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Relaxation dynamics of hot protons in a thermal bath of atomic hydrogen
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We present a rigorous kinetic theory formulation of the relaxation of hot protons (H+) in a bath of
thermal atomic hydrogen (H). We apply the (well-known) quantum-mechanical scattering theory to
(H+,H) collisions and calculate the differential elastic cross section as a function of collision energy and
scattering angle. This calculation includes the effects of both direct and charge-exchange scattering. We
then solve the time-dependent Boltzmann equation numerically for the H+ distribution function with an
initial 5-function distribution. We also consider two approximate models for the colhsion dynamics,
each based on the assumption that charge exchange dominates the relaxation and that no momentum is
transferred in a collision (the linear-trajectory approximation). The first model uses the Rapp-Francis [J.
Chem. Phys. 37, 2631 (1962)] energy-dependent cross section in the exact kernel which defines the
Boltzmann collision operator. The second model uses a hard-sphere cross section in an approximate col-
lision kernel. We compare the relaxation behavior calculated with the approximate formulations with

the exact solution. We also calculate the mobility of H+ in H and compare the exact and approximate
formulations. This study has applications to processes in astrophysics and aeronomy such as the non-
thermal escape of H from planetary atmospheres.

PACS number(s): 05.20.13d, 05.60.+w

I. IN1RODUCTION

The transport processes associated with an ensemble of
ions dilutely dispersed in a background of the parent
atomic gas, or some other neutral species, is an important
problem in chemistry and physics [1]with applications to
aeronomy, astrophysics, and other areas [2—5]. Here we
consider collisions between protons (H+ ) and atomic hy-
drogen (H) in the energy range from 0 to 10 eV. This is a
fundamental problem in collision physics and has been
investigated by many workers [6—9], [10]. In a (H+,H)
collision, H+ can be either directly scattered or convert-
ed to a H atom via the charge-exchange reaction

H++ H —+H2+ ~H+ H+

From quantum mechanics, it is in principle impossible to
distinguish between direct (H+,H) and charge-exchange
collisions if the nuclear spins have random polarizations.
However, since the angular distributions of the products
differ from direct scattering in comparison with charge-
exchange scattering, it is possible in practice to distin-
guish the two processes [11].

These charge-exchange collisions are important in the
activation of atomic hydrogen in the upper atmospheres
of Earth [12], Venus [13,14], and Saturn. At high alti-
tudes ( )500 km) in the earth's atmosphere, a hot proton
can be converted to a hot H atom in a charge-exchange
coBision with another H atom. !fthe energy of the prod-
uct H atom is greater than the escape energy, then this
process can signi6cantly contribute to the escape flux of
atomic hydrogen. There has been considerable research
done to date on the contribution of such charge-exchange
collisions to the escape flux [12—18]. In many of these
papers, a simple collision model for (H+,H) charge-
exchange collisions is employed which assumes that the

trajectory of the incoming proton is unperturbed in the
collision, that is, the proton trajectory is linear.
Equivalently, this linear-trajectory approximation (LTA)
assumes that the differential cross section is dominated by
contributions from large-impact-parameter collisions.
This is true for heavy-ion —neutral-atom systems [19]but
may not be valid for (H+,H) collisions at low energies
where quantum effects are expected to be important be-
cause of the small reduced mass of the system [10].

The collision kinematics, according to the linear-
trajectory approximation, are particularly simple. If c,
(c', ) and c2 (c2) are the velocities of H+ and H, respec-
tively, before (after) collision, then the velocities of H+
and H are interchanged so that cI=c2 and c2=c,.
Hodges and Breig [16] recently presented a detailed
analysis of these charge-exchange collisions and suggest-
ed that the linear-trajectory approximation may not be
valid for the physical conditions in the high-altitude re-
gion of the Earth's atmosphere, the exosphere [18],from
which most of the escaping hydrogen originates.

The present paper is directed towards a detailed
analysis of the relaxation of a nonequilibrium distribution
of protons in a bath of neutral hydrogen atoms. The ap-
plication to the calculation of the charge-exchange-
induced escape from a planetary atmosphere is deferred
to a different paper. %e outline the rigorous quantum-
mechanical calculation of the differential cross section in-
cluding both direct and charge-exchange contributions.
%e then solve the time-dependent Boltzmann equation
numerically. Our method of solution of the Boltzmann
equation involves the expansion of the distribution in the
eigenfunctions of the collision operator. The time-
dependent distribution function is then expressed as a
sum of exponential terms with each term characterized
by a different eigenvalue of the collision operator.

The present work provides an opportunity to study the
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way in which different kernels in the Boltzmann equation
affect the relaxation process. There have been several pa-
pers concerned with the construction of model kernels
and the way in which the detailed structure of the kernel
afFects relaxation and transport in different systems
[20—26]. The present calculations complement these
studies. Much of the work to date on the spectrum of the
collision operator in the Boltzmann equation has been re-
stricted to either the hard-sphere cross section [27] or
"Maxwell molecules, " that is, particles interacting with
the polarization potential (which varies as l /r, where r

is the ion —neutral-atom separation). The eigenvalues and
eigenfunctions for the latter model are well known [28].
We are therefore interested in how the spectrum of the
collision operator, and hence the relaxation to equilibri-
um, depends on the kernel and the differential cross sec-
tion.

In Sec. IIA, we describe the relaxation dynamics in
terms of the Boltzmann equation. The Boltzmann col-
lision operator is given as an integral operator with a
well-defined kernel. In Sec. II B we outline the quantum-
mechanical calculation of the differential cross section,
accounting for both direct and charge-exchange scatter-
ing contributions. In Sec. III we describe two approxi-
mate models for the relaxation dynamics. The first, re-
ferred to as LTA1, uses the Rapp-Francis energy-
dependent differential cross section in the Boltzmann col-
lision operator. The second, referred to as LTA2, uses a
model kernel with a hard-sphere differential cross section.
In Sec. IV we describe the method of solution of the
Boltzmann equation. Section V contains our results and
a discussion. We describe the calculation of the thermal
mobility in the Appendix. Throughout the paper we
denote differential cross sections by 0. and total cross sec-
tion by Q.

hydrogen atoms, denoted by a subscript 2. We assume
that the number density n j of protons is small compared
to the number density n 2 of hydrogen atoms, so that only
(H+,H) collisions need to be considered. Because
n2)&n&, the hydrogen atom velocity distribution is a
Maxwellian at the temperature T, that is f2(c)

3/2
—m2c /2kT=fz (c)=n2(m2/2mkT) i e ' . The Boltzmann

equation for the time evolution of the proton velocity dis-
tribution function is then given by

Bf,(c,, t) =J[fi]

=2m f dc2 f dysiny[f&(c', )f 2(c2)]

—f i(c»f2 (C2)]

X cr(g, y)g, (2)

where a(E,y) is the differential elastic cross section,
g =

I g I

= Ic, —c2I is the magnitude of the relative collision
velocity, E =pg /2 is the collision energy,
p=m &m2/(m &+m2), and y is the scattering angle in the
center-of-mass frame. The quantities c, and c2 are the
velocities before a collision and c& and c2 are the veloci-
ties after a collision. The Boltzrnann equation can be
rewritten in the form [27]

af, (c, ) = fdcK(c„c)f,(c)—Z(c, )f, (c,),
at

where the collision frequency Z(c 1 ) is given by

II. EXACT FORMULATION OF
RELAXATION DYNAMICS

A. Boltzmann equation
Z(c, )=f dcK(c„c)f& (c)/fP(c&), (4)

We consider a nonequilibrium system of protons,
denoted by a subscript 1, dilutely dispersed in a bath of

I

2~f, (c)f2 (c)
K(c&,c)= f dg sing csc —Ic—c, I

(2M2) f i (c)

m2 ( 1 —2M2)
X exp

2kT M2

and f &
(c) is a Maxwellian distribution. The kernel

K(c„c)is given by [29]

c (c—c, )+(4M2) 'Ic —c, I
csc ——4M, M2

'

Ic—col y mq Icxc
I

where Io is the modified Bessel function of order zero, M, =m, /(m, +m2), and M2=m2/(m, +m2). Because the
masses of H+ and H are nearly identical, we set m =m, =m2. Then M& =M2 =

—,
' and the kernel reduces to the simpler

expression

2kT ' 2
Ic—c] I

cot

fPl

kT ' 2
Icxc, Icot

K(c,, c)=2m f2 (c, ) f dysinycsc —Ic—c, I
exp ~—

0 2

x cT Ic ci I csc,+ Iox
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In general, K(c„c) depends only on the magnitudes of
the velocities cl and c, and p=cos8, where 8 is the angle
between c and c,. We can then rewrite K(c„c) as
K(c„c,iM ).

The proton distribution function can be written as an
expansion in Legendre polynomials,

f, (c,t)= g f', (c,t)Pt(P),
l=O

(7)

The time evolution of an isotropic, nonequilibrium distri-
bution of protons is given by the solution of the time-
dependent Boltzmann equation, Eq. (9), with the
differential cross section discussed in the next section.
We refer to this kernel Ko(c„c)as the exact kernel; note
that it depends in a complicated way on the detailed
structure of the differential cross section.

B. Exact difFerential cross section

For a detailed description of the quantum-mechanical
calculation of the differential scattering cross section for
(H+,H) collisions, we refer the reader to the literature
[10, 16, 30-32]. Here we merely summarize the relevant
results and outline the calculation of the differential cross
section.

At collision energies below approximately 10.2 eV, a
complete description of the scattering process requires in-
clusion of only two electronic states of the H2+ ion,
namely, the gerade (or 1S ) and ungerade (or 2P )

states. The difFerential cross section is given in terms of
the gerade and ungerade scattering amplitudes f „,
which are in turn functions of the quantum-mechanical
phase shifts 5f ". Here (a subscript or superscript) g
refers to the gerade state and u refers to the ungerade
states. The differential cross section o (E,y) can then be
written uniquely as the sum of two terms, one involving
f~+f„and one involving fg f„. Terms with —fs+f„
correspond to direct elastic scattering (without charge
transfer) and terms with f f„correspond to —scattering
with charge exchange [10,16,32]. Thus we can decom-
pose the difFerential cross section into direct (D) and
charge-exchange (CE) parts:

o(E,y)=ap(E, y)+ocE(E,y) .

The total cross section is given by

where P=cos8 and 8 is the polar angle between c and
some fixed axis in velocity space. We assume that the
proton velocity distribution function is isotropic so that
f, (c, t ) =f, (c, t ), and henceforth we drop the super-
script 0 on f,. We can then replace the kernel K(c„c)
by the isotropic kernel Ko(c i,c ), where

+1
Ko(c„c)—=2ir dp c K(c, ,c,p) . (g)—1

The p integration must be done numerically for all but
the simplest cross sections. The Boltzmann equation for
the isotropic distribution is then given by

Bfi(ci)
dc Kp(c„c)f, (c)—Z(c, )f, (c, ) .

Q(E) =2m. J dg sin(y)o (E,y)

=2m sin ~a E +OCE E

=Qp(E)+QCE(E) .

One can show [10,32] that the direct and charge-
exchange total cross sections are exactly equal to each
other, i.e., Qp(E}=QCE(E). The total momentum-
transfer cross section, Q (E), defined by

Q (E)=2m f dousing(1 co—sg)tr(E, y), (12)
0

is very sensitive to the angular dependence of the
difFerential cross section. For a hard-sphere differential
cross section, Q is simply equal to the total cross section
Q. If the difFerential cross section is sharply peaked in
the forward direction (near y=0) then Q can be much
less than Q. On the other hand, if the dim'erential cross
section is sharply peaked in the backward direction (near
y=ir) then Q can be as large as 2Q (this is shown ex-
plicitly in Sec. III}.

In our calculations we employed the gerade and
ungerade potentials previously calculated by Peek [33]
and Wind [34]. We used a cubic-spline routine to inter-
polate between their data points to ensure a smooth fit.
At large internuclear separation (r) 30), we used the
asymptotic formula V„(r)= 9/(4r ). Fo—r the gerade
potential at small r, we used the Bethe perturbation for-
mula, given by Vg(r)=1/r —1.5+g/3r . For the
ungerade potential, we used the results of Bates, Leds-
ham, and Stewart [35] to obtain an approximate formula
for r (0.2, that is, V„(r)= 1/r —0.066 875r .

At low energies (E~0.05 eV) we calculated all the
phase shifts by directly integrating the radial Schrodinger
equation using a Runge-Kutta-Gill method. At inter-
mediate energies (0.05&E&1 0 eV) we calculated the
low-order phase shifts (up to 1 =50) by direct integration
of the radial Schrodinger equation, and we calculated the
higher-order (1 & 50) phase shifts semiclassically with the
WKB approximation [36]. In the intermediate-energy
range, the two different methods agree within approxi-
mately 1% for the 1=50 gerade and ungerade phase
shifts. At the highest energies (E & 1.0 eV) we calculated
all of the phase shifts using the semiclassical formula, re-
taining as inany as 300 phase shifts.

%e compared our phase shifts and total cross sections
with those of Hunter and Kuriyan [30,31]. At high ener-
gies and large I, we find excellent agreement with their re-
sults, but for small I we find discrepancies of the order of
0.01m. in the lowest-order phase shifts, leading to a
disagreement of the order of a few percent in the low-
energy cross sections. Davis and Thorson [10], and
Hodges and Breig [16,37], find similar (small) discrepan-
cies between their calculated phase shifts and those re-
ported by Hunter and Kuriyan. Figure 1 shows our cal-
culated direct and charge-exchange differential scattering
cross sections as a function of the center-of-mass scatter-
ing angle g for two di6'erent energies. As anticipated, the
direct cross section is sharply peaked near y =0, whereas
the charge-exchange cross section is sharply peaked near
y=~. As the energy increases, the differential cross sec-
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tions oscillate more rapidly, and the peaks at y=0,
(direct) and y= ir (charge exchange) become sharper.

III. LINEAR TRAJECTORY APPROXIMATION

0 1

)t(ra 1)
2

The exact theory for the relaxation of hot H+ in a
background of H atoms is described in the preceding sec-
tion. It is also possible to derive several different approxi-
mate models of the relaxation based on the linear-
trajectory approximation discussed in the Introduction.
We now describe two such models, which we denote by
LTA1 and LTA2. Many of the geophysical models em-
ployed to estimate the escape flux of H+ from planetary
atmospheres have used the linear-trajectory approxima-
tion. This was questioned by Shizgal [17] and more re-
cently by Hodges and Breig [16]. The present work is
directed towards a more detailed study of this approxi-
mation.

LLJ

b

O=

o

Cl

2
X(rod)

A. Rapp-Francis model (LTA1)

Based on the linear-trajectory approximation, Rapp
and Francis [19] derived an energy-dependent total
charge-exchange cross section, which we denote by
QaF(E). At high collision energies the probability of
charge exchange as a function of impact parameter, P(b),
oscillates rapidly between 0 and 1 for 0 & b & b „and de-
cays exponentially with increasing b for b &b&,. Rapp
and Francis approximate P(b) by its average value of —,

'

for b b~„adnset P(b)=0 for all b)b, . The total
charge-exchange cross section is then given by

QRF = ,'&bi-
where, for (H+,H) collisions, b, is the solution to the
equation [19]

Qp

' 1/2 I 32 ~o
b

&
1+ exp

Ag
'

b, ao
(14)

(c)

)ht)l'&
=-

2
X(rad)

FIG. 1. Direct (D) and charge-exchange (CE) differential

cross sections for (H+,H) scattering, as a function of scattering
angle y, for two different collision energies E. In Fig. 2(a) CE is

a solid line and D is a dashed line. (a) D and CE at E= 10 eV.

(b) D at E=5.0eV. (c) CE at E=5.0eV.

Figure 2 shows the Rapp-Francis total charge-
exchange cross section as a function of energy, compared
with the exact total charge-exchange cross section. Here
the Rapp-Francis cross section is denoted by LTA1, and
the charge-exchange cross section is denoted by CE. The
Rapp-Francis cross section lies below the exact cross sec-
tion over the entire energy range, and approaches the ex-
act cross section as the energy increases. Rapp and
Francis estimated that their model cross section [for
(H+,H) collisions] is valid over the range
3X10 '&E&3X10 eV. Figure 3 shows that the rela-
tive error, defined by (QR„/Qcz —1), is approximately 2
for 10 ' &E & 10 eV, and increases rapidly with decreas-
ing energy below 10 ' eV.

The LTA1 approximate formulation consists of solving
the Boltzmann equation, Eq. (9), with the exact kernel,
Eqs. (6) and (8), and an approximate differential cross sec-
tion defined by o LrAi(E, y)=QRF(E)/4m. Thus the only
difference between the exact formulation and the LTA1
formulation is that different differential cross sections are
used. The LTA1 formulation replaces the exact
differential cross section with an isotropic cross section
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C3 I I ~ I III/

o

oO-
C3

CE

(16)

where the approximate kernel E is defined by

K(c,, c}=QHsfz (c,}lc—c)l

and the approximate collision frequency Z is given by

Imposing the linear-trajectory approximation, namely,
c1 c2 and c2=ci we obtain

J[f,]=f dcE(c„c)f,(c}—Z(c, )f, (c,),

O0-
CV

LTA2

FIG. 2. Total cross section as a function of collision energy
E. The total quantum-mechanical charge-exchange (CE) cross
section is equal to the total direct (D) cross section (dashed
line). The Rapp-Francis (LTA1) total charge-exchange cross
section (solid line) and the LTA2 total cross section (horizontal
solid line) are also shown.

given by the Rapp-Francis total charge-exchange cross
section (divided by 4n )

B. LTA2 Model

LLJ

E Oo-

C)
C)-

The LTA2 formulation consists of a model kernel
based on the linear-trajectory approximation, combined
with a hard-sphere total cross section (specifically,
crHs=QHs/4m', where QHs is independent of both angle
and energy). The collision term in the Boltzmann equa-
tion, J[f, ) in Eq. (2), becomes

J[fi]=QHs f dcz[f, (c', )fz (cz)—f&(c&)fz (cz)]g .

(15)
D
O
OQ

Z(c, )=QHs f dc fz (c)lc—
c~l . (18)

Bf,(c, ) =f "dcEp(c&,c)f&(c)—Z(c&)f&(c&) .
Bt p

(20}

Because the differentia cross section is a constant, the
angular integration in Eq. (19) is easily evaluated, with
the result that

(21)

where

2~Q„sc( Ic(+c l' —lc) —c l')
1"(c„c}=

3ci
(22)

The collision frequency Z(c, ) is then calculated numeri-
cally [in analogy with Eq. (4)] using

Z(c, ) =f dc Ep(c, ,c )f, (c)/f, (c, ) . (23)

Thus the LTA2 approximate formulation is given by
solving the Boltzmann equation, Eq. (20), with the kernel
and collision frequency given by Eqs. (21)—(23).

The linear-trajectory approximation is equivalent to al-
lowing only perfect backscattering, that is, g=m. Thus
we should be able to derive the LTA2 kernel from the ex-
act kernel, Eq. (6). We now show this explicitly. We
therefore define a model differential cross section cr, (g)
by

The Boltzmann equation thus has the same form as Eq.
(9), but now the approximate kernel K(c„c)[38] is much
simpler than the exact kernel, Eq. (6). As in Sec. I, we as-
sume the distribution function f, is isotropic, and rewrite
E(c„c)as E(c„c,p}, where p is the cosine of the angle
between c& and c. %'e then define an isotropic kernel
Ep(c„c)by

KD(e„e)—:2w I dpe~E(e„c,p), (19)—1

and the Boltzmann equation becomes

o', (y) = QHs 5(y —(m —e))
2nsin(n —e')

(24)

10 ' 'l0 ' 10 '
1 10

FIG. 3. Total momentum-transfer cross section as a function
of collision energy E. The exact total momentum-transfer cross
section (DPE) equals the sum of the direct (D) and charge-
exchange (CE) contributions. The LTA1 total momentum-
transfer cross section is equal to the LTA1 total cross section,
and the LTA2 total momentum-transfer cross section is twice
the LTA2 total cross section. (See Fig. 2.)

where e is a positive number between 0 and m., and QHs is
a hard-sphere total cross section. The differential cross
section o. incorporates the linear-trajectory approxima-
tion in the limit a~0+, since that corresponds to back-
ward scattering, i.e., c', =c2 and cz=c&. Integrating Eq.
(24) over the solid angle we find the total cross section is
QHs for any e in (0,n ). One can also verify by direct sub-
stitution of Eq. (24) into Eq. (12) that the total
momentum-transfer cross section is given by
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Q =[1—cos(~ —e)]QHs . (25)

K{c)c)=QHsf2 {cl)csc lc c—)I2

If e—+m. then o, (y) becomes a 5 function at y=0, and

Q ~0. On the other hand, if e~O+, o, (g) becomes a
5 function at y=m. , and Q ~2QHs. Thus Q can
range from 0 to 2Q. If we now substitute cr „(g) into Eq.
(6) then K(c„c)simplifies, yielding

hold in general for the momentum-transfer cross
sections. Because charge exchange is much more e6'ec-
tive in transferring momentum, the charge-exchange
momentum-transfer cross section is much larger than the
direct momentum-transfer cross section. In the LTA1
formulation, the difterential cross section is independent
of angle so that the total momentum-transfer cross sec-
tion equals the total cross section.

V. SOLUTION OF THE BOLTZMANN EQUATION

m 2 2Xexp —
~c

—ci~ cot
2kT ' 2

XIO ~cXc, scot
kT ' 2

(26)

Taking the limit e~O+ and using the fact that Io(0)=1,
we explicitly obtain Eq. (17).

Figure 3 shows the total momentum-transfer cross sec-
tion for all three formulations (exact, LTA1, LTA2), as
well as the exact charge-exchange and direct contribu-
tions to the total momentum-transfer cross section. Al-
though the total exact charge-exchange and direct cross
sections are equal to each other, this equality does not

If we define a dimensionless speed by x —=v /vo, where
vo=(2kT/m)', then the Boltzmann equation can be
rewritten in dimensionless form as

Bf)(x,r) = f dyKo(x y)fi(y r) Z{x)fi(x r)
a~ 0

(27)

Here ~ is a dimensionless time, defined by ~= At, where
A:4nn—2oo(2kT/nm)'~ and oo =—1 A . The dimen-
sionless distribution function f)(x, r) is normalized by

f 0 dx x f, (x,r) = 1 for all r ~ 0. The dimensionless ker-

nel Ko(x,y) is given explicitly by

2 +1 )/2 71 o(E,y)Ko(x,y) =y e " f dp y' f

dousing

csc (y/2)exp[ —
y cot (y/2)] ' Io(ay' cot(y/2)),—

1 0 0
(28)

where y—= (x +y —2xy)M), u=2xy(1 —
tu )' /y', and

E=kTy csc (g/2). The dimensionless collision frequen-
cy Z(x) is given by

Z(x)= f dy Ko(x,y)e i' /e (29)
0

f"dx y'")(x)P' '(x) =5„„. {36)

that the [p'")(x)] are orthogonal on the interval [0, ~ )

with unit weight function. The orthonormal set [p'"'(x) ]
then satisfies

We can rewrite Eq. (27) in the form

df ) (x, r)
dyA xy &y, z

7 0
(30)

If we then substitute Eq. (35) into Eq. (36), we obtain the
orthonormality condition for the Boltzmann equation
eigenfunctions, namely,

where

A(x,y)=—Ko(x,y) —Z(x)5(x —y) .

The corresponding eigenvalue problem is

dy A x,y '"'
y = —k„'"' y

(31)

(32)

Because A {x,y) is not symmetric in x and y, we consider
the associated eigenvalue problem defined by

dya x,y '"'
y ———X„'"'y, (33)

0

where

(38)

and

f dx g(x)g(A, ,x)g'"'(x)=0, n 1, &~Z(0) .
0

(39)

dxZ x '"'x ' 'x = {37)

2 xwith R (x)=—x e" .
In general [27], all eigenvalues below Z (0) are discrete,

and all eigenvalues above Z(0) are continuous. The con-
tinuum eigenfunctions satisfy

f dx R(x)g(A, ,x)g(A, ', x)=5(A, —A, ')

and

(x — )/2B(x,y)= —e'" ~ '~ A(x,y)

y)n)(x) —xex /2q(n)( )

(34)

(35)

The general solution to Eq. (27), subject to the initial con-
dition f, (x, r=O)=g(x), is then

f)( , )x=rg o„p'")(x)e " + f dl, a(A, )g(A, ,x)e
n=1

Since B (x,y) is symmetric in x and y, it is easy to show
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Qn XR XgX X
0

(41)

with generalized Fourier coefficients a„and a(A, ) given by
C

W;Wj

w(x;)w(x )

' 1/2

(46)

N

Z(x; )= g w,.KO(x, ,x, )/(xj'e ' ),
j=1

(45)

and define the matrix analog of Eq. (31), by replacing the
dirac 5 function by its discrete quadrature analog, name-

ly, w(x )/w. 5; . [The corresponding 8 matrix is given by
Eq. (34).) We then define a new matrix C; as

and

a(A, )=f dx R(x)g(x)g(A, ,x) . (42}
0

We solve the Boltzmann equation using the quadrature
discretization method (QDM). This method has been de-
scribed in detail in other papers [39], so we only give an
outline here. The basic idea of QDM is to construct a set
of orthogonal polynomials t P„(x)I for which the solution
of the Boltzmann equation converges rapidly. A Gauss-
ian qaudrature formula of the form

Nf"dx w(x)f(x)= g w;f(x, )
0 i=1

can also be defined, where the points x; are the roots of
PN(x) and the weights w; are calculated as described else-
where [39]. In kinetic theory, the standard choice of
basis functions has been the set of Laguerre polynomials,
orthogonal with weight function w(y) =e ", where

y =x is the reduced energy. Another choice is the set of
Hermite polynomials& which are orthogonal with weight
function w(x) =e " . These are not as useful because
they are defined on the interval (

—oo, ao ). Shizgal [40]
has shown that another choice, the set of "speed polyno-
mials, " often provides more rapid convergence of the
solutions of the Boltzmann equation. We therefore use
the speed polynomials, defined as the unique set of or-
thogonal polynomials P„(x) which satisfy the orthonor-
mality relation jo"P„(x)P (x)w(x)dx =5„, where

2 —xw(x) =x2e
In order to solve for the eigenvalues and eigenfunc-

tions, and then obtain the time-dependent solution using
Eqs. (41)-(43), we must first evaluate the kernel Ko at the
(speed) quadrature points. This involves two integrations
over {u and y. We first transform from y to u using

u =y cot (y/2). Then (4/y)u du = —dy sing csc (y/
2), and the kernel becomes

Ko(x y)=4y e " f d{My

X f du ue "~V(E,y)Io(au),
0

(44)

where o(E,X)=o(E,g)/oo, E=kT(y+u )/2, and
g=2 tan '(y' /u }. The {M integration is performed us-
ing Gaussian quadrature with 100 Legendre points. The
integral over u is evaluated using standard (fourth-order)
Simpson's rule with 500 equally spaced points.

We calculate the collision frequency using Gaussian
quadrature,

and we solve the matrix equation

N

y c 7f'"'= —
A, r/'"'

j=1

subject to
N

~{n)~{m)

j=1

(47)

(48)

The eigenfunctions of the collision operator are then
given by

X

Is (49)

VI. RESULTS AND DISCUSSION

The main objective of the present paper is to study the
relaxation dynamics of hot protons in a background of
neutral hydrogen atoms, and to investigate the validity of
the linear-trajectory approximation. The time-dependent
distribution, given by Eq. (50), is represented by a sum of
exponential terms, with each term characterized by an ei-
genvalue A,„of the linear collision operator. Since the
time scale for approach to equilibrium is approximately
1/A, „, the eigenvalues and equilibration time are related.
We first solve for the spectrum of the Boltzmann collision
operator with the exact quantum-mechanical cross sec-
tion. We then repeat this calculation for the direct and
charge-exchange cross sections separately, and compare
the spectra of both approximate collision operators,
LTA1 and LTA2, with the exact spectrum. We calculate
the time evolution of the H+ distribution function for
each case assuming an initial 5-function distribution. We
also compare the thermal mobility for the exact and ap-
proximate formulations.

Table I shows the first five nonzero eigenvalues corre-
sponding to the direct (D}, charge-exchange (CE), and
direct-plus-charge-exchange (DPE} differential scattering
cross sections in the kernel, Eq. (6}, in comparison with
the results for LTA1 and LTA2. With the exception of
LTA2, all of the lower-order eigenvalues shown in this
table have converged to approximately three significant
figures. Note that the first nonzero eigenvalue X2 is much
smaller for direct scattering than for charge-exchange
scattering; in fact, A,z /A, z

——0.285. Since the near-

The time-dependent solution to the Boltzmann equation
is given by the discrete analog of Eq. (40),

f, ( x, r)= g a„f{"'(x)e (50)
n=1

with the [a„]evaluated using quadrature in Eq. (41). We
solve the Boltzmann equation subject to the initial condi-
tion that g(x)=5(x —x') and choose x' at one of the
quadrature points, say, x . Then the discrete form for
g(x) is g(x„)=w(x, )/w~5„~ and the Fourier coefficients

X ~

are given exactly by a„=x.e 'P'"'.
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TABLE I. Eigenvalues of the Boltzmann collision operator A,„. Values shown are for % =100. The
0 2

eigenvalues and collision frequency Z(0) are in units of n2o. o(32m.kT/m
&

)' ', where o 0= 1 A .

D
CE
DPE
LTA1
LTA2

8.65
30.34
38.98
6.78

38.98

A3

10.42
32.21
42.64

8.52
38.98

11.78
32.91
44.86

8.86
38.99

12.70
33.29
46.43

8.90
39.01

13.51
33.51
47.53

8.91
39.05

15.66
33.86
50.81
9.07

39.58

17.40
34.05
53.27
10.26
42.03

Z(0)

34.35
34.08
68.42

8.91
38.98

equilibrium relaxation time of the H+ distribution func-
tion is inversely proportional to A,2, charge exchange is
indeed much more effective in slowing down hot protons
than direct scattering. Note that the linear-trajectory ap-
proximation implicitly assumes that there is no direct
scattering so that the ratio A,z/A, z is efFectively zero in

the LTA1 and LTA2 approximation.
The LTA1 eigenvalues are much smaller than the cor-

responding exact (DPE) eigenvalues —the LTA1 formu-
lation underestimates the rate of relaxation. This result
may seem surprising since the Rapp-Francis model cross
section was derived under the assumption that no
momentum is transferred during the charge-exchange
process. This would naturally lead to a higher rate than
an exact calculation would give, since hot protons would
thermalize in a single collision. However, in order to cal-
culate a relaxation rate based on a total cross section, we
have used the hard-sphere differential cross section given

by a Lz~, (E,y) =QRF(E)/4n. . Thus the (unknown) angu-

lar dependence of the exact differential cross section is

crudely approximated by an isotropic differential cross
section. Since the actual differential charge exchange
cross section is sharply peaked near g=m, this gives a
very poor approximation to the relaxation rate.

The collision frequency at zero speed, Z(0}, deter-
mines the boundary between the discrete and continuous
portions of the spectrum of the collision operator J[f, ].
All eigenvalues below Z(0} belong to the discrete spec-
trum, and "eigenvalues" above Z(0) belong to the con-
tinuum. Z(0) is shown in the last column of Table I.
Since the differential cross section QHs/4nis an adju. st-
able parameter in the LTA2 formulation, we have chosen
QHs/4nso that the. first nonzero eigenvalue of the LTA2
collision operator equals the first nonzero eigenvalue of
the exact collision operator, that is, A, z =lz" . The
total cross section then has the numerical value

QHs =244 A . (Note that if we multiply the differential
cross section by a constant then the collision frequency
and eigenvalues scale correspondingly. If we normalize
the eigenvalues by Z (0) then the spectrum of normalized
eigenvalues is unchanged by this rescaling. ) In the exact
and LTA1 formulations, Z(0) clearly exceeds the first
few nonzero eigenvalues so that these eigenvalues belong
to the discrete portion of the spectrum (the discretum).
However, in the LTA2 formulation, we find that Z(0)
(calculated with up to 100 quadrature points} equals A, 2 to
seven-digit accuracy. If the converged A, 2 equals the con-
verged Z (0), then k2 forms the boundary between the
discretum and continuum, and there are no positive ei-

gen values in the discretum. On the other hand, if

TABLE II. Convergence of eigenvalues A.„: Quantum-
mechanical cross section (DPE). The eigenvalues are in units of

0
neo. o(32mkT/m& )', where o0=1 A . The collision frequency
Z (0) in these units is 68.43.

k3 ~4 ~S ~6 ~10 ~ I S

44.30
44.65
44.77
44.82
44.86

20 38.91 45.67 46.18 72.70
40 38.94 46.14 47.04 53.93
60 38.97 46.31 47.33 52.26
80 38.98 46.38 47.45 52.67

100 38.98 46.43 47.53 53.27

51.20
49.18
50.20
50.58
50.81

A2 (Z(0) then there is at least one positive eigenvalue in

the discretum. We have not been able to definitively set-
tle this question, but speculate that Z (0) does indeed
equal A,2. If there are no discrete eigenvalues, then the
final approach to equilibrium may not be exponential
[41].

Whether or not a particular eigenvalue belongs to the
discretum or the continuum can often be determined
from the convergence of that eigenvalue versus N, the
number of quadrature points. Table II shows the conver-
gence of the eigenvalues obtained with the quantum-
mechanical (exact) differential cross section. As N in-

creases, the lower eigenvalues listed, which are less than
Z (0) and lie in the discreturn, appear to be converged by
N =60. Table III shows the convergence of the eigenval-
ues of the Boltzmann collision operator with the LTA2
approximation. As N increases, all of the computed
nonzero eigenvalues appear to approach (from above} the
collision number, A,z=Z(0)=38.98. This suggests that
all the LTA2 eigenvalues belong to the continuum since
they are all greater than or equal to Z (0).

Figure 4 shows the computed eigenfunctions x P'"' (for
n =2, 4, 6} as a function of reduced speed for the exact
(DPE) and LTA1 formulations. The DPE and LTA1
eigenfunctions are smooth functions of x and in each case
the nth eigenfunction has n nodes (including the origin).
All of the eigenfunctions rapidly approach zero as x in-
creases. The computed LTA2 eigenfunctions (not shown)
are sharply peaked about x=0, then quickly decay to
zero. Although we have confidence in the basic features
of the LTA2 eigenfunctions, their accuracy is limited by
the small number of points near x =0. Shizgal [42] has
investigated the continuum eigenfunctions for the hard-
sphere collision operator using a quadrature procedure
which places a high concentration of points near the ori-
gin. He finds that the continuum eigenfunctions oscillate
rapidly about zero but do not approach zero as x in-
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TABLE III. Convergence of approximate (LTA2) eigenval-
ues A,„. The eigenvalues are in units of nqoo(32ekT/m~)'

0
where harp= 1 A . The collision frequency Z(0) =38.98 in these
units.

20
40
60
80

100

A3

39.04 39.40
38.99 39.03
38.98 39.00
38.98 38.99
38.98 38.98

40.49
39.17
39.04
39.00
38.99

Ar IP

42.83 46.84 79.76
39.49 40.08 47.34
39.13 39.31 41.68
39.04 39.12 40.14
39.01 39.05 39.58

141.33
71.14
51.44
44.73
42.03

1.5—

0.5

0.5

I I I I
I

I I I I
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I I I I
I

I I I I
I
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creases in contrast with our results for the LTA2 model.
Figure 5 shows the time evolution of the H+ distribu-

tion function for an initial 5-function distribution with an

energy of 0.646 eV (this corresponds to x =5.01 in the

figure). This solution, expressed by Eq. (50), was obtained

using the Boltzmann equation and the exact (DPE)
differentia cross section. Notice that the distribution
function is bimodal with peaks at the initial and thermal

energies. Hot protons are quickly thermalized by charge
exchange. Figure 6 sho~s the time evolution of the H+

distribution function obtained using the LTA1 formula-

tion. The initial condition is the same as in Fig. 5. The
exact differential cross section is sharply peaked near

0 ~ ll~ I I I

FIG. 5. Time evolution of the H+ distribution function for
an initial 5 function at 0.646 eV. Results were obtained from
the Boltzmann equation with the exact (DPE) differential cross
section. The time t is in units of n20'p(327TkT/m)', where

o 2co= 1 A . The curves correspond to t=0.01 (solid line), 002
(dotted line), 0.04 (dashed line), and 1.0 (solid line).

2 I

y=rr, making it effective at thermalizing high-energy
protons. The LTA1 differential cross section, on the oth-
er hand, is independent of angle, and thus exhibits very
different relaxation behavior from that shown in Fig. 5.
Instead of the direct transfer of energy from initial to
thermal energies, in the LTA1 formulation energy
transfers occurs gradually. Figure 7 shows the time evo-
lution of the same initial distribution, now calculated us-

ing the LTA2 formulation with QHs =244 A . The relax-
ation behavior is similar to that of Fig. 5.

Figure 8 shows the time evolution of E(r)/E, h, ,I, the
ratio of the average proton energy at time t to the average
proton energy at the bath temperature. The five curves
shown correspond to direct (D) scattering, charge-
exchange (CE) scattering, direct-plus-charge-exchange
(DPE) scattering, and the LTA1 and LTA2 formulations.

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

(b)
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/
/

/
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0.5
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I I I I I I I I I I I I I I I I I I I I I I I I

0
0

0 0.5 1 1.5 2 2.5

Fl&. 4. Eigenfunctions x~g'"' plotted as a function of re-
duced speed: solid line (n =2), dotted line (n =4), dashed line
(n =6). (a) Exact (DPE). (b) LTAl.

FIG. 6. Time evolution of an initial 5 function at 0.646 eV
for the approximate LTA1 formulation. The four curves corre-
spond to t=0.04 (long-dashed line), 0.10 (short-dashed line),
0.20 (dotted line), and 0.50 (solid line). The units of time are
de5ned in Fig. 5.
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TABLE IV. Relaxation times vs initial proton
energy~.

Times
are in units of [n2tro(32m kT/m, )'~ ] ', where tro= l A .

EO=0.646 eV EO=1.27 eV

0.6

0.2

D
CE
DPE
LTA1
LTA2

0.062
0.022
0.016
0.083
0.006

0.336
0.105
0.080
0.498
0.029

0.046
0.030
0.012
0.061
0.004

0.328
0.101
0.077
0.516
0.024

X

FIG. 7. Time evolution of an initial 5 function at 0.646 eV

for the approximate Boltzmann equation formulation LTA2.
The times are the same as in Fig. 5. The t =0.04 (dashed) and
t = 1.0 (solid) curves are nearly indistinguishable on this scale.

In each case the initial proton distribution is a ti function
at 0.646 eV. As expected, D and LTA1 overestimate the
relaxation time since they either ignore or crudely ap-
proximate the charge-exchange scattering. On the other
hand, CE and LTA2 give much closer approximations to
the exact (DPE) relaxation behavior. In order to quantify
these differences we define two relaxation times r, z, and
~», such that ~, &, is the time it takes for the energy ratio
to decay to 1/e of its initial value, the r, , is the time it
takes for the energy ratio to decay to 1.1. Table IV
shows these relaxation times as a function of initial ener-

gy (the initial distribution in each case is a 5 function).
The rate of approach to equilibrium decreases in the or-
der LTA2, DPE, CE, D, LTA1. Note that the shorter
time scale ~&&, is strongly dependent on the initial energy,
whereas ~&, is nearly independent of initial energy.

In summary, we have described a kinetic theory for the

relaxation of a population of hot protons in a bath of
thermal atomic hydrogen. We solved the Boltzmann
equation numerically for several initial 5-function energy
distributions. We also used two approximate calculations
of the relaxation dynamics, denoted by LTA1 and LTA2.
Both approximate formulations are based on the linear-
trajectory approximation, which states that charge-
exchange collisions occur without momentum transfer.
Of the two approximate models LTA1 and LTA2, the
LTA2 model leads to a much better prediction of the re-
laxation behavior. The LTA1 model uses a poor approxi-
mation to the angular dependence of the differential cross
section but models the collision energy dependence
reasonably well. The LTA2 model uses a poor approxi-
mation to the collision energy dependence of the
differential cross section, but effectively accounts for the
angular dependence. However, the LTA2 formulation, as
we show in the Appendix, cannot simultaneously repro-
duce the correct relaxation behavior and proton mobility.
If the LTA2 cross section is chosen so that k
then the mobility is approximately a factor of 0.4 too
smaH.
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APPENDIX: CALCULATION OF THERMAL MOBILITY

0
I I I I I I I

005 01 0 15 OP
The mobility g of H+ in a bath of H, is defined as pro-

ton drift velocity divided by the electric-field strength e,
r)=u/e. For low electric-field strengths [1,43], the mo-

bility is given by

FIG. 8. Time evolution of the average energy per proton
[E(t)] divided by the average energy per proton at the bath
temperature (E,h„,l) for an initial 5-function distribution at
0.646 eV. Ordered from left to right, the curves are LTA2 (dot-
dashed line), DPE (solid line), CE (dotted line), D (short-dashed
line), and LTA1 (long-dashed line). The units of time t are
defined in Fig. 5.

3&me

8(mkT)' n2Q
(Al)

The quantity Q is an energy-weighted average
momentum-transfer cross section, defined by
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I

LTA1
2QHs

vi=ri/& = (A3)

exact DPE

where

3V'PreB-:
16n t QHs(mkT )1/2

LTA2

500 1500

Q—: f dEE expI —E/kTQ (E)j,
2(kT)'

and e is the electronic charge.
We define a dimensionless mobility vi by

(A2)

FIG. 9. Dimensionless mobility g as a function of hydrogen-

bath temperature (T). The dimensionless LTA2 mobility is

equal to 1 at all temperatures. The mobility ri is given by Bg,
where B=3e&n—/16n~g„s(mkT)'

and QHs is the total LTA2 cross section, fixed at 244 A .
With this normalization, t)=1 in the LTA2 formulation.
Figure 9 shows the normalized mobility calculated in the
exact, LTA1, and LTA2 formulations versus hydrogen-
bath temperature. As one can see from the figure, the
LTA1 and LTA2 approximations do not agree with the
exact mobility at any temperature. The LTA1 approxi-
mation consistently overestimates the mobility by a factor
of approximately 4, whereas the LTA2 approximation
consistently underestimates the mobility by a factor of ap-
proximately 0.4. The dimensionless LTA2 mobility is in-
dependent of temperature; the LTA mobility has a weak
temperature dependence similar to that of the exact mo-
bility. This is expected, since the LTA1 differential cross
section mimics the energy dependence of the exact
differential cross section, whereas the LTA2 difFerential
cross section is independent of energy.
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