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Regular and stochastic acceleration of photons
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The Hamiltonian formulation of ray tracing trajectories is used to describe the various mechanisms of
photon acceleration. This leads to a straightforward derivation of the frequency shifts and of the time
and length scales. The existence of three types of photon trajectories, in the presence of an ionization
front, is demonstrated. A threshold condition for transition from regular to stochastic photon accelera-
tion is also derived.

PACS number(s): 52.40.Nk, 05.45.+b, 52.75.Ms

Generation of tunable radiation by laser-plasma in-
teraction is presently a subject of growing interest. This
is mainly motivated by the existence of experimental
techniques for pulse compression, leading to fluxes larger
than 10' W/cm of laser radiation.

There are mainly two different mechanisms providing
tunable radiation by laser-plasma interaction. One con-
sists of reflection of a light pulse by a relativistic front,
traveling with a velocity v =c. This was first considered
by Semenova and by Lampe, Ott, and Walker [1] and
studied more recently by others [2]. The ionization front
can be produced by a second light pulse, through photo-
ionization. The frequency of the reflected pulse is up-
shifted by a factor (I+P)/(1 —P), with P=v/c, as in the
case of a relativistic mirror.

The second mechanism results from the nonlinear in-
teraction of two light pulses in a fully ionized and station-
ary plasma. In this case, the frequency shifting can be
considered as an adiabatic process occurring along the
pulse interaction, and it can result from the nonlinear
changes of the plasma dispersion properties [3] or from
the electron-density modulations associated with the
plasma wave wake field [4].

In the present work, we will examine both mechanisms
using the Hamiltonian formulation of photon or ray trac-
ing equations. This approach will prevent us from exam-
ining partial reflection and the zero-frequency magnetic
mode [12], which are nearly absent in present photon ac-
celeration experiments anyway [5], but it will provide a
simple and straightforward calculation of the space-time
evolution of the photon frequency. A number of impor-
tant qualitative features of ray tracing dynamics will also
be described. In particular, the existence of three classes
of ray trajectories, which were recently suggested by
Mori [2] and by Yu et al. [6], will be topologically
demonstrated here. We will also be able to show that a
transition to stochastic photon acceleration can eventual-
ly occur, in the presence of two plasma wave wake fields,
leading to a large frequency spread.

Strictly speaking, photon acceleration was initially pro-
posed by Wilks et al. [4] to label the frequency shift pro-
duced by the wake field. But it will be used here as the
equivalent of a frequency shift, because there are really
no significant physical differences between the two above
mentioned rnechanisrns, at least in the ray tracing ap-
proach.

where the Hamiltonian is now given by

Q(rt, p, t)=tv(rI p) vp=—(/ p c +co~(rt) v p—. . (2)

Here we have assumed the cold plasma dispersion rela-
tion, which is valid for waves with phase velocities much
larger than the electron thermal velocity. It is important
to note that the new Hamiltonian is a constant of motion
and can thus be determined by the initial conditions,
Q=co, —k, v.

We will first examine the case where the electron-
density perturbations are due to a plasma wave wake field
in this case, we can write

co (rI)=cv~o[1+ef (kz g)], (3)

where capo is the unperturbed electron plasma frequency
and k~=v/co~o is the plasma wave wave vector. The
dependence of the amplitude e and the exact shape

f (k g) of the wake field cannot be related in a simple

way to the intensity and shape of the driving laser pulse
[8]. For the present purposes, we will then assume that e
is arbitrary and f (k .rt) is a periodic function of period
2m/k, with a minimum value f = —a, and a maximum
value f+ =b It will be .shown below that the photon fre-

quency shift is insensitive to the exact wake-field shape.
Let us now examine the photon dynamics described by

Eqs. (1)—(3), restricting our analysis to the unidimension-
al case, where p is parallel to k . The periodic perturba-
tion associated with the wake field will buildup, in phase
space (g,p), a nonlinear resonance similar to that of an

We start with the well-known ray tracing equations [7]
describing the evolution of a wave packet (which is the
classical analog of a photon) in a slow space and time
varying plasma. These equations can be written in Ham-
iltonian form, where the canonical variables are the pho-
ton position r and wave vector k, and the Hamiltonian is

the photon frequency tv= to(r, k—, t) as determined by the
plasma dispersion relation. We assume here an unmag-
netized plasma, with electron density perturbations mov-

ing with velocity v. We then make a canonical transfor-
mation to the new variables g =r —vt, and p =k, through
the generating function F2(r, p, t) =p (r vt). Th—e result-

ing canonical equations are

dg BQ dp M
dt Bp dt Br
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asymmetric pendulum [9]. There will be an elliptic fixed
point at (g=n /k; p =y Il}Qo/c) and a hyperbolic fixed

point at (rj=0, 2n/k. ~; p =y PQ„/c), where P= V/c and
y=(1—P )

' . The photon will be trapped by the wake
field if Qp (0 (Q„,where the values for the Hamiltonian
0 corresponding to the elliptic fixed point and to the
separatrix are determined by

Npp COpp

Qo = v'1 —ea, Q„= v'1+ eb
y r

%hen trapping occurs, the photon wave number p will
oscillate between a minimum p and a maximum p+,
determined by

1/2 '

CO

p*=y —Pk 1 — (1+sf+}
c p2g2

The maximum difFerence between these two extreme
values can only be attained at the separatrix, for Q=Q„,
and it is given by
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The corresponding maximum frequency shift which
can be expected for the photon is then given by
b,co,„=cbp, for ro;»co o. This result shows that
b,ro,„ is insensitive to the exact shape of the wake-field
potential, and can be very large when v~c, even for
small values of e. In Fig. 1 we illustrate the photon dy-
namics in a wake field, for f(k z))=cos(k rf}. Three
different trajectories in phase space (z)t,p) are shown in
Fig. 1(a}. The corresponding frequency shifts, as mea-
sured in the laboratory frame, are shown in Fig. 1(b).
The largest frequency shift occurs for the trajectory
closest to the separatrix and can be estimated by Eq. (6).
Figure 1 also illustrates how easily the Hamiltonian ap-
proach to photon dynamics can be used for experimental
modeling.

Let us now consider a more complicated, but not un-
realistic situation, where the photons travel in a plasma
modulated by two difFerent wake fields. In this case, Eq.
(3) is replaced by

to~(vf) =ro~o[1+e,cos(k, zI)+ezcoskz (vi —Vt)],
where vf =r —v„V=v, —vz, and v and k are the veloci-
ties and wave vectors of the two wake fields. In Eq. (2), v
should now be replaced by v&. Here we have assumed the
simplest possible wake field, with no harmonic content,
but this will not change the qualitative properties of the
resulting photon dynamics and will not afFect the calcu-
lated frequency shifts.

Returning to the one-dimensional analysis, we now
have two different nonlinear resonances in phase space,
similar to the time-perturbed asymmetric pendulum [9].
The location p,. and half-width hp; of these two reso-
nances are given by

p;= p;y;1/ 1 E;, bp;=— y;1/2e, .
c

It is well known [10] that a transition to large scale sto-
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FIG. 1. {a) Phase space (g,p) of a photon interacting with a
plasma wave wake field (c0~0=6X 10"Hz, a=0. 1, P=O. 99), for
three different initial conditions: kp =8 X 10' m ' (dotted line),

kp =8.3805 X 10' m ' (solid line), and kp =8.6X 10' m

(dashed line), for the same gp=m/k~; (b) Space variation of the
relative frequency shift, for the same photon trajectories.

chasticity can eventually occur, when the amplitude per-
turbations e; attain a given threshold. %hen e, =@2, we
can estimate this threshold with the aid of the overlap-
ping criterion, which states that bp, +hpz &

~pz
—p, ~.

This is equivalent to

y i V'2~i+ yzV'2ez

l~zyzV'i-~z-~iy, V'l-~,
l

(9)

It is important to note that such criterion is indepen-
dent of the unperturbed plasma frequency and that it can
be quite easily attained, even for ei « 1. In this case, cor-
responding to small density perturbations, Eq. (9) reduces
to Ei&(1—v) /2, 'for Ez —Ei, P, -1 and v=y, /yz —-1.
For illustration we give, in Fig. 2, an example of stochas-
tic photon acceleration, where a large frequency spec-
trum with he@/ro;=5 was generated in a very short
length scale (b,x & 10 cm, in the laboratory frame) start-
ing from a nearly monochromatic wave packet, hen; =0.

%e now turn to the case of photon interaction with an
ionization front. Again, we make use of the dynamical
Eqs. (1) and (2), but now we use

r0' '(zf)=co otanh(kf g), (10)

where kf gives the front length (or time) scale, and co~p is
the asymptotic value attained by the plasma frequency
well behind the ionization front.

Let us assume a photon initia11y propagating in the
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FIG. 2. Poincare surface of section of a single-photon trajec-
tory moving in presence of two plasma wave wake fields
{co~o=6X10" Hz, E, = e2= 0. 1, P, =0.99, Pz=0.97). Initial
conditions: ko=8. 37X10' m ' and go=0.

neutral gas region, far away from the ionization front. If
we neglect the dispersion properties of the gas we can
write A=co, (1+P), when k; is antiparallel to the front
velocity v. Using the invariance of 0, we can then say
that the final or asymptotic value for the photon frequen-
cy, coI, after collision with the ionization front, will sim-

ply be

When the velocity of the ionization front tends to zero,
P»0, they tend to the plasma frequency cozo, as expected.
But the existence of two distinct cutoffs, for PAO, leads
to three different kinds of trajectories for antiparallel
propagation, which are illustrated in Fig. 3(a).

Trajectories of kind I, corresponding to co;)co„are
only slightly perturbed by the front and always take posi-
tive values for the wave number p. Trajectories of kind
II, existing in the interval co„&~;&co„, are reflected in
real space but have no turning point in phase space. The
frequency shift is now larger than for kind I, but it
remains small. Finally, for co; & ro„, we have refiection in
both spaces (phase space and real space). The frequency
shift now attains its largest possible value, given by Eq.
(11).

The frequency shifts corresponding to these three tra-
jectories are given in Fig. 3(b). It is important to note
that the final photon frequency is independent of the
slope k& of the ionization front. This can be an impor-
tant property to take into account when designing pho-
ton acceleration experiments. For instance, trajectory of
kind III shows that a significant frequency shift can occur
within 1 m, for a relatively slow time constant for the

This is the simplest possible derivation of the well-known
relativistic mirror efFect. If the neutral gas region is re-
placed by a weakly ionized plasma, with a plasma density
lower by a factor 5 « 1 than that produced by the ioniza-
tion front, the parameter P in Eq. (11) will be multiplied
by a factor (1—5)'~ . This agrees with the result recently
obtained by Kaw, Sen, and Katsouleas [11j.

Using the same kind of arguments it is also easy to cal-
culate the frequency shift which occurs when the photon
crosses over the ionization front without reflection. For
co, »co o, we obtain, in this case: bco=(cozo/2';)IP/
( I+P) I, where the signs+ (respectively, —

) pertains to
the antiparallel (respectively, parallel) propagation. We
see that the frequency shift can still be quite large, for
parallel propagation, but smaller by a factor of order
(co o/co, ) than in the case of refiection.po

It is now important to determine the conditions for
which photon reflection takes place. Two different
reflection conditions can be defined for antiparallel prop-
agation. If we look at the phase-space dynamics of the
photon trajectories, we can say that the condition for the
photon to reverse its way along the g axis is the existence
of an q turning point, corresponding to (Bp/Bg)» —~.
Such a turning point exists for initial photon frequencies
smaller than a given cutoff frequency co„, to be defined
below.

On the other hand, we can say that photon reflection
occurs on real space if there is an x turning point such
that p=k =0. This occurs for co; &co„, where co is
another cutoff frequency. These two cutoff frequencies
can be very easily derived from Eqs. (1), (2), and (10), and
are determined by
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FIG. 3. (a) Phase space (g,p) of a photon interacting with a
—I

moving ionization front {co o=6X10"Hz, P=0.99, k~=1 m )
5 —lfor three different initial conditions: (I) k0 =2 X 10 m

(dashed line); (II) ko=5X10' m ' (dotted line); and (III)
ko=10' m ' (double dotted line), for the same go= —3.6; (b)

Space variation of the relative frequency shift, for the same pho-
ton trajectories.
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ionization front (3 ns). The existence of three kinds of
trajectories were recently suggested by Mori [2] and by
Yu et al. [6],using a different and less explicit approach.

In conclusion, we have shown how the various mecha-
nisms of photon acceleration could be described using the
Hamiltonian formulation of the ray tracing equations.
The resulting calculations are simple and exact, leading
to precise estimates of the maximum possible frequency
shifts and of the involved time and length scales. In par-
ticular, it was demonstrated that large frequency shifts
can be attained within a 1-m length, using relatively slow-
ly growing ionization fronts (a few nanoseconds). The ex-
istence of three different kinds of photon trajectories was
also clearly demonstrated on topological grounds, for

photon interaction with an ionization front. Another im-
portant result was the demonstration of a transition from
regular to stochastic photon acceleration, in the case of
photon interaction with two different wake fields, within
not too stringent conditions. This opens the way for fu-
ture generation of white light, starting from nearly mono-
chromatic radiation.
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