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Longitudinal relaxation induced by colored noise
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Following the analytical results presented in our recent paper [Phys. Rev. A 46, 6222 (1992)], we clari-
fy the conditions leading to a single exponential decay of the longitudinal magnetization in a multilevel
system. A direct expression of the longitudinal relaxation time is provided in terms of the transition

rates induced by colored noise.

PACS number(s): 05.40.+j, 76.20.+q

Very recently, there has been a renewed interest in the
topic of relaxation behavior of two-level systems [1-9]
and, more generally, multilevel systems [1] induced by
colored noise. The central issue has been represented by
investigating the conditions under which a set of relaxa-
tion times can be defined. A remarkable limit is
represented by the case in which a dominant relaxation
time T¢ exists, fairly exceeding the other ones, so that for
long times a single exponential decay is found. A correct
approach to the matter cannot have as a starting point
the familiar treatment of second-order cumulant due to
Redfield [10], since it assumes a time-scale separation be-
tween the microscopic time scale represented by the
correlation time 7, and the macroscopic time scale 7,
(T 4 is the time in which the observable A4 appreciably
changes in the interaction representation). For short 7,
(white noise) the above assumption follows from the well
known sufficient condition H,7, <<1 (H, is the fluctuat-
ing part of the total hamiltonian H) and the relaxation of
any observable exhibits a Markovian behavior accounted
for by the Redfield equations [10]. By increasing .
(colored noise), the breakdown of the time-scale separa-
tion depends on the selected observable and for some ob-
servables does not even occur [1]. Since the time evolu-
tion of the different observables of the system are usually
intertwined, this regime of fluctuation cannot be con-
veniently handled by cumulant theory. The identification
of the weakest conditions under which relaxation times
exist is of remarkable interest for applications and some
analysis avoiding the cumulant theory has been reported
for cases of interest [1,7]. Here we consider the field of
magnetic resonance where the subject of relaxation in-
duced by microscopic fluctuations has been investigated
extensively. Nonetheless, to the authors’ best knowledge,
identifying the weakest conditions under which relaxa-
tion times may exist seems to be an overlooked issue. In
NMR in many cases the extreme weakness of the interac-
tions warrants the condition H,7,<<1, so that the
Redfield theory holds. We simply quote the case of qua-
drupolar relaxation of nuclei with I =1, e.g., 2H, SLi, and
"N, leading to monoexponential decay [11,12] and 7=23,
e.g., 2Na, leading to biexponential decay if wy7, >>1, w,
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being the Larmor frequency [13]. The Redfield theory is
extensively employed also in cases such as the nuclear re-
laxation induced by paramagnetic centers, where the
strong dipolar coupling can make the time-scale separa-
tion questionable [14]. From the standpoint of electron
spin resonance the topic of relaxation times has been lim-
ited for a long time to the evaluation of the transverse re-
laxation time T',, since the longitudinal relaxation time
T, was hardly accessible due to technical limitations.
However, more recently, techniques able to detect relaxa-
tion phenomena partly [15] or fully [16] governed by
spin-lattice relaxation have been developed. The charac-
ter of T, is not robust, since its rigorous definition be-
comes doubtful for H,;7,>>1. Instead, it has been re-
cently proven under general conditions that the time-
scale separation between the longitudinal relaxation and
7, holds for arbitrary fluctuation regime provided that
the mild condition H,/w,<0.1 holds [1]. The develop-
ment of T,-oriented techniques discloses new opportuni-
ties. It allows studies of extended time scales, T'; usually
being longer than T, and allows the investigation of the
correlation functions C(z) for times ¢ ~w, ' whereas T,-
oriented techniques look at the area of C(¢) [10]. One in-
teresting case is represented by complex systems with
multiple microscopic time scales, e.g., polymers, where
cooperativity is believed to play a major role, deviations
of C(t) from exponentiality are usually found and the
separation of microscopic and macroscopic time scales
must be examined carefully [17].

The above discussion points out that in magnetic reso-
nance in the regime H,7,>>1 little is known about the
weakest constraints under which selected observables of
the system of interest relax with Markovian behavior,
whereas the long correlation times found in cases of
current interest (undercooled phases and glasses, poly-
mers, biomaterials) demand the development of spectros-
copies with extended observation time.

These remarks motivate the present Brief Report, the
purpose of which is twofold: to further pursue the
analysis of [1] on longitudinal relaxation of multiple level
systems to identify the weakest conditions under which
longitudinal relaxation times can be defined with possibly
a dominant term T;=T% and to provide practical ex-
pressions for cases of wide interest in the electron-spin-
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resonance (ESR) case.

In [1] the system of interest was modeled as an electron
spin § =1 interacting with a nuclear spin I. The study
was concerned with the characterization of the separa-
tion between the time scales of the relaxation of the elec-
tron magnetization (7) and the correlation time of the
fluctuations causing the relaxation (r,). For large time-
scale separation explicit expressions of the relaxation
times were derived by developing a proper coarse-
graining procedure on a scale At such as T >>At >>7,.

For the transverse part of the magnetization, the time-
scale separation is dictated by

Hl’rc <1. (1)

Differently, for the longitudinal component of the magne-
tization, the time-scale separation is governed by the in-
equality

Hl/(l)0<<1 . (2)

The latter condition is much weaker than Eq. (1), since it
is independent of the correlation time 7,.

In [1] a general expression for the longitudinal relaxa-
tion time T, has been given. The model Hamiltonian
takes the form

H=H0+H1(Q) , (3)

where H, is the part of the Hamiltonian independent of
the fluctuating variable Q. Its explicit form is

Hy=w,S,+w;S,I, (4a)

and it is appropriate for a magnetic species with electron
spins S (we assume S = 1) interacting with a nucleus with
arbitrary spin I. @y and @; are the Zeeman and hyperfine
frequencies, respectively. The coupling with the fluctuat-
ing variable is expressed by

H(Q)=0y(Q)-S+8-0,(Q)1
= 3 0,QS,I,. (4b)

u=—1,0,1
a=—1,0,00,1

1 1
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0y(Q) and ©;(Q) are a vector and a matrix, respectively,
with elements depending on the stochastic variable ().
No particular forms for wy({) and @;(Q) are assumed.
In the second line of Eq. (4b) the following definitions
have been introduced:

So=S, ,

(5a)
S41=S,%iS, ,
IO=IZ > (Sb)
I =L+il, .

The symbol 00 labels the identity in the space of the nu-
clear states. It is assumed that

where the angular brackets denote an average on the
values of the stochastic variable ). We can always
reduce the problem at hand to the form of Eq. (6), by in-
cluding in H the average value ( H,()).

In [1] it is assumed

@o> o, [0y )], [e(D)]; , (7a)

Bowy,Bw;<<1, (7b)

where [0y(Q)]; and [w;(Q)] ;j are the generic elements of
@y(Q) and @;(Q), respectively, and B=#/kT; # is the
Planck constant divided by 2, k is the Boltzmann factor,
and T is the absolute temperature.

In [1] the averaged longitudinal magnetization was
studied:

§z(t)=Tr[S)”{p0<Sz(t)>} ) (8)

where a trace operation on the electron and nuclear states
is performed weighted by p,. p, characterizes the initial
nonequilibrium state of the spin system, being represent-
ed in [1] by the rotated magnetization of 7 radians with
respect to the thermal equilibrium value. On the coarse-
grained scale At >w; !, S,(¢) was found to decay with a
single relaxation time T, given by

T]: 1 m=2_11 TI'[I] 2 E C—Mla;ﬂlﬁ{ll’l[w0+(mwl)]}IGIBPM

I a,f=0,00
p==1

+ 2 (C—y,—al;yla1 {.u'l[w0+(m _‘11/2)“)1]}I—tzzlpmlazl

a=tl

+C_:“1—a19/‘|“1 {.u'l[wo-*—(m +al/2)wl]}1a1PmLal) ’ 9

where
Copiy,s(8)= fo“’ ds explist)( @, gt + 7w, 5(1)) . (10)

Equation (9) is based on Egs. (7) and is correct at second

order with respect to the amplitude of the fluctuating
fields.

The inequalities expressed by Egs. (7) need some com-
ment. In Eq. (7a) the small amplitude of the fluctuating
fields [w(Q)]; and [@,(Q)];; with respect to w, ensures
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the separation between the time scale T, on which S,(¢)
relaxes, and the microscopic time scale denoted by the
correlation time 7, [see Eq. (2)]. Furthermore, the condi-
tion w,> w; and the assumed high temperature [Eq. (7b)]
were enough to guarantee a single exponential decay of
S,(t). In [1] the different roles of these latter positions
were not investigated.

_In this Brief Report we prove that the relaxation of
S,(¢) may be described at long times by a single exponen-
tial with time constant T; under two distinct premises:
case A finite temperature, w,> w;; case B high tempera-
ture, more precisely Bw; <<1 and initial thermal equilib-
rium of the nuclear multiplet.

It is understood that the time-scale separation condi-
tion [Eq. (2)] is valid. The derivation is based only on
quantum-mechanical arguments, proving that our con-
clusions are independent of stochastic assumptions. As
in [1], we are interested in slow fluctuations, i.e., those
with correlation time 7, longer than wg '

It is found that the complex expression Eq. (9), derived
by using stochastic arguments, may be replaced by the
simpler form
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1 1
T:: 2 p+m1r+ml—»—m2+p—m2r—m2—>+ml ’
1 my,my=—1I ,

12

(1n

where I‘erla_m2 is the transition rate from the level

characterized by S,=+1, I,=m, to the level S,=—1,

I,=m, [10] and p.,, is a Boltzmann weight factor ap-
propriate for levels belonging to the same multiplet,
namely, levels with the same electron spin number:

exp| FBmw; /2]
I b
> exp[ FBnw;/2]

Ptm n=—1I

case A

(12)

1
T+l case B .
With a view to evaluating Eq. (11) in practical cases, sto-
chastics must be reintroduced and one finds for the semi-
classical Hamiltonian H,(Q) [Eq. (4b)] the following ex-
pression for the transition rate:

s ~8m],mfl[[l(1‘*1)_"1%*”'lzl(c+,4;,—,+ {—[op+(my,— e +Cy 4, {~logt(my;—3)o]})]

+my—>—my

+5m1,m2+1[[1(1+1)_m%—m2](c+,—;<+ {—loottmy+ P 3 +Cy 4 {—[opt(my+ 3o 1])]

+28,,

1M

[m%C+70;,,0{w0+m2w,} +C+,oo;—,001ﬂ’o+m2w1]

+my(Cy o, 0lwotmywr}+C oy oo,— oot myor)]. (13)

For high temperatures (Bw; <<1) and wy> w;, replacing
the above expression in Eq. (11) recovers Eq. (9). For
finite temperatures, the semiclassical, stochastic charac-

ter of H,(€Q) implies I'’¢, =T, , namely, T— o0. This
makes questionable the direct replacement of I',_, with

3C,, in Eq. (11). This flaw is usually removed by identi-
fying the quantum spectral densities C(w) appearing in
T,_, with C(0)*Cexp[#iw/2kT], leading to the detailed
balance condition and therefore to the correct thermal
equilibrium [10].

To prove Eq. (11), we consider [@y(Q)]; [@;(Q)]; as
quantum bath variables so that H, describes a quantum
coupling between the spin system and a thermal bath ac-
counted for by the Hamiltonian H,. In this frame the
average ( ) is interpreted as a trace over the degrees of
freedom of the bath weighted by its equilibrium density

matrix p,. Equation (8) can be rewritten as
S, ()=Tr(s 1;{po{S, (1))}
=r Tr{p+ (S, (1))}
+r_Tr{p_(S, (1)}, (14)

where XT=(=x|X|£) and |+ ) are the two eigenvectors
of S, with eigenvalues &} and

.
+ )
- Tr
;s,I;{Pog (15)
ry+r_=1,
and
(£lpolt)
= . (16a)
P Ty {{£lpol£)}
Let us assume for the moment
Bow
exp ?TIIZ
= , (16b)
P+ S B,
> exp|— m
m=-—1 2

namely, initial internal equilibrium of the multiplet. Let
us define the projector operators P as

so that Eq. (14) becomes
S,(t)y==r P, S} ()+r_P_S,;(1). (18)

At second order in H,, the cumulant expansion, outlined
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in [1], delivers the equations of motion for P, S(¢). In
the cases of interest A and B they take the form

%Piszi=ﬁpisf , (19)
where
R= fo“’dfpt{HgW (DHOX(r—1)} , (20)

A*B= AB — B A; the superscript (0) denotes the interac-
tion representation with respect to H, (see [1] for details).
Equation (19) states that P, S,"(¢) and P_S, () exhibit
the same relaxation behavior. From Egs. (18)-(20), it is
found that the relaxation of S, (¢) is described by

g5, ., 1 .5 ' &
atSz(t)— T, [S,(6)—S,()], (21

where T is given by Eq. (11) and I',,_,, by the familiar
Fermi golden rule [10].

For the case A the above results can be extended to ar-
bitrary initial conditions, i.e., it is not required that the
nuclear multiplet be in initial internal equilibrium. In
fact, the thermalization of the multiplet takes place with
rates

r:tml—>im2 zAzTc /(w%Tg-'_ 1)

much higher than the rates between the multiplets
I‘3Fm1—>:tm2zA2’rc /(w%’r%_’_ n,

being w;,A, 7, ! <w,, where A is the order of magnitude
of H,. So, for t>>1/l"i,,,l_,4_rm2, during the long-time

relaxation regime of S,(f), the nuclear multiplet is
thermalized.

The above results point out that, in the regime of slow
fluctuations, i.e., wy7, > 1, a single exponential decay of
S,(t) is expected for either small hyperfine coupling
(w; <<wy) (implying rapid thermalization within the nu-
clear multiplet), or high temperature (implying equal
transition rates within the nuclear multiplet), or both.
For finite temperature and hyperfine splitting ; compa-
rable to the Larmor frequency w,, a single exponential
decay cannot be expected, even if the time-scale separa-
tion, dictated by Eq. (2), allows one to resort to the cumu-
lant expansion. The multiexponential decay of S,(¢) must
be ascribed to the comparable rates of the relaxation pro-
cesses involving states with the same electron spin state
(intramultiplet relaxation) and the relaxation processes
involving states with different electron spin state (inter-
multiplet relaxation). In the case of finite temperature
and @, > o, (case A) the former are faster than the latter,
provided that wyr, > 1.
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