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Dynamic structure factors of a dense mixture
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We compute the dynamic structure factors of a dense binary liquid mixture. These describe
dynamics on molecular length scales, where structural relaxation is important. We find that the
presence of a few large particles in a dense Quid of small particles slows down the dynamics con-
siderably. We also observe a deep narrowing of the spectrum for a disordered mixture composed
of a nearly equal packing of the two species. In contrast, a few small particles di8'use easily in the
background of a dense Quid of large particles. We expect our results to describe neutron scattering
from a dense mixture.
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I. INTRODUCTION

The behavior of a fluid at large length and time scales
is well described by hydrodynamics. In recent years
hydrodynamics has been extended to molecular length
scales [1]. This generalized hydrodynamic theory (GHT)
was motivated by the desire to describe the neutron-
scattering spectrum S(k, u) of a dense liquid. S(k, ~),
which reflects the molecular scale dynamics of the fluid,
has a central diffusive peak which dramatically narrows
with increasing density [2]. GHT provides a physically
appealing description of this phenomenon. Structural re-
laxation is very slow on molecular scales in a dense liquid
due to close packing of the molecules. Thus density fluc-
tuations decay very slowly via self diffusion at k ko
where S(k) has its maximum. The emergence of this
long-lived mode leads to a reduction in the half-width of
the scattering spectrum.

In the past few years, much attention has been focused
on the study of the dynamical properties of dense mix-
tures [3]. A dense binary mixture is known to be a better
glass former than a one component liquid. Therefore, an
understanding of the dynamics of a dense binary mixture
is of considerable interest in analyzing the slow relaxation
process that ultimately leads to the glass transition.

Recently, the intermediate wave-vector dynamics of a
dense binary hard-sphere mixture has been studied [4]
in terms of the density fluctuations of the two species.
The main approximations that have gone into this study
are the following. First of all, interdiffusion has been
neglected. Secondly, the wave-vector dependence of the
self-difFusion coefBcients has been neglected.

A more detailed analysis of a dense binary hard-sphere
mixture has been carried out in Ref. [5]. Here, the full
linear generalized hydrodynamics has been solved and it
has been explicitly demonstrated that the density fluctu-
ations are the only slow fluctuations on molecular length
scales. In addition, both self-diffusion and interdiffusion
efI'ects with their wave-vector dependence, have been re-
tained. Interdift'usion is a physical process special to a
mixture, not shared by a one-component fluid. There-
fore, inclusion of interdiffusion elicits the special charac-

teristics of the dynamics of a mixture. The wave-vector
dependence of the transport coeKcients brings out the
nonlocal effects arising from the short-ranged interac-
tion potential in a dense liquid. Furthermore, the analy-
sis presented in [5] incorporates certain additional static
couplings in the extended hydrodynamic equations which
had been neglected earlier.

In the present paper, we use the the density modes ob-
tained in [5] to evaluate the dynamic structure factors of a
dense binary mixture. We expect the dynamic structure
factors presented here to describe the molecular-scale dy-
namics of a dense liquid mixture measured by neutron
scat tering.

The paper is organized as follows. In Sec. II we present
a theoretical derivation of the partial dynamic structure
factors of a dense mixture. In Sec. III we numerically
calculate S(k, w) for a few specific values of the parame-
ters of the mixture and make some predictions. Finally,
in Sec. IV we end this paper with a few concluding re-
marks.

II. THEORETICAL DERIVATION

dt e*-'E';, (k, t). (2)

These are the temporal Fourier transforms of the time
correlation functions F,s (k, t) defined as

The differential scattering cross section of a binary
mixture measured in a .neutron-scattering experiment
is proportional to the dynamic structure factor S(k, ur)

given by [6]

S(k, ~) = xib Sii(ki ~) + x2S22(k, ~)
+2gx, x,bs„(k, a ), (1)

where x; = n, /(ni+n2) is the relative number concentra-
tion in the mixture of particles of component i. b is the
ratio of the scattering length of the erst component to
that of the second. The partial dynamic structure factors
S,s (k, w) (i, j = 1, 2) appearing in (1) are given by

1063-651X/94/49(4)/3504(4)/$06. 00 49 3504 1994 The American Physical Society



49 BRIEF REPORTS 3505

b'n, s =
N;- 'A:.~~'&e' '"

QN;

for a fluid containing N, of type i particles. a labels the
particle number.

It has been shown in [5] that momentum and temper-
ature Huctuations decay very fast on molecular length
scales in a dense binary liquid mixture. Therefore the
molecular-scale hydrodynamic description of such a sys-
tem involves only the partial density Huctuations of the
two species, which are long lived on such length scales.
These Huctuations are the intermediate wave-vector ex-
tensions of the long-wavelength heat and difFusion modes.

It is convenient to consider linear combinations
a &(p = 1,b, ) of the number density Huctuations bn~&

and bnzg that form an orthonormal set [5]. We choose

1k

QngSgg(k)

The brackets () indicate an equilibrium grand canonical
ensemble average. bn, g (i = 1,2), the Huctuation of the

number density of the ith component at wave-vector k g
0 is given by

structure factors of the mixture [5]. The time evolution
of the densities a

&
and a&& is governed by the pseudo-

Liouville operator [5]. The Laplace transform of the gen-
eralized hydrodynamic equations for the number density
Huctuations of a dense binary liquid mixture may be writ-
ten in the following compact matrix form:

[zl + A(k, z)]~a(k, z)) = ]a(k, t = 0)),

where ]a(k, z)) represents a two component column vec-
tor with aug(z) and a&&(z) as its entries. a,&(z) (i =
1, b, ) are expressed as

OO a.-
a.-(z) = dt e ' +) a.- =

o
'" (z —L+)

for Re(z) ) 0, with L+ the pseudo-Liouville operator
deHned as in [5]. The hydrodynamic matrix A(k, z) has
the following elements:

Agg(k, z) = Mgg(k, z)—Qg)(k)2

All k

Ag~(k, z) = Mga(k, z)—f),'g) (k) Q~((k)
~ll

= A~g(k, z),

and

1 bn~g
4k sina k

cos a(k) gn~S~~ (k)

Qn2Sz2 (k)

Here a(k) is given by

n(k) = sin ' Sgz(k)

/Span(k)S22(k)

with S;~(k) (i, j = 1,2) representing the partial static
I

A~~(k, z) = M~~(k, z)—A~~(k)2

ll

Here M;z(k, z) withi, j = 1,6 and 0;~(k) withi = 1, b, , t
and j = t are given in [5]. The solution to (3) can be
written as

~a(k, z)) = R(k, z)[z1+ A (k, z)] R (k, z)~a(k, 0)).

(4)

In Eq. (4) A (k, z) = R (k, z)A(k, z)R(k, z) is a diago-
nal matrix with the eigenvalues

[Aqq(k, z) + A~~(k, z)] + /[Aqua(k, z) —A~~(k, z)]2 + 4Aqa(k, z) z

Z+
2

]bn(k, z)} = G(k, z)]bn(k, 0)}, (5)

of the matrix A(k, z) as its diagonal elements. The
eigenfunctions [8 )(a = 6) of the hydrodynamic matrix

A(k, z) are column vectors with
QA, ~(k,z)z+[Agg(k, z) —z ]z

and as their entries. These
QAq~(k, z) +[Aqq(k, z) —z~)

eigenfunctions form the two columns of the orthogonal
matrix R(k, z) which diagonalizes A(k, z).

Equation (4) can therefore be recast as

G(k, z) = B (k, z)R(k, z)
x [z1 + A (k, z)] R (k, z)B(k, z).

Here B(k, z)]bn(k, z)) = ]ha(k, z)). In terms of compo-
nents Eq. (5) reads

hn;(k, z) = G;z(k, z)6nz(k, t = 0).

Multiplying both sides of Eq. (6) by hn~( —k, t = 0) and
taking a thermal average we obtain the partial dynamic
structure factors

where ]hn{k, z)) is a column vector with hn, g(z) (i = 1, 2)
as its entries and the matrix C (k, z) is given by

S;i{k,z) = ) G;~ (k, z) S~i (k).
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Finally the partial dynamic structure factors appearing
in Eq. (2) are given by

Re[S;z (k, z = e —iu)]
~—+0 7r

1.0

0.9—

0.8—

We insert the explicit expressions for S,z(k, ~) (i,j
1, 2) in Eq. (1) to obtain the dynamic structure factors
S(k, ~), which are in turn proportional to the differential
neutron-scattering cross sections.

~0.6—
3
~ 0.5 -]

M 0.4

III. RESULTS

We present results for a mixture of hard spheres of
diameters crq and o2 (cr2 ) oq), number densities nq and
nz and of total packing fraction ri = s [neo'z + n2o'z] =
0.46. The diameter ratio crq/uz is taken to be 0.7. We
vary the concentration z2 ——nz/(nq+nz) of larger spheres
keeping g constant. We have chosen the ratio b of the
scattering lengths of the two species to be 0.7. Finally
we consider mixtures of spheres of equal masses. This is
done mainly to focus on the role of structural parameters
in slowing down the dynamics.

Figures 1 and 2 show S'(k, u) [i.e., S(k, u) scaled with
its value at u = 0] as a function of the frequency u scaled

with a time t@ given by ~
= " " ",with n the to-

/2PP, 12

tal number density of the fiuid, ~~2 —— '
2

', g~2 the pair
correlation function at contact between type 1 and type
2 spheres and pq2 ——mqm2/(mq+ m2) the reduced mass.
All plots of S'(k, u) have been made for kcrqz ——2'. We
notice that in Fig. 1, the curve for z2 ——0.01 is signi6-
cantly narrower than that for z2 ——0.9, This observation
can be interpreted as follows. A dense liquid mixture
consisting of a few large particles suspended in a liquid
of small particles slows down the dynamics on molecu-
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FIG. 2. Same as Fig. 1 for zz = 0.9 (dashed line) and
zz ——0.2 (solid line).

lar length scales more easily than a liquid with a few
small particles in the background of large ones. This is
due to the fact that large spheres difFuse very slowly in
a matrix of small ones. In contrast, the difFusion coef-
ficient of small spheres being large, they difFuse faster
in a background of large ones. This observation agrees
with recent molecular dynamic simulations in dense mix-
tures [7], where the authors 6nd that a liquid mixture
with a majority of large spheres is easier to crystallize
compared to one which consists mainly of small spheres.
This stems from the difference in the rate of diffusion of
the two species as mentioned above.

In Fig. 2 we notice that a compositionally disordered
mixture (xz ——0.2) characterized by nearly equal pack-
ing fractions (rtq ——0.58', rlz

——0.42rl) of the two species,
undergoes a dramatic narrowing refiecting the emergence
of a very slow dynamical process. In contrast, dynami-
cal relaxation is relatively faster in a mixture consisting
mainly of large spheres (x2 ——0.9). In a disordered liq-
uid mixture, due to a difFerence in the sizes of the two
species, the dynamics is slowed down considerably. This
happens because both small as well as large spheres can
be trapped in a cage formed by the other particles, re-
sulting in the formation of peaks in S,z (k) (i,j = 1, 2) at
well separated values of the wave vector. In contrast, in
a liquid consisting mainly of large spheres, caging is rel-
atively inefFective due to the ease of movement of small
particles in the matrix of large ones.

0.2 —,

0. 1
IV. CONCLUSION
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I"IG. 1. The reduced dynamic structure factor
S'(k, ~) = ~I"„' I plotted against the reduced frequency cu ta
for koiz = 2zr and for xz = 0.01 (solid line) aud z:z = 0.9
(dashed line).

We have obtained the dynamic structure factors of
dense mixtures on molecular scales by confining ourselves
to the modes of total density Buctuations and interdif-
fusion, which govern the slow dynamics on such length
scales. The relaxation of density Huctuations on molec-
ular scales depends more strongly on the structural pa-
rameters, such as the size ratio, than on the mass ratio of
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the two species [5,8]. This is a consequence of the crucial
dependence of the dynamics on the rigid static structure
of a dense liquid on molecular scales. Therefore, we have
considered mixtures of equal masses but di6'erent sizes.
We have confined ourselves to mixtures of not too dis-
parate scattering lengths in order to have comparable
contributions from the two species to the total S(k, ur).

Comparison with earlier work: Our present analysis is
more complete compared to previous work [4] in that it
takes into account efFects of interdifFusion, wave-vector
dependence of transport coefficients, and incorporates a
few additional static couplings in the extended hydrody-
namic equations which had been neglected earlier. We
have checked that our results converge to that of [4] in
the appropriate limit. We would like to point out that the
half-widths evaluated from our theory difFer from those
predicted by [4]. For instance for z2 ——0.5 we find that
the half-width predicted by [4] is about 1.5 times that ob-
tained from the present theory. This observation points
to the fact that inclusion of the additional effects incor-
porated in the present analysis makes a significant dif-
ference to the dynamic structure factor of a dense mix-
ture on molecular scales. Whether the present analysis
improves over the earlier theory can only be settled by
future neutron-scattering experiments.

As mentioned in Sec. III, we have demonstrated that
our quantitative evaluation of S(k, u) confirm the quali-
tative observations made in [7] regarding the difference in
the dynamics of slowing down between a mixture consist-
ing of a few large particles and one containing a few small
particles. Earlier researchers [6] had focused on neutron
scattering in dilute to moderate density (rl (( 0.46)
Quid mixtures. They had mainly concentrated on un-
usual sound propagation in such systems. The regime
of density considered here is quite difFerent. We have
looked at high density mixtures where structural relax-
ation is important and the sound modes are overdamped.
Our results are applicable to dense liquid mixtures below
the glass transition packing fraction.
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