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Synchronizationlike phenomena in coupled stochastic bistable systems
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A model of two coupled bistable systems driven by independent noise sources is considered. The cases
of mutual coupling as well as one-directional coupling are investigated. %e find that in such stochastic
systems effects similar to synchronization phenomena in classical oscillating systems can be observed. It
is shown that when the strength of coupling achieves some critical value then the stochastic processes in

the subsystems become coherent. The appearance of coherence corresponds to the bifurcation in the
two-dimensional stationary probability density. Moreover, the effect of coincidence of the Kramers fre-

quencies in the subsystems can be observed. The latter is similar to the synchronization via frequency
locking in classical oscillating systems.
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(2)

and o is the intensity of white-noise source g(t}. The pa-
rameter a (a )0) characterizes the deepness of the poten-
tial wells. The stochastic bistable system (1) has a charac-
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Investigations in the field of the noise inhuence on the
nonlinear dynamical systems demonstrate a number of
nontrivial effects [1]. First of all, there are noise-induced
transitions [2] and the phenomenon of stochastic reso-
nance [3]. The latter phenomenon is observed in a sto-
chastic bistable system driven by a small periodic force.
When the characteristic time scale of bistable system, the
Kramers rate, coincides with the signal frequency, a con-
siderable amplification of the signal can be observed. In
other words, some kind of synchronization between the
stochastic motion in the double-well potential and the
external periodical force takes place.

As is well known, the theory of oscillations considers
two cases of synchronization. The first is synchroniza-
tion of some dynamical system by an external periodical
force. If we consider a stochastic system instead of a
dynamical one, this case corresponds to stochastic reso-
nance. The second case occurs when two (or more) oscil-
lators with different natural frequencies are coupled. It is
interesting to investigate possible similar effects in cou-
pled stochastic systems.

In the present paper we study two coupled stochastic
bistable systems. Such models have been investigated be-
fore [4]. In the papers [5] globally coupled bistable oscil-
lators have been considered. However, in the previous
studies only identical bistable systems were considered.
A more interesting case is when the subsystems have
different parameters and, as a consequence, different
characteristic time scales.

As a basic model we consider the simple overdamped
bistable system which is described by the stochastic
differential equation (SDE)
dx dU(x) +g(t), (g(t)g(t+s)) =2o5(s), (1)
dt dx

where U {x)is the double-well potential in the form

U(x)= —ax /2+x /4

teristic time scale which corresponds to the mean fre-
quency of the transition from one potential well to anoth-
er. This averaged time scale is known as the Kramers
rate [6]:

ro =—
[ ~

U"(0)
~

U"(a' ) ]' exp( bU/o —), (3)
—1

where U"(0) is the curvature of the well at the top of the
barrier, U"(a) is the curvature in the bottoms of the
wells, and AU is the barrier height.

For coupled stochastic bistable systems the SDE's have
the form

dx
(4a)=ax —x +g&(t)+G~(x,y),

=Py y'+ (2(t)+G,—(x,y),dt
(4b)

( g, (t)gj(t +s) ) =2o 5,"5(s} . (4c)

The last expression (4c) indicates that the noise sources

g, z(t) are statistically independent. The functions

G& z(x,y) define the nature of coupling. If, for instance,
G, (x,y)=G(y) and Gz(x, y)=0 or G&(x,y)=0 and
G2(x,y)=G(x) then we have the case of one-directional
coupling. Otherwise we will speak about mutual cou-
pling. Note that the case of one-directional coupling may
be considered as a bistable system excited by colored
noise [7].

In the following we are interested in the bifurcation
that changes the topology of the two-dimensional station-
ary probability density, the Kramers rates of the subsys-
tems, and the cross-spectral characteristics of the process
x (t),y (t).

One of the characteristics suitable to investigate the
synchronization phenomena is the coherence function
y(m), which is defined as

fS„r(co)i
y(to) =

S (ro)Sy(co)
(5)

where S «(ro} is the cross spectrum of the process
x (t),y(t) S„(co),S (co). are the power spectra of x (t) and

y(t), respectively. The coherence function y(co) changes
in the range 0 y(co) ~1. When y(to)=1 in some fre-
quency region then it testifies that stochastic processes
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x (t),y (t) are coherent in that frequency domain. In the
present study we use numerical simulation of SDE (4} [8]
and calculate the coherence function y(ro).

Drawing a parallel with coupled dynamical systems, it
seems to be interesting to investigate the Kramers rates
in the subsystems (4a) and (4b). We calculate the Kra-
mers rates in the subsystem numerically during simula-
tion of the SDE: we compute the mean transition time
from one potential well to another for each from the two
bistable subsystems.

Let us consider first the case of mutual coupling. The
Fokker-Planck equation (F PE) corresponding to the
SDE's (4}has the form

B,P(x,y, t)=o[B P+B P]

2.00—

1.50—

0.50—

—B„[(ax—x +Gi(x,y) )P)
—B~[(Py y+G—2(x,y))P] . (6)

0.00 0. 1 0 0.20 0.30 0.40 0.50

The stationary solution of the FPE (6) may be easily ob-
tained if the coefficients of drift and diffusion satisfy the
potential conditions [9):

BGi BG2
(7)

By Bx

If the condition (7) is fulfilled then the stationary solution
of the FPE (6) may be written in the potential form

P, (x,y)=C exp[ —4(x,y)],
where C is the normalization constant and the potential
4(x,y) is

4(x,y)= —rr
' jJ {[ax—x'+G, (x,y)]dx

+[Py —y +G2(x,y)]dyI . (9)

The bifurcation transitions in the stochastic system (4)
in this case are registered by the change of the number of
extrema of the stationary probability density P, (x,y).
Such changes take place in full agreement with the bifur-
cations of states of equilibrium of the system (4) in the ab-
sence of noise (cr =0) [2,10]. Let the functions G, z(x,y)
be

(10)

y /4+Dxy—] . (11)
The states of equilibrium (xo,yo) of the system (4),(10) in
the absence of noise are defined by the roots of equations

ax() —x () +D (y() —x() )=0,
Pyo

—yn+D (xo —
yo ) =0 .

The bifurcations occurring in such systems are well
known [4]. However, for further consideration we de-
scribe the bifurcation picture briefly. The bifurcation di-
agram of the system (4),(11) on the parameter plane
(a,D) is shown in Fig 1. The co.rresponding views of the

G, (x,y)= G2(x,y)=D(y——x) .

Such types of coupling are typical for real oscillating sys-
tems. Obviously, the functions Gi 2 defined by (11) satis-
fy the potential conditions. The parameter D is the cou-
pling strength or coupling parameter. The potential
4(x,y) is

4(x,y)= —o '[(a D)x /2 x /4+(P —D)y /2— —

FIG. 1. Bifurcation diagram for the case of mutual coupling.
The parameters P and o are fixed: {P,o ) =(1.0,0. 1).

two-dimensional stationary probability density P, (x,y)
are shown in Figs. 2(a)-2(d) as contour lines. Region 1

on the bifurcation diagram (Fig. 1) bounded by the lines
S, and S2 corresponds to the existence of nine states of
equilibrium. The corresponding view of P, (x,y) is shown
in Fig. 2(a). There are four nodes corresponding to the
maxima of P, (x,y) and four saddles corresponding to the
minima of P, (x,y). In the origin there is an([unstable
node which corresponds to a hole in the probability den-
sity in the neighborhood of the origin. The lines S, and
Sz on the bifurcation diagram Fig. 1 correspond to the
saddle-node bifurcation and have codimension equal to
unity. The point A in Fig. 1 has codimension equal to 2
and corresponds to the merging of the states of equilibri-
um. This bifurcation point corresponds to the peculiarity
of cusp type. The bifurcation line S& in Fig. 1 corre-
sponds to the merging of state of equilibrium near the
origin and is determined by the expression

a+p (13)

While crossing this line the state of equilibrium in the ori-
gin changes its stability from the unstable node to the
saddle. As a result, the hole in the origin neighborhood
disappears.

Let us consider now the evolution of the coherence
function y(ni) with the increase of the coupling parame-
ter D. The results of the coherence-function computa-
tions are shown in Fig. 3. When the parameter D in-
creases, the coherence function y(ro) increases too and
tends to unity in the low-frequency domain. This effect
demonstrates the growth of coherence degree between
the processes x (t) and y (t). It is important to note that
this effect takes place while the parameter D values are
located out of region 1 on the bifurcation diagram Fig. 1.
Thus crossing of the bifurcation lines S& and S2 leads to
the growth of coherence degree of the processes in the
subsystems. In the absence of bistability in subsystems
(a(0, p(0) such an effect is not observed [see, for ex-
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ample, Fig. 4, (a,P, tr )= ( —0.2, —0.2,0. 1)].
The above-mentioned effect of coherence-degree

growth may be easily explained. In region 1 (see Fig. 1)
the stationary probability density P, (x,y) has four maxi-
ma corresponding to the wells of the potential 4(x,y)
(11). In this case transitions between these four wells are
possible. As the noise sources in SDE's are statistically
independent, the processes in the subsystems are practi-
cally noncoherent. The saddle-node bifurcations corre-
sponding to the crossing of the bifurcation lines S, and

Sz lead to the merging of states of equilibrium and result
in the existence of only two potential wells in 4(x,y). In
such a case the system becomes more symmetrical and
transitions only between these two wells are possible. As
a result, the processes in the subsystems become more
coherent.

We consider the dependencies of the Kramers rates in
subsystems r, and r2 on the parameter of coupling D
while the parameters (a,P, t)T=(0. 5, 1.0,0. 1) are fixed.
The results are presented in Fig. 5. As it is seen from the
figure, Kramers rates in the subsystems draw closer to
one another when the parameter D is increased. Such
behavior of partial frequencies is typical for the
phenomenon of synchronization of coupled classical os-
cillating systems in the case of frequency locking. For
coupled system with noise, such effects may be called sto-
chastic synchronization.

Let us consider now the case of one-directional cou-
pling. We choose a coupling function G(y) in the sim-

plest linear form:
G)(&,y) = 6 (y) =Dy, G2(x,y) =0 . (14)

As mentioned above, the case of the one-directional cou-
pling may be considered as a colored-noise y (t) influence
on the bistable system determined by Eq. (4a). Statistical
properties of the colored noise y (t) are determined by Eq.
(4b).

The computer simulations of SDE's (4) with the cou-
pling function (14) showed that the results of computa-
tions of the coherence function for this case are in full
agreement with results for the case of mutual coupling.
As to the effect of the Kramers rates locking, then in the
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FIG. 5. Dependencies of the Kramers rates in the
subsystems on the couphng parameter D; parameters
(a,g, tr) =(0.5, 1.0,0. 1).
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case of one-directional coupling there is no point to speak
about it. In this case the increase of the coupling param-
eter D leads to an increase of the colored-noise y (t) inten-
sity and thus to the increase of the Kramers rate in the
bistable system (4a).

The present investigations show that coupled bistable
systems driven by independent noisy sources demonstrate
effects similar to synchronization phenomena in classical
oscillation systems. These phenomena manifest them-
selves in the locking Kramers rates of subsystems and in
the evolution of the coherence function, reflecting growth
of the coherence degree in subsystems when the coupling
parameter increases. It is shown that the behavior of the
coherence function is connected with the bifurcations of
the extrema of the stationary probability density.
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