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Proteins contain a large fraction of regular, repeating conformations, called secondary structure.
A simple, generic definition of secondary structure is presented which consists of measuring local
correlations along the protein chain. Using this definition and a simple model for proteins, the
forces driving the formation of secondary structure are explored. The relative role of energy and
entropy are examined. Recent work has indicated that compaction is sufficient to create secondary
structure. We test this hypothesis, using simple nonlattice protein models.

PACS number(s): 87.15.8y

Recently, there has been a great deal of interest in the
study of proteins from a physical perspective [1—6]. Most
of these works have focused on the folding problem; i.e. ,
how does the sequence of amino acids encode the three-
dimensional structure of the proteins Although progress
has been made in this area, there is still a long way to
go before there is a complete understanding of how pro-
teins fold. However, proteins have many other interest-
ing properties. While each protein has a specific struc-
ture determined by its sequence, all proteins share several
common structural features. They are highly compact,
with very little &ee internal space. More striking is the
high degree of order found, which consists of regular pe-
riodic arrangements of the main chain into one of a few
universal patterns (called secondary structure) Roughly.
50'%%uo of the structure of all proteins is in some form of sec-
ondary structure [7]. In this paper we define in a simple,
generic way precisely what secondary structure is. This
definition will be valid not only for proteins but for sim-

pler polymers and simple proteinlike models. We then
use it to investigate what forces are responsible for the
formation of secondary structure. Although this is not
directly related to the folding problem, a thorough un-

derstanding of what factors are responsible for secondary
structure may aid in the study of the folding problem.

There has been a great deal of past work attempting to
understand the origins of secondary structure. At first it
was believed that loca/ interactions (local hydrogen bonds
or dihedral angle potentials, for example) were responsi-
ble. Here, the term local means close with respect to
the separation along the polymer chain. For example, a
hydrogen bond between monomer i and i + 4 would be
a local interaction, as would an angle potential. Several
recent studies indicate that local forces may not be the
dominant efFect, rather compaction of the chain may be
the important factor. By examining exhaustive enumer-
ations of short chains on a lattice, Chan and Dill [8—10]
found that as the compactness of the chains increased
so did the percentage of secondary structure present.
They also found that the maximally compact chains had
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roughly the same amount of secondary structure as real
proteins and the proportions of helices to sheets was also
approximately the same. Subsequently, Gregoret and Co-
hen [11] studied nonlattice models. Their results also
suggest that compactness does inBuence the amount of
secondary structure, but they indicate that the effect is
most pronounced at densities 30'%%uo greater than that of
real proteins. In both of these studies, however, local
interactions were present. For example, a lattice has a
specific set of allowed bond angles, which provides an
efFective bond angle potential. In the nonlattice work,
compact chains were generated using a biased random
walk in which the bond angles were chosen not &om a
uniform distribution but f'rom the distribution observed
in real proteins. This also provides an effective angle
potential. Therefore, it is not clear Rom these works
whether compaction is sufBcient to generate secondary
structure. We wish to determine whether compaction,
without local interactions, is suKcient.

There are two distinct questions to keep in mind: (1)
why do proteins (or other polymers) form regular struc-
tures and (2) why do proteins form particular types of
secondary structure? Question (1) is equivalent to asking
the following: why do proteins form helices and sheets'
The second question asks the following: why are these
helices n helices and the sheets P sheets? The answer
to the second question certainly involves local interac-
tions. It is the specific hydrogen bonding patterns in
proteins which favor the formation of cx helices. In other
polymers, difFerent local interactions would favor other
forms. For example, the structures of 179 polymers have
been solved and 79 are found to be in one of 22 difFer-
ent types of helices [9,12]. In each polymer the specific
types of local interactions determine the preferred type
of secondary structure. In this work we are interested
in studying the first question: what forces are responsi-
ble for formation of regular structures. Specifically we
will test the previous suggestions that compaction of the
chain is the key driving force. To do so we will be using
models without any local interactions. However, without
local interactions there is no way of knowing beforehand
what types of secondary structure will be formed. Most
definitions of secondary structure are specific to a given
type of structure (i.e., n helices); consequently one needs
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to know a priori what types of secondary structures will

occur in order to detect their presence. To overcome this
problem we developed a generic method of determining
whether secondary structure is present without the need
to know a priori what its specific form is.

A simple way of defining secondary structure is to re-
alize that it consists of repeating patterns. Consequently
the polymer chain should be correlated with itself along
the chain. The correlation length should be related to the
average size of secondary structures. To detect secondary
structure we measure the correlations between difFerent
points along the protein chain. Specifically, let 8~ repre-
sent the value of the dihedral angle associated with the
jth a carbon (see Fig 1).. We then calculate

ce(6) = (e'~e (1)
C

The average is over j; that is, over all pairs of angles sep-
arated by a distance 4 along the chain. The subscript
C indicates that the mean, (e's&), has been subtracted

from (e*&s' s&+~)). If secondary structure is present then
Cs(b, ) will be nonzero for b, & I „s where I „s is related
to the average length of secondary structure. Note, this
definition makes no reference to any particular type of
secondary structure; therefore, any form of regular struc-
ture will be detected. For example, if helices are present
there will be a nonzero correlation length no matter what
period the helices have. Equation (1) also has the advan-
tage that it can be calculated analytically in a simple
model.

To test our definition we examined the crystal struc-
tures &om 112 proteins which have been recorded in the
protein data bank [13]. The correlation function was
calculated for each protein and normalized so Cs(0) = 1.
Then an average correlation function was computed for
all proteins. Examining this correlation function (shown
in Fig. 2) we see that protein chains are positively corre-
lated up to separations of approximately nine monomers.
This is comparable to the average length of secondary
structure (roughly ten monomers) measured by oth-
ers [7]. At distances greater than nine monomers the
chains become negatively correlated. This negative cor-
relation may be partly due to supersecondary structure,
which consists of combinations of secondary structural
elements. For example, P sheets are usually followed by

FIG. 1. The dihedral (also called torsion) angle, 0, , asso-
ciated with the ith monomer. The inset shows the view along
the bond &om monomer i —I to i. The angle shown is de6ned
as positive by our sign convention.
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FIG. 2. Real part of the dihedral angle correlation func-
tion averaged over 112 proteins from the protein data bank.
The distance, 4, is the number of monomers along the chain.
Cs(0) has been normalized to one.

reverse turns. There is also the P(P unit where two paral-
lel P sheets are separated by some piece ( which can be a
random coil, an a helix, or another sheet [14]. Eventually
the correlations fall off to zero (at around b, = 16).

We now examine what forces drive the formation of
secondary structure, specifically the question of whether
the loss of entropy due to compaction is sufficient. To
do this we need a model without any local interactions.
Lattice models are not acceptable since the restricted de-
grees of freedom imply local bond angle potentials. An
off-lattice model was used instead. As in lattice and other
simple models we neglect the internal degrees of freedom
of the amino acids and represent each as a single point in
space. Monomers that are connected along the chain are
constrained to be separated by a fixed distance. The next
step is to fold the chains into compact conformations.
The following procedure was used. Take a potential en-
ergy function whose minima are compact conformations.
Then minimize this potential energy to fold the chain.
Because the model we are using is a homopolymer there
are many compact local minima (the number grows ex-
ponentially with chain length [10]). We will generate an
ensemble of compact conformations, using chains of sev-
eral different lengths. One can think of this ensemble of
different compact structures as representing the collec-
tion of native structures of many diferent sequences of
amino acids. We will calculate the average correlation
function [Eq. (1)] of the ensemble of compact conforma-
tions we generate and look for long range correlations
which will indicate the presence of secondary structure.
It is important to note that the previous works showing
the connection between compaction and secondary struc-
ture [8—11]also used a homopolymer model and many ho-
mopolymers show secondary structure in their compact
states [12]. Therefore, it does not appear necessary to
have a heteropolymer and a unique ground state to get
secondary structure.

There are several diferent potentials that have com-
pact minima. The dominant force for the folding of pro-
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teins is the hyotrephobic egect [15]. This is primarily a
bulk, entropic effect caused by interactions of the poly-
mer with the surrounding water. The protein collapses
to create a hydrophobic core with polar groups on the
surface. One could simulate a polymer in a solution of
water, however, this is much more complex than neces-
sary. Instead of doing a full water-polymer simulation we

simply choose an effective potential which will also cause
the polymer to collapse. The particular one used in this
work was
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where r;~ = ~r, —r~~, r"; is the position of the ith
monomer, and r, =

N g r; is the position of the cen-
ter of mass. The first term represents the covalent forces
that bind the monomers along the chain. The constants
k, and l, are both set equal to 1, determining the energy
and length units. The middle term (which is the repul-
sive part of a Lennard-Jones potential) is the excluded
volume term which prevents the chain from compacting
to a single point. The last term is the radius of gyra-
tion of the chain. This term provides the compacting
force. The two constants, e and 0,„, are determined by
examining real proteins. The difference in energy scales
between covalent and noncovalent forces determines e.
In proteins the typical noncovalent interaction is roughly
one-hundredth the energy of a covalent bond, so e is set
equal to 0.01 [16]. The compactness of the chains will be
controlled by the value o,„. To determine the value of
o,„and measure compactness we looked at two features
of real protein structure: the pair-correlation function
(also called the radial distribution function) and the ra-
dius of gyration. First, the pair-correlation function was
measured for both real proteins and our chains. This
function gives the probability that two o; carbons are
separated by a given distance, indicating how closely the
o. carbons are packed together. We adjusted a,„until
the position of the nearest neighbor peak for our chains
closely matched the one for real proteins [17]. Next, we

measured the radius of gyration as a function of chain
length for real proteins. Our chains had a slightly smaller
radii of gyration as proteins the same length (see Fig. 3).
This is not surprising since the potential we used will

generate nearly spherical shapes while proteins are ellip-
soidal with varying eccentricities. An ellipsoid will have
a larger radius of gyration than a sphere of equal volume.

The chains were compacted by minimizing this po-
tential energy [Eq. (2)]. The algorithm used was a
conjugate-gradient descent minimizer [18]. At each it-
eration in this algorithm the energy is decreased, so it is
somewhat analogous to a zero temperature Monte-Carlo
simulation, in that only energy reducing steps are ac-
cepted. There is the possibility that for some potentials
this type of algorithm will be trapped in local noncom-
pact minima. However, for the potential used here, this

FIG. 3. The radius of gyration versus chain length (plot-
ted on a jog-log scale) for real proteins (small circles), chains
compacted using the radius of gyration potential (diamonds),
and the Lennard-Jones potential (stars). The radius of gyra-
tion for the three systems is very similar indicating that they
all have the same level of compactness.
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FIG. 4. The two solid lines shoe& the correlation func-
tions for the radius of gyration potential (circles) aud
Lenuard-Jones potential (squares). The dotted line is the
real protein correlations (from Fig. 2) for comparison.

was not a problem. All minima that we generated were
observed to be compact; i.e., their radius of gyration was
roughly the same as those of proteins the same length
(see Fig. 3). Starting from a random initial condition
(which was taken to be a self-avoiding random walk) 200
chains, ranging in length from 50 to 450 monomers [19],
were folded. The average dihedral angle correlation func-
tion was then calculated for these chains to determine if
any secondary structure was present. Figure 4 shows the
average for the compacted chains with the correlation
function for real proteins superimposed. The compacted
chains show no long range correlations. The plot falls
almost immediately to zero, with a slight negative corre-
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lation at separations of roughly two monomers. This lack
of any correlations indicates the absence of any secondary
structure.

The potential [Eq. (2)j was chosen to have no lo-
cal interactions other than the one term which bonds a
monomer to its two neighbors along the chain. Again, lo-
cal here means local (close) as measured along the chain,
not through space. The excluded vob~me term is through
space local, but in a folded structure any two monomers
can interact via the excluded volume term regardless of
their separation along the chain. In particular, there is
no angle term in the potential (either implicit or explicit).
The previous works which did find secondary structure
with increasing compactness did have implicit angle po-
tentials. It appears that compacting the chain is not
enough to generate secondary structure. It is possible
that the particular form of the compacting potential we

used destroys secondary structure or was biased in favor
of compact conformation without secondary structure.

To test this we tried a different compacting potential,
the Lennard- Jones 6-12 potential. We replaced the radius
of gyration term in Eq. (2) by a r s term to give

By itself the 6-12 potential is too short-ranged to compact
an extended chain so we did a two stage minimization.
At the first stage we added an additional 1/r piece which
is long ranged and will collapse an extended chain. Once
the chain was semicompact, we finish the minimization
without the 1/r term. We generated an ensemble of com-
pact chains and measured the average correlation func-
tion (see Figs. 3 and 4). Again there were no long range
correlations, hence no secondary structure.

To explore the forces responsible for the formation of
secondary structure in proteins we have defined a sim-

pie, generic method of measuring secondary structure in

polymers. This method consists of calculating the an-

gle correlation function along the chain and looking for

long range correlations. If secondary structure is present
there will be long range correlations with a length com-

parable to average size of the secondary structure. This
method does not depend on the precise details of what

type of structure is present and can be used when these
details are not known. Real proteins whose structures
have been solved were examined and long range correla-
tions were found. This technique was then used to ex-

amine whether compaction leads to the formation of sec-

ondary structure. Simple models with no local interac-
tions were used and two diferent compacting potentials
were examined. There were no long range correlations
indicating the absence of secondary structure. These re-

sults indicate that compaction by itself is not sufficient

to generate secondary structure. In the previous studies
demonstrating a connection between secondary structure
and compaction there was always some form of local in-

teractions present. It appears, however, that local in-

teractions are not sufhcient since compactness was also
necessary to get structure. In proteins the formation of
secondary structure appears to result &om the combina-

tion of both the entropic effect of compaction and local
energetic eHects. The loss of entropy &om compaction
is not enough to force the chain into regular conforma-
tions. Using our definition of secondary structure further
studies can be carried out to determine the relative im-

portance of these two factors.
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