro-
tator [2].

In classical mechanics, the instability is closely related
to the appearance of chaos (chaotic diFusion}. The stabil-
ity of the related quantum system has been interpreted
therefore as a sign for suppression of chaos in the quan-
tum world.

A large class of classical periodically driven systems is
unstable due to parametric resonances [3-5]; the system
we study below belongs also to this class.

The question of the stability and/or instability of a
physical system is of relevance not only for classical and
quantum mechanics. In this Brief Report, we investigate
a system that is described by a one-dimensional wave
equation (for instance, a one-dimensional string or a real
massless scalar field in 1+ 1 dimensions),

[B'q (t,x)/Bt'] —[B'q (t,x)/Bx'] =0 . (1)

The string will be driven by moving one of its end
points periodically. The second end point remains at the
same time fixed at the origin. Hence the system is a
"string" analogue of the famous Fermi accelerator [6].

The length of the string is varied with the end-point
motion without variation of the mass density, i.e., we
periodically tune the string by varying its length but not
its stress (a part of the string is released and absorbed at
the moving end point). A possible mechanical model is
shown in Fig. 1.

We investigate Eq. (1) on an interval [O,X(t)) with
function X(t}having a continuous second derivative, be-
ing positive, periodic, and representing the motion with
velocity smaller than the wave velocity (chosen as 1) in-
side the string:

XEC (R), (2)

X(t)&0, X(t)=X(t+T), iX'(t)i &1 (3)

for all t and with zero boundary conditions at the ends of
the interval:

qr(t, O}=0,
qr(t, X(t})=0

(6)

E(t)=-,' f""[(Bq/Bt)'+(Bq/Bx }']dx .

Our aim is to investigate under which conditions the
energy E(t) grows without limit, i.e., under which condi-
tions

lim sup E( t) = GG

f —+ oo

or (more strongly)
lim E (t)= GG .
f~ oo

To answer these questions let us first briefly discuss the
general solution of Eq. (1}with the boundary conditions
(4) and (5). Taking into account the condition (4) we can
express the solution as

tp(t, x)=f (t +x) f (t —x)— (10)

with f being an arbitrary smooth function. The second
boundary condition (5) leads to the relation

f(F(t))=f(t)
with

F =kGh

(8)

(12)

and with functions h and k defined by

h (t)=t —X(t), (13)
k(t)=t+X(t) . (14)

In order to construct the solution of Eq. (1},we start at
time t =0. The function f is chosen in such a way that
the initial conditions (6) are satisfied. These conditions
determine the function f on the interval [—X(0},X(0)]:

X(t)

FIG. 1. A mechanical model of vibrating string with variable

length.

y(O, x)=fo(x), By(O, x)/Bt =f, (x)
with fo(0)=fo(X(0))=0, and a few further relations on

fo and f, which guarantee the continuity of y and its
derivatives up to the second order.

The energy E(t) of the string at time t is given by the
expression
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f (x)= ~ fo(x)+ ~ f f i(y)dy for x E[0,X(0)]

and

f (x)=f ( —x)—f ( —x) for x E [—X(0),0) .

(15)

(16)

fo construct the solution of (1) for time t &0 we use
the relation (11). Applying the function F we define a se-

quence of points . &x „«. - . x, (xo &x, &-
(x & . such that

xo=X(0), xk+i=F(xk}, k =0, 1, . . . , (17)

x, = —X(0), x ( k+, )=F '(x k), k=0, 1, . . . .

(18)

It can be easily shown that lim„„x„=ao andlim„„x„=—~. The function f is defined on the in-

tervals (x„,x„+,) as follows. For y E(xo,x, ) define

f(y)=f(x) with y =F(x) and x E(x „xo),where f (x)
is defined by (15) and (16). Using this rule step by step we

get for y E(x„,x„+,): f (y) =f (x) with y =F(x) and

xE(x„„x„}.The same method is used to define the
function f for negative arguments.

Knowing f, the solution of the wave equation is ob-
tained by (10) and the corresponding energy can be evalu-

ated. The results are surprising. Let us first announce a
mathematical theorem that characterizes the instability
of the system.

Theorem; Assume that for some 0& c & T, X is nonde-
creasing in (O, c},decreasing with X'(t}&0 in (c, T), and

X(0) & —,'T &X(c}. (19)

Assume furthermore that the functions fo +f, and

f0 f i do not vani—sh identically in any open subinterval
of (O, X(0)). Then there exists y & 1 and A &0 such that
for any natural number n and any t E [n T, (n + 1)T]

E(r) & Ay" (20)

Remarks. (i) The assumption on fo+f, excludes the
trivial case of constant field.

(ii) For simplicity, we have chosen the time origin at a
moment when X passes by its absolute minimum; this is

of course not necessary.
(iii) If X is not nondecreasing in (0,c), we are still able

to prove that limsup, „E(t)=~; however, we do not
know whether the limit is indeed infinite.

Example: Let X(t) be of the form

X(t)=xo+a sin(cot ) (21)

with xo&a&0 and ~ace~ &1. Further, do not let f0+f,
and f0 f, vanish identically —in any open subinterval of
(O, xo). Then

lim E(t)= ~
t~ oo

(22)

for n. /(x0+ a) & a) & n/(xo —a ). .
The detailed proof of these mathematical statements

will be published elsewhere. Here we will focus ourselves
on the physical interpretation of this result.

First of all the wide range in the frequencies co of the
boundary point movement clearly signifies that the insta-
bility described in the above theorem is not of usual reso-
nant origin. Typically a resonance sourced instability
takes place for discrete external frequencies only. This is
the case of the so-called quantum resonance in the kicked

rotator [7] or in the Fermi accelerator [8],which becomes
unstable when the frequency of the external driving is ra-
tionally related to the internal frequency of the quantum
system. The situation described here is different. The en-

ergy of the string is increasing for a range of driving fre-
quencies with the width dependent on the driving ampli-
tude a and the edge at a=0 (no driving) which is typical
for the parametric resonance [4].

There is even one more difference between the quan-
tum resonance and the instability of the periodically
driven string. In the case of a quantum resonance the in-
crease of the mean energy E (t) of the system is a quadra-
tic function of time:

E(r)=at' (23)

for t~cc and some constant a)0. In the case of a
driven string, however, the energy increase is given by

E(nT) =b" (24)

with b ) 1 and n denoting the number of oscillations of
the moving boundary point.

The formula (24) is a direct consequence of the itera-
tive use of the relation (11}.The energy of the string (7)
depends on the derivatives of the solution of the corre-
sponding wave equation, i.e.,

E(t)=I [f'(y)]'dy . (25)

Using the formula (11)we get for f '

f '(F(r) )F'(r) =f'(t } (26)
and hence by iteration

f'(F F F(r))=f'(r) g F'(r, ) (27)
k

with t, =t and tk+, =F(tk). Under the assumptions of
the above theorem, all the factors F'(tk ) are smaller than
1 in a part of the integration interval. This leads to the
multiplicative energy increase indicated by the formula
(24}.

The physical content of the theorem can be easily un-

FIG. 2. A ray bouncing in
phase with the wall at distance
x. If x P(X(0),X(c)) the condi-
tion 2x =T (for unit ray veloci-
ty) leads immediately to the con-
dition (19) in the theorem. At
the end points X(0)=X(T) and
X{e) the wall has zero velocity
and the ray gains no energy.
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FIG. 3. The energy of the sys-
tem plotted in a logarithmic
scale as a function of time t and
frequency co with a=0.2.

v'=v(1 —v)/(1+v) . (28}

The energy of the plane wave is proportional to its
squared frequency. Consequently denoting by E and E'
the energy of the wave before and after the reflection, re-

derstood as a consequence of a "cumulative" Doppler
effect. In order to see this let us investigate the reflection
of a plane wave with frequency v (propagating in the
direction from —~ to ~ ) on a mirror moving with a
constant velocity v. The frequency after the reflection
changes to

spectively, we get

E'=8[1—v)/(1+v]' . (29)

So the energy increase or decrease of the wave is (due to
the Doppler effect) proportional to its energy before the
reflection. A multiple reflection leads then to the ex-
ponential increase of the energy under the conditions de-
scribed by the theorem. Heuristically, we obtain Eq. (24)
with

b =[1—v )/(1+v] (30)
from (29}, where v (0 for the wall moving against the
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FIG. 4. The time dependence
of the solution q of the wave

equation (1) is shown in a series
of plots for co=2 and a=0.2.
The time is indicated in the

upper left corner of each plot.
The shaded rectangle indicates
the position of the end of the in-

terval X(t).

0 ~. t=4A

OE

OM

0

0egg;

O.V t=V~

OD 0.4 0% OAk OD 0.4 OA 0$



3538 BRIEF REPORTS 49

0.76

0%.
0 ~. t=i&

0%

0

04 04 OA OA 04 0.4 OA 0$

t=3 A)

i
0

FIG. 5. The same as Fig. 4,
but evaluated for m= 3.

04 0.4 OAl 0$ 02 04 OA 0$

0$
0 ~. t=YS

0$
OM

0,

OD 04 OA

C

l &g, .1]t!4 W
0A3 i iD

0,

02 04 OA 0$

X (t)= 1+a sin(cot ) (31)

and start the evaluations with initial conditions

q(O, x)=e-'""-"", aq(o, x)/at =aq(o, x)/ax (32)

at time t =0. The consistency conditions at x =0 and
x =X(0) are satisfied here to a good approximation; the
initial shape ax (1—x) exactly satisfying them gives
qualitatively the same picture. Using the relation (26)

wave. The condition (19) means that there exists
toE(c, T) such that 2X(to)=T, that is, there exists a
wave which is in phase with the moving boundary. This
wave meets the boundary with the same velocity U at all
refiections (Fig. 2). Such a physical reasoning should also
work for the cases 2X(to)=NT with N=1, 2, . . . , we

are, in fact, also able to replace (19) by the condition
X(0)&(N/2)T&X(c) in the theorem. Such instability
near the higher harmonic frequencies is also typical for
the parametric resonance.

Let us now pass to the numerical investigation of the
system. In order to demonstrate the validity of the
theorem, we have solved the corresponding wave equa-
tion on a computer. We choose

iteratively we have evaluated the energy by the formula
(25).

To check numerically the above example, we fixed the
parameter a in (31) and evaluated the energy E(t) for
different values of co ranging from tr/(I+a) —0.2 to
sr/(1 —a)+0.2. The result is plotted in Fig. 3. It is seen
that the energy increases without bounds only for co in
(vr/( I +a), n /(1 —a) ). Out of this frequency interval the
energy behaves quasiperiodically and the system remains
stable for our choice of parameter a. For the values of a
which allow the cyclic frequencies co =Nm, N & 1,
aco~ &1 (higher harmonics), further instability intervals

appear in their neighborhoods; with our choice of a=0.2
in Fig. 3 this does not occur.

Figures 4 and 5 show the shape of the string in a series
of plots for different times t. In Fig. 4 the driving fre-
quency is out of the instability interval (co=2), while in

Fig. 5 the frequency co=3 (inside the instability interval).
a=0.2 in both cases. The difference in the shape of the
two solutions is clearly visible. In the instable case, the
solution becomes nearly discontinuous in the course of
time.

The work is partly supported by ASCR Grant No.
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