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Monovariable representation of blood flow in a large elastic artery
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We introduce a general approach for modeling blood flow and its associated structures in an arterial
system of variable cross section and Young’s modulus. The general structure and approximations under-
lying our approach are based on the natural symmetry and characteristic configuration of structures that
occur in an arterial system. Our approach, which is a representation of axially symmetric flow, uses a
monovariable representation for both the flow field and mechanical properties. In addition, our formal-
ism incorporates a deformation function whose form may in principle be deduced from experimental
correlations between blood pressure and blood flow. The use of a deformation function provides a
means for implicitly incorporating into the model system information about Young’s modulus associated

with the response of the artery walls.

PACS number(s): 87.45.Hw, 87.45.Ft, 47.35.+i

I. INTRODUCTION

The blood pressure and flow pulses are generated by
the intermittent ejection of blood from the left ventricle
of the heart. Experimental in vivo studies [1,2] show that
these pulses propagate along the different branches of the
mammalian arterial tree with characteristic nonlinear
shape changes [1]. We know that the propagation of the
blood is accompanied by an increase in amplitude with
the creation of a steep front for the blood pressure pulse
(known as “peaking” and “steepening”). These phenom-
ena are combined with an increase of the pulse-wave
celerity ¢ [see Egs. (15) and (16) below], which is about
3.5 m/s at the root of the aorta and 10 m/s in the femoral
artery [3]. These changes are due to the mechanical
properties of the cardiovascular system, which may be
characterized by three general aspects. First, the walls of
the arteries are elastic, which implies that there is in gen-
eral a nonlinear stress-strain relationship between the ar-
tery walls and the component of the momentum transfer
perpendicular to them [4-6]. The stress-strain relation is
also a function of the position along the direction of the
blood flow, caused by the evolution of the Young’s
modulus which increases with the distance from the heart
and makes the artery wall become less and less elastic
[3,7,8]. Second, the radius of the artery is not uniform on
average and changes drastically along the extension of
the arterial system. To represent analytically this taper
effect when the wall is static and the artery is at rest, i.e.,
when the blood pressure is equal to the diastolic pressure,
we adopt an equation of the form [9]

Solz)=s50e "™, (1

where z is the distance from the heart, S, is the cross-
sectional area at the root of the aorta, and m is a parame-
ter lying between 2 and 3 m™' (values given by Patel
et al. [10]). Finally, throughout the cardiovascular sys-
tem there are bifurcations for the purpose of effecting the
multiple channeling of flow to different parts of the body.
In accordance with these mechanical aspects of the ar-
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terial wall, we must include the principal characteristics
of the blood. First, the blood can be regarded as an in-
compressible fluid, which is a justifiable assumption since
compressibility of blood is so small in comparison with
the distensibility of vessel walls. Second, although the
blood is a diphasic fluid [11,12] consisting of different
molecules, e.g., red cells and proteins, it appears that the
assumption of a small viscosity in major vessels is a good
approximation.

The majority of the literature of wave propagation in
blood flow deals with linearized models [1,3,13,14] even
though there has been increasing evidence of the presence
of strong nonlinear phenomena [15]. Some of the first
serious attempts at including nonlinear effects were made
by Rudinger [16] and Anliker et al. [9,15,17] who con-
sidered the flow to be one dimensional. In their models,
however, they impose a relation between pressure and
cross-sectional area which controls the wave celerity.
Recently, Hashizume [18,19] and Yomosa [6] proposed
solitary wave models of pulse waves which were based on
the nonlinear elasticity of the vessel wall of the artery.
However, in their theories, the evolution of the elastic
properties of the artery walls is neglected.

To elucidate the principal features of blood flow in
large vessels and to understand the role played by the
different types of structures that influence blood propaga-
tion, we introduce a monovariable formalism where the
blood is treated as an incompressible nonviscous fluid and
the flow has one-dimensional space properties. Further-
more, the branching effects are ignored and artery walls
are assumed to be elastic and the cross section circular.
Section II presents and discusses the model that we have
developed for this investigation. As part of the develop-
ment of our formulation, we describe in Sec. III the con-
struction of a deformation function deduced from experi-
mental measurements. The use of such a function pro-
vides a means of representing information about the
Young’s modulus as a function of the position along the
direction of blood flow. In Sec. IV the results of our cal-
culations are presented for arteries with different proper-
ties.
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II. MONOVARIABLE REPRESENTATION
OF QUASI-ONE-DIMENSIONAL FLOW

Given the conditions on our system, we are able to
represent the system via a monovariable formalism in
which the different parameters characterizing the state of
the system, i.e., fluid and artery, at a given instant depend
only on time ¢ and the space variable z. The laws of hy-
drodynamics governing the transport within a nonviscous
Newtonian fluid are given by the equation of continuity
and Euler’s equation. The equations underlying our
monovariable approach are Egs. (2) and (3). Equation (2)
is the equation of continuity in which we have integrated
directly the geometric conditions at the artery wall—that
is, changes in the cross section of the artery with respect
to time and space. It is important to note that this equa-
tion is valid only within the approximation of a mono-
variable spatial dependence of the different parameters.
Equation (3) is the classical equation of Euler where p is
the density of the blood (p=1.06 g/cm?), u the velocity
along z, and P the dynamic pressure of the fluid.

We have adopted the terminology monovariable for-
malism in contrast to one-dimensional representation to
emphasize the quasi-one-dimensional character of the
flow, i.e., the expansion of the artery due to pressure gra-
dients that are perpendicular to the axis of symmetry.
The values of u and P obtained with our formalism corre-
spond in reality to the values along the axis of the artery
that one would obtain if one considered explicitly the ex-
pansion of the artery. A third relation is necessary in or-
der to have a complete specification of the system, i.e.,
the same number of equations as system variables. This
equation describes the deformation of the artery wall un-
der the forces exerted by the fluid and is considered as the
equation of state of the system. Therefore, the system to
be solved is specified by Egs. (2) and (3), and an equation
of state.

A complete specification of the state of the system at a
given instant of time can be effected by means of three
state variables. These three state variables are the speed
of the blood flow along the artery u(z,t), the pressure
P(z,t), and the cross-sectional area S(z,¢). Among the
three state variables, two are independent and linked via
a relation which is analogous to that of an equation of
state. There exist two possibilities for a choice of this re-
lation. We are able to specify a deformation function of
the artery whose value at a given position z along the ar-
tery is either a function of pressure or a function of blood
velocity—that is to say, S=S(P,z) or S=S(u,z). A re-
lation of the form S =S(P,z) is used in many theories
where the cross-sectional area is represented as a function
of location and medical pressure. Anliker et al. [15,17]
have used experimental results to formulate this type of
relation and Yomosa [6] used an equation of motion for
the vessel wall. There are major assumptions in these
models, however, because the relationship obtained, ex-
perimentally or analytically, is not between the dynamic
pressure P along the axis of the artery and the cross-
sectional area. Our formulation is based on a deforma-
tion function of the form S =S(u,z). This choice is based
on the fact that it is possible to deduce the characteristics
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of the system by the measurement of quantities related to
the dynamic response of the system with respect to the
deformation of the artery walls. It follows that the model
system is given by the system of equations

oS , 0 _

o + aZ(Su) 0, (2)
du  du_ 19P

a Yoz p oz’ )
S=S(u,z), 4)

where the state variables of the system are (u, S, P).
An expression for the velocity field follows by combin-
ing Egs. (2) and (4). We note first that

9S(z,t) _ | 9S(u,z) | Ou
ot du , ot
(5)
98(z,t) _ | 38(u,2) Qu , |3S(u,z)
oz du , 0z 9z u

Substituting these expressions into Eq. (2) and rearrang-
ing, we obtain the equation governing the velocity-field
evolution related to an arbitrary deformation function
S(u,z),ie.,

Ou , Ju

o +u5=¢(u,z) , (6)
where
<I>(u,z)=—; [u E + —al] .
aS dz u aZ
du |,

III. CONSTRUCTION OF DEFORMATION
FUNCTION S (u,z)

In order to solve Eq. (6), we must know the form of the
function S (u,z) which relates the speed of the fluid at the
point z to the radial deformation of the artery. Equation
(6) can be compared to the Euler equation written in the
form of Eq. (3), which shows that the function ®(u,z),
and therefore S(u,z), possess all the information and
properties relating the system that we are studying (coni-
city, Young’s modulus, blood density, etc.). We are
therefore able to deduce the conditions necessary for the
existence of the function ®(u,z) and the equation of state
S(u,z) by comparison with the Euler equation.

A. Mathematical conditions

Several mathematical conditions follow by comparing
Eq. (6) to Eq. (3). First, we must have ®(u =0,z)=0 be-
cause if the fluid velocity is zero at a given point z, it
must be that the gradient of the pressure at that point is
zero. That is,

L1OP b d(u=0,2=0. @
p oz
Second, the denominator of ®(u =0,z) must never be
zero, which requires that the function S(u,z) be such
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that its derivative with respect to velocity is never zero
for all ¥ and z. We require equally that S (u,z) by an even
function of u because the response of the artery must be
independent of the direction of propagation of the fluid.

In summary, one must find an equation of state which
satisfies

®d(u =0,2z)=0,
95 | 4o, ()
ou )

S(—u,z)=8S(u,z) ,

where the second two conditions are for all ¥ and z. The
first two conditions are satisfied if we require that S (u,z)
be such that

ou - ®)

lim
u—0

and never have a zero slope.

B. Experimentally measured response

We describe graphically the different observations in
vivo that are feasible with respect to time during the
course of the deformation of the artery wall and of the
evolution of the blood speed at the same point of the car-
diovascular system. These curves have been deduced
from measurements taken in the ascending aorta at the
point of the heart (from Fry, Mallos, and Caspert [20]).
The curve S =S,(t) [Fig. 1(a)] combined with the curve
u =u(t) [Fig. 1(b)] provides a means of obtaining the
rate of deformation of the artery wall AS /S as a function
of the value of the velocity of the blood at the point of the
heart (see Fig. 2). The first part of this curve, extending
from point A to point B, corresponds to the combined
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FIG. 1. (a) Cross-sectional area variations in the ascending
aorta. The data were obtained from measurements by Fry, Mal-
los, and Casper [20]. (b) Blood velocity profile in the ascending
aorta during one cardiac cycle.

response of the system consisting of the heart and artery,
whereas the second part, extending from point B to point
A through point C, corresponds to the natural response
of the wall when the heart no longer exerts any pressure.
It is this second part of the curve that we use in our
present development. It is important to note that we
have neglected any contribution associated with relaxa-
tion structure occurring in the artery after completion of
the cardiac cycle. This corresponds to the section of the
curve shown in Fig. 2 that is contained within the dashed
circle.

A simple function giving the fraction of deformation
which satisfies the three mathematical requirements cited
above and which provides a correct interpolation, in the
first approximation, of the experimental curve extending
from point B to C and then to A is

B
AS S =8, u
—(u,z)= =D _ , 10
S (u,2) S, (2) ug (10)
where 0<B<1 and B is a dimensionless number

representing the curvature of the experimental curve.
The quantities D(z) and u, are adjustable parameters
representing changes in the physical properties of each
portion of the artery, e.g., evolution of Young’s modulus.
The evolution of Young’s modulus of the artery wall
with distance is implicitly connected to the function D (z)
because it corresponds to the maximum deformation at a
given position when the blood velocity has the maximum
value u,. We know from measurements that the max-
imum change in section of the artery wall is about 20%
in the ascending aorta and 10% in the abdominal aorta.
Therefore, in order to take into account the stiffening of
the artery wall, we have adapted a function of the form
B

Ab—q(u,z)=D0(1—kz)

S , (11)
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FIG. 2. Dynamic relationship between blood velocity and
rate of deformation of the ascending aorta.
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where D;=0.2, u,=62 cm/s, and B=0.4 in the ascend-
ing aorta and where A is a parameter representing the
variation of Young’s modulus (A~1 m™! in man). It fol-
lows that the deformation-velocity relation S (u,z) is

S(u,z)=8y(z) |1+ As'g(u,z)

B
=Spe "™ [14+D,(1—Az) | = (12)
U
Combining Egs. (12) and (6), we obtain
du ou ou
—_ _— —_— 4 f— ,
o +u 2 flu,z) 3z [glu,z)—m lu (13)
where
1-B
ug __
flu,z)= —uo—+—|—li sgn(u)
BDy(1—Az) B
and
B
|
u
g (u,z)= 5DoA .
14+Dy(1—Az) |2
Up

Equation (13) shows that the parameter of conicity m and
the parameter of change in Young’s modulus A appear in
the same term, showing that these two effects play ap-
proximately the same role in the velocity evolution.

IV. RESULTS OF CALCULATIONS

Equation (13) governs the velocity pulse propagation
along the artery. Its solution is effected numerically via
first order finite-difference integration. At the boundary
corresponding to the root of the aorta (z =0 in the tube),
we impose the ejection pattern of the left ventricle in the
form of the blood velocity u,(z), whereby the shape of the
curve is assumed to be equal to the one given by Fry,
Mallos, and Casper [20].

Our model was used to investigated pulse propagation
in a human arterial conduit which extends from the root
of the aorta to the end of the abdominal aorta, corre-
sponding to 50 cm of propagation. In order to obtain in-
formation related to blood pressure, we used the
pressure-radius relation given by Olsen and Shapiro [21].
This relation, expressed in a form that includes the non-
linear elastic properties of the wall, is

R, R}
R R?

P—P+h°E()
=Po+ 2 E(z

(14)

where h denotes the thickness of the wall when the tube
radius R has the equilibrium value R, and the pressure is
the diastolic pressure P,. In the above relation, E and a
are Young’s modulus and the nonlinear coefficient of

elasticity, respectively. For the ratio #,/R and for a, we
adopt the mean values h,/R;=0.12 and a=1.95 pro-
posed by Yomosa [6], and the evolution of Young’s
modulus is assumed to be E(z)=40(1+2Az) N/cm?
(from Pedley [3]). Results obtained for arteries with
different mechanical properties are as follows.

A. Artery with constant Young’s modulus and no conicity

For this case m =0 and A=0. These parameter values
correspond to an artery that has the same properties
everywhere. As a result, the deformation function S (u,z)
does not have a dependence on the distance z. Changes
in pressure and velocity corresponding to pulse propaga-
tion are shown in Fig. 3. We observe a decrease in the
maximum blood velocity and a reduction of the pulse
wave celerity from approximately 4 m/s at the beginning
of the tube to 3 m/s at z =50 cm. Furthermore, these
two effects are accompanied by a decrease in amplitude of
the pressure pulse during its propagation.

B. Artery with increasing Young modulus and no conicity

For this case m =0 and A=1 m~!. Results for this
case are shown in Fig. 4. We note that a significant
difference between this case and the previous case is the
typical “peaking” of the pressure pulse associated with
the acceleration of the wave. For example, the pulse
celerity is about 4 m/s at the heart and 8 m/s in the ab-
dominal aorta, which is in perfect correlation with the ex-
perimental measurements. These two behaviors are in
accordance with the rapid development of a steep front.
This demonstrates the importance of Young’s modulus
and its variation along the arterial tree for blood-
pressure—wave evolution.

C. Artery with conicity and increasing Young’s modulus

For this case m =2 and A=1 m~!. Results for this

case are shown in Fig. 5. An important observation in
this case is the relatively large increase in maximum
blood velocity which causes a very large increase in pres-
sure amplitude with z. This increase in maximum veloci-
ty, however, is understandable because of the reduction
of artery diameter. All characteristics occurring in the
cardiovascular system are present in this case except bi-
furcations. The presence of bifurcations causes the flow
to lose blood volume at each level of branching. This loss
of volume results in a loss of the fluid kinetic energy,
e=1pu 2, which in turn results in a decrease in the max-
imum blood velocity. This result supports the conclusion
that the role played by the taper effect of the artery is to
counterbalance the effect of bifurcations and thus mini-
mize the decrease in flow energy (or fluid velocity) in or-
der to maintain a nonzero blood velocity everywhere.

V. DISCUSSION AND CONCLUSION

In this paper we present a model of blood motion based
on a monovariable representation of both the arteries and
their properties. This model permits the inclusion of in-
formation about the elastic response and geometric prop-
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FIG. 3. Calculated (a) velocity and (b) pressure profiles at different positions along the aorta for an artery with constant radius and
Young’s modulus. z =0 is the position of the aortic valve.
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erties of the arteries via a deformation function S (u,z).
Using our model, we have simulated several effects that
are present in vivo such as the increase in amplitude of
the pressure pulse and the acceleration of the wave. In
addition, we observe in our simulations the creation of a
steep wave front. This result is consistent with the results
of other experimental and numerical studies
[1,3,9,16,22,23] where steep wave fronts have been ob-
served. These studies, however, have not given any ex-
planation of the underlying physical mechanism for gen-
eration of this effect. Our simulations show that this
steepening of the front occurs even in a tube with a con-
stant diameter and Young’s modulus. Moreover, the de-
gree of this effect increases with the wave celerity and the
stiffening of the vessel walls (see Figs. 4 and 5). This re-
sult implies that steepening of the wave front in the ar-
tery is due to the nonlinear elastic properties of the artery
walls. Furthermore, it appears clearly that the pressure
and blood velocity pulses do not have the solitonlike
behavior proposed by Hashizume [18,19] and Yomosa
[6]. This follows because of their continuous change in
shape and amplitude as they travel from the heart.

Our results demonstrate that the shapes of these pulses
are determined by the geometry and elastic properties of
the arteries. In particular, we note the following.

It is the elasticity of the artery wall which causes the
wave. If we assume a rigid tube where there is no time
dependence of the cross section, i.e., S(z,7)=S,(2), it fol-
lows from the continuity equation that

u(z,t)=uy(t)/So(z)Fu(z —ct) . (15)

The existence of a solution of the form u (z —ct) is bio-
logically necessary because the heart is a pulsatory pump
and not a continuous one.

There is a strong dependence of the value of the blood
pressure and wave celerity on the value of Young’s
modulus and its variation with distance. This follows
since, according to the classical Moens-Korteweg relation
for a circular cylindrical tube [1,3], the wave celerity c is
given by

3439
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2p0r

c= (16)

where E is Young’s modulus, 7 the internal radius, p, the
density of the wall, and A the wall thickness.

There is an equivalence between both the taper effect
and the increase in Young’s modulus with respect to their
influence on the velocity field. The influence of the taper
effect is large relative to the other influences. This im-
plies that the purpose of this effect is to counterbalance
the effect of the loss of blood volume due to branching.
A more detailed analysis of blood motion must therefore
consider the construction of a deformation function
which takes the effect of branching into account.

The fact that we have neglected to include the
influence of relaxation phenomena in the construction of
the deformation-velocity relation seems to have no effect
on the velocity-field evolution. Because of this approxi-
mation, however, the shape of the pressure pulse shows a
sharp-spike structure in contrast to the local minimum
which occurs in biological measurements.

Finally, it is important to stress that a major limitation
for our model is the availability of detailed experimental
measurements providing information for the construction
of a quantitative deformation function. With respect to
this point, it is necessary to investigate the possibility of
making clinical measurements that are more directly
linked to the dynamic properties of the cardiovascular
system rather than indirect measurements such as blood
pressure.
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