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Convergence accelerators in the computation of molecular integrals
over Slater-type basis functions in the two-range one-center expansion method
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The so-called nonlinear transformations may be of substantial help in many practical problems includ-

ing the so-called multicenter integrals. In this work Wynn's epsilon algorithm and the Levin's u trans-

formation have been used to improve the convergence of the series representation of three-center two-

electron integrals obtained via the so-called two-range one-center expansion method.

PACS number(s): 02.70.—c, 31.10.+z, 31.15.+q

I. INTRODUCTION

It is well known that except for a few simple systems
(e.g., hydrogenlike atoms, hydrogen molecular ions, etc.),
the Schrodinger equation cannot be fully solved, that is to
say, it is not possible to write its eigenfunctions in an ex-
plicit closed analytical form. However, some early works
about such an equation revealed some important intrinsic
properties regarding the eigenfunctions. Indeed, it has
been found that such eigenfunctions always satisfy the
following boundary conditions: the cusp condition [1] at
the origin (i.e., nuclei) and an exponential decrease at
infinity [2,3]. Thus, from a mathematical point of view,
functions exhibiting the same singularities, among which
we find Slater-type functions (STF's), which will be
defined later, are expected to fit the exact eigenfunctions
better than any other kind of functional. However, these
functions have not been used extensively in the quantum
chemistry area, though they constitute the most natural
and suitable basis of functions in the linear combination
of atomic orbitals and molecular orbitals [4] approach,
from the self-consistent-field (SCF) as well as from
density-functional theory [5] standpoint. Indeed, within
the framework of these approaches, we face the notorious
problem of the evaluation of multicenter integrals over
STF's which raise many cumbersome mathematical and
computational difficulties. This is particularly due to the
absence of a simple multiplication theorem involving two
STF s located at two distinct points. Hence, in the begin-

ning of the computational era, it became of crucial irn-

portance to find another strategy in order to circumvent
the limitations of the computational tools. This has been
done by Boys [6], who introduced a new kind of basis set
function called Gaussian-type functions (GTF's). Nowa-

days, calculations with such functions become prepon-
derant in quantum chemistry in spite of their inadequate
representation of electronic density close to the nuclei
and at a large distance therefrom since such functions do
not satisfy the above criteria. This fact is largely due to
the ease of the mathematical expressions of multicenter
integrals since GTF s obey a multiplication theorem al-

lowing to express a product of two GTF's centered on
two points A and B as a GTF located on a point C lying
on the segment joining A to B, the position of which is

determined in a quite easy way.
However, quantum chemistry followed the boom in

computer power with considerable efFort directed at pro-
gramming multicenter integrals for STF's. Not only do
these programs require very powerful machines (e.g.,
parallel architectures), but also the design of new
mathematical approaches appropriate to such basis sets.
These currently fall into two categories, those based on
the so-called one-center expansion methods [7-32] and
those founded on the use of integral transforms [33—47].

The most promising approaches using the integral
transform are the Gaussian integral transform [36-38]
proposed by Shavitt and Karplus [37,38] and the Fourier
integral transform of the convolution product of two par-
ticular STF's called 8 functions [48—50]. The usefulness
of the latter has been pointed out by Bonham, Peacher,
and Cos [33,34], but its development and application are
largely indebted to Steinborn et al. [43-47,51—57].

With regard to the one-center expansion methods, they
consist in expanding an STF or a product of two STF's
centered on various nuclei about a chosen fixed center by
means of some fundamental properties of Hilbert spaces.
These methods are certainly the most accessible both
theoretically and formally in their application.

II. BASIC IDEAS AND GENERAL PROPERTIES
OF THE ONE-CENTER EXPANSION

Before discussing the numerical aspects of the two-

range one-center expansion method, it would be advisable
to recall some of its fundamental and general features,

Let [p„]„,2 be a sequence in the Hilbert space &.
Such a sequence is called complete if the only element of
% which is orthogonal to every y„ is the null element,

that is,

(f,y„)=0 f=6 .

Here 6 stands for the zero element of ff.
If [y„]„,z is assumed to be a complete sequence

in some Hilbert space &, then every function in & may
be approximated to any desired degree of accuracy by the
expansion

f=&a„q„, (2)
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where [a„I„,2 represents a sequence of coefficients
(usually scalars). In other words, when Iy„ I„=,2 is
complete but not orthogonal, the most we can say about
f is that for a given e, there is some finite sequence of
coefficients [a„J„,z such that

f g—a„g„(e. (3)

If a new e is given, the whole set of coeScients may
have to be changed. Conversely, when Iqr„)„,z is a
complete and orthogonal sequence, the following lemma
holds.

Lemma 2.1 (best approximation) F.or any f in & (i)

~~f g„tt„—p„~~ is smallest when a„has the value
C„=(f,y„) and (ii) g „fC„/ &

/ff f /
.

The quantities C„are called the Fourier coef6cients of
f with respect to jy„ I„,2 . Moreover, f can have at
most one such expansion, that is to say, that f determines
its Fourier coefficients uniquely by the formula C„
=(f,q „).

From the preceding lemma it may readily be observed
that the use of a complete and orthogonal sequence of
functions is computationally much more advantageous
than a nonorthogonal one. In addition, such a lemma
may be considered as the starting point of any one-center
expansion method that may be developed. Indeed, let

f~J (r) be an element of the exponential-type function
(ETF) set that is defined in its most general case as fol-
lows:

fN t. (r)=p~, t. (g, r)e "~f(()„P,), (4)

XP' (cos8, )e

Here PLI
~ represents the Legendre associated functions of

Lth degree and ~M~ th order.
Perhaps the best known class of complete and orthogo-

nal functions that has been used in extenso by physicists
in classical as well as in quantum mechanics is the surface
spherical harmonics [59]. Indeed, many addition
theorems involve such functions (e.g., Laplace-Neumann
expansion of the Coulomb repulsion operator [60], the
Gegenbauer addition theorem [61], a special case of

I

where g is a positive real number, usually called the
Slater exponent, and PN I a polynomial of the variable r.
With regard to the term YL, it denotes the surface spher-
ical harmonic of Lth degree and of Mth order which, ac-
cording to the phase convention of Condon and Shortley
[58], may be defined as

1/2
(2L+1) « —I~I)'

4~ (L +(~l))

FIG. 1. Coordinate system.

which is the addition theorem of the Yukawa potential,
etc.).

Besides, in an early work of Coolidge [62] such func-
tions have also been used to carry out the evaluation of
multicenter integrals involved in the quantum cheinical
treatment of the water molecule. In order to illustrate
this, let us consider the ETF f~L(r R), centered —on
some point of the three-dimensional Euclidean space 83
defined by the vector R. Therefore, in order to separate
the variables r and R, the function f~t is expanded in
terms of the surface spherical harmonics as follows:

+ oof (r R)—g g A N, L,M(R) +PI(g P )
1=0m = —l

(6)

Furthermore, it should be emphasized that, although
the mathematical background of such an expansion
remains the same for all the approaches based on the use
of surface spherical harmonics, its originality rests in the
way it is used to evaluate the above Fourier coefficients
[8,10-12,17].

Derivation of the two-range one-center expansion

Now let us consider a special STF, namely, an unnor-
malized Slater orbital, centered on an arbitrary point A
of C3, which may explicitly be defined as follows (cf. Fig.
1).

where the Fourier coefficients A&
'~ ~ are determined by

the following relationship:

(7)

XQ,L(gR) XN, L, [pr ro~)]
N —1 ~~' oA M

(8)

=(~r —rozl" 'e '")[lr—roAI &L, (~,—,„,q,—,„)]
wherelV=1, 2, . . . , L =0, 1, . . . , N —1, and —L ~M~L.
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Here 0 is assumed to be the origin of the reference system but it may also be any point of @3. In this equation, the
second term enclosed between brackets may readily be translated using the well-known addition theorem of the solid
spherical harmonics as follows [see, for instance, Ref. [14],Eq. (2.19)]:

&L (r roA) = Ir rQAI

(21'+ 1)!![2(L —I')+ 1]!!

~here the double factorials are determined by the rela-
tionship

(21+1)!!=1X3XSX7X X(21+1)=
2'1!

With regard to the first term involved in Eq. ((1), its ex-

pansion is carried out in two steps. First, let us recall a
particular case of the Gegenbauer addition theorem [61]
of the modified Bessel functions that states

e I+1/2 )P & 2.+1/2 )P &
oA + I ( ) IC ( )

Ir —ro Al, =o ~p, v'p.
XPz [cost( r, ro A) ],

where I and E denote the modified Bessel functions of
the second kind [63] while P2 stands for the Legendre po-

lynomials of the A,th degree. The symbols p( and p)
refer to min(r, I ro A I ) and max( r, I ro A I ), respectively.

Now, the second step consists in taking the (N —L }th
derivative with respect to g of both sides of the preceding
equation. This yields

OA
—glr —

g

dg Ir roAI

It is clear that since Eq. (9) represents a finite combina-
tion of solid spherical harmonics with well-behaved
coefficients (i.e., not too large), the numerical behavior
(e.g. , rate of convergence, numerical stability, etc.) of the
two-range one-center expansion under study is therefore
highly dependent of the two-range series given by Eq.
(12). Hence, for our convergence analysis, it will be
suScient to restrict our study to the expansion of the
pure radial term (i.e., the unnormalized scalar Slater or-
bital), that is,

I N L 1
—fir —roAl

1 rgAi e
' N —L —g[g —

g OA

=( —1) . (13)
dg Ir roAI

Now let us establish the best computationally suitable
representation of the two-range one-center expansion of
the pure radial term given by Eq. (12). For such a pur-
pose, we recall that instead of using the closed analytical
form of the modified Bessel functions of the second kind

I~+1/2 and K&+1/2, it has been found more convenient

[64] to use their integral representations [65]:
' k+1/2

1
2.+!/2(PP & )

d

dg

( 1)N L IN
——L —1 ~ QA

A. +1/2 ~p& 2, + 1/2 rp&

2.=O V'P. gP,

X t2 —1
~ ' t A)0

—
1

k+ 1/2

+L+!/2( SP & }=
(14)

XP„[cos/(r, roA)] . (12) X i —t2 ~ gP dt
1

Thus, combining Eqs. (9) and (12) leads one to the analyt-
ical expression describing the translation of an unnormal-
ized Slater orbital from point A to O.

Subsequently inserting the product of the previous in-

tegral representations into Eq. (12) and using the Leibniz
rule of derivation yields

N —L —
pl r —10A

( 1)N, d e

+ co

=( —1) g (21!,+ I }—,
A, =O k! 2

'
/! +1/2

1 Pp&

A, ! 2

A, + 1/2

N —L + —J
X

k=0

(2A, + 1)!
(2A, +1—k)!

„( xp, —yp, )
Ã —L —k

fX (1—x ) (y —1)"
—1

Xe '
dy dx P~[cos/(r, rQA)] .(+xp —yp )g (15)
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For computational work, it should be noted that the
evaluation of the double integral involved in the above
expression is carried out numerically [64] by means of
some Gauss quadrature routines which are readily avail-
able from a wide variety of mathematical libraries
[66—68].

III. SOME CONVERGENCE ASPECTS
OF THE TWO-RANGE ONE-CENTER EXPANSION

In an early work by Lowdin [69], it has been pointed
out that the convergence of the two-range one-center ex-
pansion under consideration is rather poor near and at
the cusp. The aim of the present section is to generalize
the Lowdin's formula [70] to arbitrary orbitals. For such
a purpose, let us rewrite Eq. (12):

N —I- —
gi r —

g OA

dg lr —ro„l
= g (2A, +1)/12 (gp„gp, )

XP2 [cosd(r, ro A) ), (16)

where the function A z is defined by the following re-
lationship:

gN L—
dg

I
2. +1 /2((P( ) +1.+1/2(fp &}

A.
(17)

In the following, for the sake of simplicity but without
loss of generality, point A is assumed to lie on the Z axis.
Therefore, the angle Z(r, roA) is no more than the polar
angle 8 (cf. Fig. 1). Now, taking the norm of both sides
of Eq. (16) in the Hilbert space L2([0,m. )X[0,21r]) and
making use of the orthogonality condition of the Legen-
dre polynomials yields

(lr lN L —1 ~— oA llr r lN L —1 ~— oA~)

2(N — —1)e o si dg + 4
8=0 y=O

A, =O
(18)

From the above equation, it is clear that the term enclosed between brackets is nothing but a scalar Slater orbital the
quantum parameters of which are [2(N L) 1,0,—0] an—d hence may readily be expanded following the same scheme as
that given by Eq. (16). This yields

+ 00

lr —roAl ' "e "= y (2A, +1}/I ' ' '(2', 2(p )Pg(cosa) .
A, =O

(19)

Now, putting this least equation into Eq. (18) and taking once again the orthogonality condition of the Legendre poly-
nomials into account, one obtains

( lr —roAl 'e " llr —roAl 'e " )e =41TA ' ' '(2'(, 2(p& ) . (20)

In order to discuss the rate of convergence of the two-range expansion given by Eq. (16), we recall that, from practi-
cal standpoint, only a finite number of terms is used in any numerical evaluation involving series expansions. For this
purpose, let us evaluate the following difFerence:

E„(g,roA, r)= lr —roAl 'e "—g (2K+1)A2 (gp(, gp&}P&(cos8)
A, =O

=4m g (2/I, +1)l~g L(gp„gp )I'
A, =p+1
+ oo

N —L=4m g

(2K+1)ldll

(gp(, gp& )l
—4m. g (2k+1)l Aq (gp, gp )l

=41rAo"" " '(2&p, 2(p, ) —41r g (2~+1)la& (gp, gp, )l'
A. =O

(21)

Clearly this last equation in fact represents the mean-
square error of the two-range expansion of an unnormal-
ized Slater orbital over the surface spherical harmonics
basis set, when such an expansion is truncated after p
terms (see Fig. 8 in Ref. [69]).

IV. IMPROVING THE CONVERGENCE
OF THE TWO-RANGE ONE-CENTER EXPANSION

According to Fig. 8 of Ref. [69], it may readily be seen
that the rate of convergence of the two-range one-center

expansion is not satisfactory near the cusp. Therefore,
when such a method is used to carry out multicenter in-
tegrals, it is expected that many terms of the series given
by Eq. (16) have to be computed in order to achieve an
acceptable accuracy. In other words, the leading pack-
ages will certainly be very time consuming. Fortunately,
in a previous work [71], we have shown that the use of
some nonlinear accelerating algorithm [72—75] may be of
substantial help in the improvement of the rate of conver-
gence of the series describing multicenter integ rais.
Among the most powerful convergence accelerators, spe-
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cialists of the field usually quote the so-called Levin's
transformations and Wynn's epsilon algorithm.

A. Shanks transformation and lynn's epsilon algorithm

After some straightforward linear combinations of the
equations involved in the above system, one obtains the
limit S of the sequence under consideration by means of
Cramer's rule. This yields

The first and certainly the oldest nonlinear conver-
gence accelerating transformation, which is a special case
of the generalized epsilon algorithm, is the well known
Aitken b, process [76,77]. Such an algorithm consist in
transforming a convergent sequence [S„j„0, , the
limit of which is S, into a new sequence denoted by
[e,(S„)j „o, that is determined by the following rela-
tionship:

S =e~(S„)=

Sn+1

ES„+,

AS +k 1 hS +k
1 1

AS„hS„+1

Sn+k

~S.+k

~Sn +2k —1

4S„+

2
Sn Sn +1 Sn

e,(S„)=,n =0, 1,2, . . . . (22)
n+2 n+1 n

ESn+ k 1 ASn+ k
- ASn +2k 1

(29)
Since we are dealing with infinite series of the form

g+ "oc„, the terms S„ofthe sequence involved in all the
equations of the present section correspond in fact to the
partial sums of such series, that is to say, S„=g„" Oc„.
An important result regarding Aitken's 6 process,
which may readily be proved, is that if the sequence
[S„j„o, satisfies the following linear difference equa-
tion:

ao(S„—S)+a
& (S„+,—S)=0,

where ao+a &%0. Therefore

e, (S„)=S, Vn )E .

(23)

(24)

k

g a, (S„+;—S)=0, p=n, n+1, . . . , n+k
i =0

(25)

where as for Aitken's process g," Oa;%0. Thus for any
n )E, the transformation of order k, which is usually re-
ferred to as el, (S„),equals S:

eI, (S„)=S, Vn &X . (26)

In the following, for the sake of simplicity but without
any loss of generality, we assume that

a;=1. (27)

Now taking into account this last equation, the identity
given by Eq. (25) may be written in a more explicit
fashion as follows:

The generalization of Aitken's 6 process is due to
Shanks [72,78 —80] and has led to the so-called Shanks
transformation. Indeed, let [S„j„=0, be a convergent
sequence, whose limit is S and which satisfies the follow-

ing linear difference equation:

e, (S„)=

Sn Sn+1

ES„AS„+1
1 1

b,S„b,S„+,
S„AS„+1—Sn +15S„

AS„+1—hS„
2S„Sn+2 Sn+1

6 S„
Oy 1p ~ ~ ~ (30)

where the differences 5 S„are generally defined recur-
sively as follows:

b,S„=S„+,—S„, b,"+'S„=b,"S„+,—b,"S„. (31)

From a computational standpoint, this determinant solu-
tion is exceedingly unwieldy, Indeed, it is well known
that the determinant may involve large numbers with al-
ternate signs, and upon subtraction of large numbers the
relative error may soar to a point that makes the result
worthless. But much more important is that the compu-
tation of an nth-order determinant requires the evalua-
tion of n. terms, which ultimately implies that the above
determinantal representation has little practical interest
since it is computationally very time consuming.

The epsilon algorithm proposed by Wynn [72,80—82] is
a recursive algorithm based on the Shanks transforma-
tion that allows us to avoid the evaluation of the deter-
minants. This method obeys the fo11owing rules:

Obviously, as mentioned above, Aitken's 6 process is
just a special case of the Shanks transformation, namely,
e, (S„}:

ao

aoSn

aoSn +1

+a1
+a1S„+,
+a,S„+2 + ~ ~ ~ + akS +k+1 =S,

+ ~ ~ 0 + a k =1
7

+ -+ a S+, =S,
(n) (n+1) 1

&k —1 + („+1) (n)
~n O 1 2 ~ ~ ~ ~

~k ~k

B. Levin's u transformation

(32)

apSn + +a S +k+1 + -. + akS + =S.

(28)

At the present time, the specialists of convergence ac-
celerating techniques agree that Levin's sequence trans-
formation [72,83 —85] is undoubtedly the most powerful
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accelerator. Such a sequence transformation has been ela-
borated to give the exact limit of any sequence S„,which
obeys the following identity:

k —1 g.
S„=S+co„g";=p (p, +p)'

with p=n, n +1, . . . , n +k; k =1,2, . . . (33)
I

where cp„are arbitrary functions of n which must be
di6'erent from zero for all n while p is a constant.

In order to deduce the general expression of Levin's
transformation, we first begin by rewriting the above
identity in such a way as to obtain a linear system where
the unknowns are the k coefficients a; and of course the
limit Sof the sequence under consideration. This yields

S + ciao

S + CO~+)Qo +

CO~

+p I

n+i
n +1+P

+ ~ ~ ~ +

+ ~ ~ ~ +

~n

(n+p)k —t

n+i
( +1+P)'-' " ' S„+),

n+k n+kS + rp+kap + at + + , , &k-i = S.+kn+ + (n+k+P)"
Once again, by means of the well-known Cramer's rule, one may express the so-called Levin transformation as the ra-

tio of two determinants as follows:

n+&
n+ t ~n+t + 1+p

(n +p)
n+i

(n +1+P)"

S=Lk(S„)=

n+k
n+ kn+k +k +p

n+]
n +1+P

+n+k

(n +k +P)"
N~

+p)k —1

~n+]
(n +1+P)

(35)

~n+k
n+k +k +p

~n+k

(n +k+p)"

;=p ', (P+n+k)"

(P+n +i )" '
1

( —1)'
(p+n+k)' ' rp„+;

k, n =1,2, . . . . (36)

At this stage, the problem that has to be dealt with is to
find the best sequence Iro„] corresponding to the se-
quence Levin's transformation is applied to.

In one of his first works, Levin [83] suggested some
simple sequences [ro„],including the following:

ro„=(P+n)a„, n = 1,2, . . . . (37)

This sequence is well adapted to logarithmically conver-
gent sequences, that is to say, that

However, as mentioned in the case of the Shanks trans-
formation, this determinantal representation is not suit-
able for numerical work. Fortunately, the above ratio
may be expressed in a more computationally attractive
form according to [86]

TABLE I. Evaluation of the series given by Eq. (40} for
(=9.715 and ro~=(4.46 a.u. ,0,0) at the cusp (i.e., r=roA).
Numbers in brackets denote powers of 10.

S
0 0.266 326 681 097 793 464 52[ —03 ]
1 0.106402998 617201 16741[—02]
2 0.238 929 670203 779 508 52[ —02]
3 0.423 582 770 122 378 152 51[—02]

0.659 492 074978 688 091 56[—02]
5 0.945 558 343 806 063 423 52[ —02]

10 0.307 569 184 373 050 353 67[—01]
20 0.100 139985 924 731 71467[+0]
30 0.186 733 476 196503 289 46[+0]
40 0.273 649 769 458 445 734 36[+0]
50 0.352 535 651 455 190818 38[+0]

100 0.605 744 539 970459 244 56[+0]
200 0.789 272 795 159040 147 14[+0]
300 0.85751845461405923321[+0]
400 0.892 573 020054 584 81205[+0]
500 0.913836 720 611 728 460 51[+0]
600 0.928 091 909 776 676 684 19[+0]
700 0.938 307 576062 560 558 15[+0]
800 0.945 985 439 566 309427 97[+0]
'Partial sums of the series given by Eq. (40).
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S„+)—S
lim =1 .n-+ ~ S„—S (38)

i=0
uk(S„)= (39)

(P+n+i)" 1

', (P+n+k)" ' a„+,

Besides, according to the numerous studies [87,88] on
I

Thus the use of the special sequence Ioi„] given by Eq.
(37) yields the well-known Levin's u transformation
which is defined by the following relationship:

(P+n +k)"

Levin's u transformation, it should be emphasized that
such a transformation is certainly the best suited ac-
celerating technique for monotonic as well as alternating
sequences.

C. Numerical experiments

In Sec. IV it was stated that the convergence rate of
the two-range one-center expansion method is not
suSciently satisfactory near and at the cusp. In order to
illustrate this fact numerically, let us consider the expan-
sion of a special case, namely, an unnormalized 1s Slater
orbital, which according to Eq. (12) may be written ex-
plicitly as follows:

OA d e " +" P &I)+1/2(PP & )+)+3/2((P & ) P &4—1/2(PP )&I~K +)2/(PP & )= g (2A, +1)
d( Ir roAI g=o

XP) [cos/(r, roA)] . (40)

As it may be seen from the values listed in Table I, the
convergence of the above series at the cusp is still unsatis-
factory, after having computed 800 terms. In addition,
since the numerical evaluation of the Bessel functions

Iz+, /2(z) and i( &+1/2(z) has been done recursively, it has
been necessary to use the scRATcHPAD II [89] computer
algebra system in order to avoid the internal round off er-
rors. Indeed, for such a calculation, the accuracy has
been set to 1800 exact digits.

Conversely, from the values reported in Tables II and
III, it may be observed that convergence accelerating
techniques may be of substantial help for the evaluation

of the series given by Eq. (40), which, of course, is always
involved in the analytical expressions of multicenter in-
tegrals evaluated via the two-range one-center expansion
method.

Furthermore, regarding Levin's u transformation, it
follows from Table III that within a suitable choice of the
constant P the values produced by such a transformation
are in good agreement with the exact value (i.e., 1.0). It
should also be noticed that compared to the epsilon algo-
rithm, the later transformation is far and away the best
one, since using the same number of partial sums, the u

transformation yields better accuracy.

TABLE II. Selected subsequences obtained by applying the epsilon algorithm [Eq. (32)] to the first 20 terms of the series given by Eq. (40) at the

cusp (i.e., r=roa) for (=9.715 and ro =(4.46 a.u. 0,0). Numbers in brackets denote powers of 10.

0

2

3

4
5

6
7

8

10
11
12
13
14
15
16
17
18
19
20

S„

0.266 326 681 097 793 464 52[ —03]
0.106402 998 617 201 167 41[—02]
0.238 929 670 203 779 508 52 [ —02]
0.423 582 770 122 378 152 51[—02]
0.659 492 074 978 688 091 56[ —02]
0.945 558 343 806 063 423 52[ —02 ]
0.128 046 733 876 709 839 20[ —01]
0.166 270 622 831 939 396 57[ —01]
0.209 058 198 100 395 985 94[ —01]
0.256 224 132 640 763 653 36[—01]
0.307 569 184 373 050 353 67[—01]
0.362 882 373 736 410 350 98[—01]
0.421 943 187 184 824 775 75 [ —01]
0.484 523 766 382 964 170 83[—01]
0.550 391 046407 418 81845[ —01]
0.619308 810580 879 747 59[—01 ]
0.691 039 634421 818474 34[ —01]
0.765 346 696 338 517427 43[ —01]
0.841 995 437 910852 607 55[—01]
0.920 755 061 690411 18340[ —01]
0.100 139985 924 731 71467[+0]

~(n)
8

0.178 339 206 573 833 795 88

0.189289484922 574 71988

0.204 046 710720 549 360 20
0.223 501 981 127 387 367 32

0.248 551 228 362 275 006 36
0.279 916403 394 932 853 88
0.317 892 686 065 261 664 62
0.362 073 467 648 155 56003
0.411 163 801 171 646 792 24
0.463 015 869 315 864 126 65
0.514953 233 666 771 874 91
0.564 301 924 263 379 442 39
0.608 917977 832 648 225 11

~(n)
14

—0.237 876 105 116476611 30
—1.472 731 341 430 522 600 7

2.888 521 284 563 294 630 2

1.280238 848 713023715 7

1.005 471 556 936 549 484 5

0.903 568 234 635 371 552 98
0.856 288 300 583 650 103 76

(n)
~20

1.001 301 022 551 704 013 8
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V. APPLICATION TO THE THREE-CENTER
T%0-ELECTRON COULOMB INTKGRALS

In this section, we want to show how the accelerating
techniques presented above might be used to improve the
rate of convergence of the series representation of the
three-center two-electron integrals. However, before ad-
dressing the application of such accelerators, let us first
begin by establishing the formulas that will be used to
carry out the evaluation of these integrals within the

framework of the two-range one-center expansion ap-
proach.

The three-center one- and two-electron Coulomb in-

tegrals are among the most difficult integrals that are
needed in the SCF approximation. However, there is not
an extensive literature about the latter in contrast to the
former, which has been studied in detail in many works.
The three-center two-electron Coulomb integrals are gen-
erally defined as follows:

(x.,
', I, fgllRI —BOA)fX. ,

',
I f(3)R2 BOB)f

)R R
f

X.,', I f(2)RI BOA)lX.,'Ifk ), RI BOO)l)
2

(41)

By a suitable change of variable (i.e., r, =Rf roA and r2=R2 —roA), the previous definition may be rewritten in a
somewhat simpler fashion as follows:

,I. . .I, (kl 02 03 04 rAB rAc} (X,l [03(r2 rAB}]l~(r2}lX,1 [44(r2 rAc}]&, (42)

~)22) (X,I C)BI)
f

X,I C22l)
r& r2] fl

(43}

where V(r2) stands for the so-called one-center charge
distribution potential which is defined as

where the symbol g' indicates that the summation is to
be performed in steps of two. The pure radial functions
[i.e., VI(r2)] may readily be expressed using Roothaan's
notation [90] as

Now expanding the Coulomb operator by means of the
well-known Laplace-Neumann addition theorem yields

+ oo

v(r2)=Jvflv2 g f,'limillmll2m2&
1=0

Vl ( r 2 ) = r 2
' '

[E„+„+([( g i +g 2)r 2]

+ A„+„, f[(g, +(2)r2]], (48)

fl i 1 glI ] ( tl2 1

7 )
X [Fp(8, , )p, )]', (44)

E„(a)=f x "e "dx,
0

(49)

where the auxiliary functions E„(a) and A„(a), defined

for n ~0, are such that

where r and r& represent min(ri, r2) and max(ri, r2),
respectively. The terms JV, and JV2 are nothing but the
normalization factors of the Slater orbitals which are
determined by

(2g;) '

Q(2n, )!
(45)

allow us to rewrite the energies given by Eq. (44) as a
finite sum such that

In addition, taking the nonvanishing conditions of the
Gaunt coeScients into account, which are

ll, —l2l ~ I ~ If + I,
(46)

l
&
+ l + l2 is even,

A„(a)=f x "e "dx .
1

(50)

(51)

or by a series expansion, namely, Kummer functions [91],
which from a numerical standpoint exhibit a better nu-

merical stability:

The numerical evaluation of these two functions is

greatly simplified by the use of the recurrence relations,
relating E„ to E„,and A„ to 3„&.However, the cal-
culation of the "first" terms involved in such relations
(i.e., E0 and A0 for the upward calculation E„,„and
A„,„for the backward calculation) may be computed by
means of the closed analytical formula:

1l +1~

V(r2}=AiJY2 g' (lim) llmll2m2 &Vf(r2)
I=1I, —1,12 +

X[Ff ™(O,, fp, )]*,

,Ff(1;n+2;a)=(n +1)e E„(a),

U(1;n+2;a)=e A„(a) .

(47) Hence, substituting Eq. (47) into Eq. (42} yields

(52)
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,I. . .I, (01 42 03 04 rAB rAc)

Il +12

=~1~2 g' (IImll~ml~2m2&(X. ,', 1,[4(r2 —rAB)I~I(r2)[ Yl
' '(8,, qI,,)]*IX.,', 1,[(4(r2 —rAc)]&,,I:ill 12 I

(54)

The next step consists in translating the Slater orbital y„'I and y„'I in such a way as to separate the variables r2,

r AB, and r Ac. For such a purpose, let us begin by making use of the solid spherical harmonics addition theorem given

by Eq. (9). Thus one obtains

,I. . .I, (kl 42 03 04 AB AC)

( 1) 3 3 4 4

I1+l3

X~]~2~3~4
I =

] l1-13!
I

(13m3 ~l3m P!3—13m3 —m 3 )
X43r(2I3+1)!!,Pl '

I, '( —r AB)
*

(213+1)!![2(I3—I3 )+1]!!
I

'4 '4 (I4m4~14m4~14 —
&4m4

—m4 & m —m'
X4m 214+1)!! . , 'PI '

I, '( —rAc)
(214+1)!![2(l4 —14 )+1]!!

4 4 4

I I
m), m2, m3, m4

I' (01 02 03 04 r AB rAc) (55)

where the functions P are defined as follows:
I I I

~„'I™l','™I'
I ((1 02 03 04 r AB r Ac)

I

XIVI(r2)[YI ' '(e, ,y, ))'iir2 —rAci
' ' e ' ' "cP, , '(r2)) . (56)

'A~l
Now appl~in~ the addition theorem given by Eq. (12) to the functions

~ r2 —r AB~
' ' e ' ' "s and

~ r2 —r Ac~ e allows us to separate the variables r2, r AB, and r Ac as follows:4 4 ~4l 2 AC

+ 00 + oo

P ';,",
, ',', , (g, , g2, $3, (4;rAB, rAC)= g (2A, +1) g (2A, '+1)RQ,

A,'=0
(57)

where the functions R and Q stand for the pure radial integral and the pure angular integral, which are determined by
the following relationships:

d f3+1/2(03P( ) +3+1/2(03p) ) d 13,'+1/2(43P & ) lt 3,'+1/2(43P & )R= r2'
03 gP( QP) 04 V'p', V'p',

(5g)

Here the variables p&, p&, p'&, and p'& stand for min(r2, a), max(r2, a ), min(r2, c), and max(r2, c), respectively, where,
for brevity and convenience, the modulus of the vectors r~ and r zc are referred to as a and c:

I I

Q=(P3[cosl(r2, rAB)]Y, , '(H, ,y, )~[YIm™(8,, Ip, )]'~P3 [cosdr2, rAc)]Y, , '(O, , p, ) ) . (59)

For dealing with this pure angular integral, let us first apply the surface spherical harmonics xnultiplication theorem in
I I

m3 ~ ml —m2 m4order to linearize the product of the three spherical harmonics [ Yl, ']', [ Yl
' ']', and Yl, '..

3

I l
+12

[Yl '(e, y)] Yl '(&,qr)= g' (I2m2IIIm1llm2 —m1) Y1' '(&,y) .
I = lil —12l

Thus one obtains

(60)
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I I

[&, '(&, ,q, )]*[&l ' '(O, ,q, )]'&,. '(&, , y, )

1 3+14

1,', =- l1,
' —14 l

(14m4II3m3II34m4m3)
134+1

(I' m' —m'Il —m Il" {m' —m') —(m m ))
'34= l'34-'

I I
(m4 —m 3) —(m) —m&)

X Y(II » y+» ~

34 2 2
(61)

It turns out that the Legendre polynomials involved into Eq. (59) may readily be expanded according to the following
addition theorem:

P„[cosZ(r,R)]= g P~g(8„q, )[&~3(&R,)PR)]' .
2k+ 1

(62)

Hence, by taking once again the nonvanishing conditions of the Gaunt coefficients into account, the angular integral 0
may be rewritten as

l3+ l4
4m 4n

(2I g+ l )
M 4m 4) 3m 3) 34m 4 3

134
= l13 —

14 l

134+1

(134m 4
—m 3 I 1m, —m ~ I134(m 4

—m ', )
—(m, —m3 ) )

134 = I134
—

1I

X g {I),p I
I 3'„(m 4 m3 )

——
( m, —m 2 ) I

A, 'I4 —
( m 4

—m 3 )+ ( m, —m
& ) )

{63)

={—l)'IRI'~l (~R PR)
1/2

2l +1
4m. m, O &~1 (O, y)=

(65)

where 5 stands for the Kronecker symbol, immediately
yields the above-mentioned additional condition.

In Table IV selected integrals have been computed by
means of the series representation given by Eq. (55). As
may be seen from the first set of values, good convergence
is obtained by the computation of only 20 terms of such a
series. However, by using Levin's u transformation fewer
terms may produce the exact value. This is due to the
fact that in this case, the sequence of partial sums in-

It should be mentioned that according to the nonvanish-

ing conditions of the Gaunt coefficients of Eq. (46), the
running index It.

' occurring in Eq. (57) is such that

I
~—13'4

I

~ ~' ~ ~+ I 3'4,
(64)

k+I3'4+1, ' is even .

As a special case of the series representation given by

Eq. (55), let us assume that points A, 8, and C are aligned
(i.e., 9 =8 =0, linear molecules). Therefore, the

'AS 'AC

three-center two-electron integrals vanish unless the fol-

lowing equality holds: m 4
—m 3

=m, —m z. Indeed,
linearizing the product of the surface spherical harmonics
depending on the angular parameters of the vectors r Az

and rAC by means of the multiplication theorem of Eq.
(60) and taking into account the following relationships:

&l ( R)=IR—I'&l (~ &R ~+yR)—

creases monotonically and hence is well adapted to such a
nonlinear transformation. Conversely, from the last set
of values it may be seen that the epsilon algorithm pro-
duce better values than the Levin's u transformation
though it is less efficient in comparison to the latter. This
is essentially due to the fact that in this case, the partial
sums obtained from the original series do not constitute
either a monotonic or an alternating sequence. In fact,
these partial sums increase in magnitude and then de-
crease towards the exact value of the integral.

&I. CONCLUSION

At the present time, it is still too early to claim that the
algorithms based on the use of Slater-type orbitals may
complete the ab initia programs using Gaussian-type or-
bitals. There are nevertheless two points in favor of these
alternative algorithms. The first is related to the fact that
with the huge technological advance in computer science
area such algorithms will certainly benefit from the new
architectures (e.g. , massively parallel machines). With re-
gard to the second point, it concerns the method itself.
Indeed, in the present work we have focused our atten-
tion on the improvement of the numerical algorithm by
means of some nonlinear transformations, namely, the
epsilon algorithm and also Levin's u transformation.
However, such numerical devices are not sufficient to ob-
tain e%cient packages. Indeed, the examination of the
three-center two-electron integrals given above shows
clearly that the most time-consuming step corresponds to
the evaluation of the derivatives of the product of the
modified Bessel functions of the second kind. Therefore,
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TABLE IV. Three-center two-electron repulsion integrals with normalized Sister orbitals [Eq. (41)]. The present values correspond to the linear

molecule LiCCH, the geometrical parameters of which are (see [94]) Li (0,0,0), C (3.55,0,0), C' (5.8196,0,0), and H (7.8284,0,0). Lengths are in a.u.
Numbers in brackets denote powers of 10.

Integral

( 1s 1s 11sc1s )
( 1s 1s mls 2s )
(1sc ls ~1sc2pc)

(1s 1s ~2p 3d )
(2sc'1s ~1sclsc)
(2s ls 11s 2s )
(2s ls ~ls 2p )
(2s 'ls"~2p 3d

7.968 97 0.454 41
7.968 97 0.454 41
7.968 97 0.454 41

7.968 97 0.454 41

1.167 82 0.454 41
1.167 82 0.45441
1.167 82 0.45441
1.167 82 0.454 41

5.23090 5.23090
5.230 90 1.167 82
5.230 90 1.255 72

2.726 25 2.015 91
5.230 90 5.23090
5.230 90 1.167 82
5.230 90 1.255 72

2.726 25 2.015 91

Ia

0.188 877 912[—01]
0.275 256 626[ —02]
0.484 255 956[—03)
0.477 576 493[—02]
0.231 915790[+00]
0.335 758 750[ —01]
0.318 914301[ —02]
0.247 693 208 [ —01)

(n)
~2O

0.188 877 949[—01]
0.275 256 680[ —02]
0.484 256 051[—03]
0.477 576 604[ —02]
0.231 915 790[+00]
0.335 758 750[ —01]
0.318914 301[—02)
0.247 693 208[ —01]

Ib

0.188 877 949[—01]
0.275 256 680[ —02)
0.484 256051[—03]
0.477 576 604[ —02]
0.231 915790[+0]
0.335 758 750[ —01]
0.318914301[—02)
0.247 693 208[ —01]

u3(S)2)

0.188 877 949[—01]
0.275 256 680[ —02]
0.484 256 051 [ —03 ]
0.477 576 604[ —02]
0.231 915 790 [+0]
0.335 758 750[ —01]
0.318914301[—02]
0.247 693 208[ —01]

(2 C'1 H~ 1 Lil Li)

(2$ c'1$ H
~
1$Li2$ Li )

(2 c'1 H~2 L2 L )
(2sc'2s c~ ls"'ls"')
(2 '2

~2 '2

1.167 82 1.337 61 2.433 09 2.433 09 0.752 785 341[—01]
1.167 82 1.337 61 2 433 09 0 45000 0 778 300 824[ —02]
1.16782 1.33761 045000 045000 0.713 556031[—01]
1.167 82 1.167 82 4.517 69 4.51769 0.150 148 053[+00]
1.167 82 1.167 82 0 85000 0.85000 0.143 404274[+00]

0 752 720 784[ —01] 0 752 720787[ —01] 0.572 907 876[ —01]
0.778 234078[—02] 0.778 234081[—02] 0.778 427 516[—02]
0.713 495 636[ —01] 0.713495 640[—01] 0.713 665 009[—01]
0.150 148 075[+00] 0.150148075[+0) 0.150 147 841[+0]
0.143 404295[ +00] 0.143 404 295[ +0] 0.143 404064[ +0]

'Computed values by means of the series representation (55). These values have been obtained with 20 terms of the original series.
Comparative values, obtained from the ALGHEMY II (Ref. [95])package.

we intend to investigate this point in a further study of
the method.
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