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Individual ion channels that mediate sodium and potassium currents during action-potential genera-
tion in nerve membranes open and close stochastically with transition rates that are voltage dependent.
The transmembrane voltage globally couples the otherwise stochastically independent ion channels
through their voltage-dependent transition rates. As the membrane channel density increases, a transi-
tion to regular, collective behavior ensues. The mathematical basis for this transition is explained in
terms of a hierarchy of description contractions. Stochastic and deterministic modifications of the

Hodgkin-Huxley equations are obtained.

PACS number(s): 87.22.Bt, 05.40.+j

I. INTRODUCTION

Ion channels are found in all cell membranes. They are
believed to be the molecular basis, at the cellular level,
for excitability in many tissues, especially nerve and mus-
cle. The central problem in the study of excitable mem-
branes is the connection between the microscopic (molec-
ular) properties of ion channels and the macroscopic
properties of cells and tissues. The theoretical founda-
tions for our present understanding of nerve membrane
ion currents were laid down by Hodgkin and Huxley [1].
Their ideas determined experimental approaches up until
the development of the patch-clamp technique of Neher
and Sakmann [2], which permitted the possibility of
measuring ion currents through individual ion channels.
This advance has revolutionized both experimental and
theoretical approaches. A crucial realization has been
that individual ion channels are essentially stochastic ele-
ments which open and close in a random way. Neverthe-
less, recent studies by DeFelice and Isaac [3] have
dramatically shown that global coupling across large
domains of the cell membrane by the membrane’s electri-
cal capacitance enables clusters of stochastic ion channels
to generate all of the known macroscopic electrical
behaviors of tissues such as resting potentials, action po-
tentials, spontaneous firing, and even chaos. Perhaps
most notable, and unexpected, is the emergent, regular
bursting characteristic of certain action potentials. That
regular, nearly periodic, collective bursting can emerge
from the global coupling of stochastic elements is fas-
cinating theoretically and, until now, incompletely under-
stood.

Individual ion channels that mediate sodium and po-
tassium currents during action-potential generation in
nerve membranes open and close stochasticity with tran-
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sition rates that are voltage dependent. The transmem-
brane voltage (potential) is a global membrane property
determined in part by the membrane capacitance.
Through their transition rates, it globally couples the
otherwise stochastically independent ion channels. When
the membrane channel number is small, the individual
channels open and close independently, producing a very
noisy transmembrane potential. As the membrane chan-
nel number increases, a transition to regular, collective
behavior occurs. This is manifested by small fluctuations
superimposed on nearly periodic action potential spikes,
the regularity of which becomes better with greater num-
bers. Typical results are exhibited in Figs. 1-3.

Regular bursting of globally coupled stochastic ele-
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FIG. 1. Voltage profile generated by master equation (10) for
potassium channels, master equation (21) for sodium channels,
and Eq. (1) with an added leakage term. The leakage term used
here and also in Figs. 2 and 3 is —G.(V—E;)/(1 uF) where
G.=1 pS, E; =0.0 mV. The channel-number ratio, Na:K, is
10:1. In this figure, there are 150 Na channels and 15 K chan-
nels and the membrane area A4 is 0.5 um?,

3421 ©1994 The American Physical Society



3422

60.0 ————— — —

40.0 -

| | |
i
20.0 A \ \

0.0 -

(mV)

v

=20.0

-40.0 \ \ | !\‘
| | /J |
-60.0 - \‘// \ / \L/ y \/ 1 \/J L// \L

~-80.0 7 T T
50.0 75.0 125.0

100.0
t (ms)

150.0

FIG. 2. This is the same as for Fig. 1, except that there are
1500 Na channels and 150 K channels and the membrane area
Ais 5 pm?.

ments also has been experimentally observed in the
behavior of the pancreatic B-cells and was analyzed by
Sherman, Rinzel, and Keizer [4]. This bursting occurs in
the islets of Langerhans in the pancreas and correlates
with the secretion of insulin which is pulsatile. Theoreti-
cal modeling of this phenomenon with stochastically ac-
tive pancreatic 3 cells shows that as the cluster size of the
coupled cells (tightly coupled by gap junctions) increases,
the electrical activity makes a transition from random
spiking to regular bursting. While the case reported in
the preceding paragraph involves the coupling of ion
channels in a cell membrane, and the case here involves
the coupling of cells in a tissue, the mathematical features
are nearly the same. This suggests the possibility of a
quite general phenomenon that may be exhibited in other
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FIG. 3. This is the same as for Fig. 1, except that there are
3000 Na channels and 300 K channels and the membrane area
A is 10 um?.
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biological contexts as well. Moreover, for these two cases
it eliminates the need to find macroscopic “pace-maker”
centers since the regular bursting is an emergent property
arising solely from the global coupling of stochastic ele-
ments. It is not inconceivable that such a mechanism
would be responsible for the regular beating of the heart.
Thus, deeper understanding of this mechanism may have
importance in obtaining a more profound understanding
of diseases such as diabetes (S cells) and cardiac arrhyth-
mias (heart).

The mathematical basis for the transition from sto-
chastic to regular collective behavior reported in this pa-
per is presented in terms of a hierarchy of description
contractions from computer model to master equation to
Fokker-Planck equation to Langevin equations to deter-
ministic equations. This explanation has significance for
other nonbiological, globally coupled, multicomponent
arrays, such as are encountered, for example, in the study
of self-organized criticality [5]. These arrays include
models closely related to the present study: the spring-
block model [6] and the fiber-bundle model [7]; and the
less closely related models: Josephson junction arrays [8],
multimode laser propagation in optical fibers [9], and the
Barkhausen effect [10].

This paper is organized as follows. A brief description
of ion channel models is given in Sec. II. The determinis-
tic Hodgkin-Huxley equations are presented in Sec. IIL
In Sec. IV, we review the stochastic computer (automa-
ton) model pioneered by DeFelice and co-workers (see
Ref. [3] and references therein). The equivalent master
equation for potassium channels is the subject of Sec. V,
and the corresponding Fokker-Planck equation is given
in Sec. VI. In Sec. VII, we provide the analogous results
for the more complicated sodium channels. In Sec. VIII,
we discuss the deterministic limit and elucidate a new,
modified Hodgkin-Huxley model. In Sec. IX, we present
the Langevin equations used in numerical simulations. In
Sec. X, we discuss these results, their implications for
efficient numerical simulations, and deterministic and sto-
chastic modifications of the Hodgkin-Huxley equations.
We also review our explanation of the emergence of regu-
lar behavior in large numbers of globally coupled, in-
dependently stochastic channels.

II. ION CHANNEL MODELS

The Hodgkin-Huxley equations [1] are deterministic,
coupled, nonlinear differential equations for the
transmembrane voltage and for the conductances of po-
tassium and sodium ions across the nerve membrane.
Triggering of these ion currents is controlled by the
transmembrane voltage, which is biased at the expense of
metabolic energy, and which in turn is also strongly
affected by the ion currents. The governing rate con-
stants are voltage dependent. Each of the relevant vari-
ables is continuous. Under certain conditions, these
equations produce solutions that exhibit spontaneous,
periodic spiking that is very similar in appearance to
measured electrical voltage spiking recorded by electro-
physiologists in squid axon. While the spikes may cover
a range in voltage of the order of 100 mV, measurements
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also show incessant fluctuations of order a few mV. Since
the Hodgkin-Huxley model is deterministic, it is incap-
able of showing these fluctuations.

The measurements made possible by the patch-clamp
technique of Neher and Sakmann [2] show that individu-
al ion channels produce these simple voltage fluctuations
because the individual channels are simple stochastic ele-
ments that randomly open and close (this was already
strongly suspected from earlier voltage noise measure-
ments but was not so easily interpreted since they were
not for individual channels). Almost certainly, this intrin-
sic stochasticity is of thermal origin, just as it is for sim-
ple chemical isomerizations.

The computer model used by DeFelice and Isaac [3] in-
corporates the stochasticity of the ion channels in its mi-
croscopic description of the channel dynamics. Thus, the
model is intrinsically stochastic rather than deterministic.
Without direct coupling, there is no reason for large
numbers of channels to open or close in synchrony and
macroscopic voltage spikes are not to be expected in such
a model. However, the model does possess indirect cou-
pling of the channels through their voltage—dependent
transition probabilities and the very rapid capacitive
equilibration of the transmembrane voltage over large re-
gions of the membrane. Consequently, numerical simula-
tions of the model show a transition, with increasing
channel numbers, from independent random behavior of
channels to large scale collective activity, i.e., regular
bursting, as the voltage coupling involves larger and
larger numbers of channels. One obvious prospect is to
approach this stochastic computer model from the essen-
tially equivalent viewpoint of a master equation and to
subsequently contract this description to yield Langevin
equations (or, equivalently, Fokker-Planck equations).
The Langevin equations should amount to a stochastic
version of the Hodgkin-Huxley equations. In the limit of
vanishingly small fluctuations (i.e., large numbers of
channels), the Langevin description should contract to
the original deterministic Hodgkin-Huxley description.
Since the collective voltage spiking is a property of these
deterministic equations, we would see in this way how the
emergent collective behavior arises from the global cou-
pling of independently stochastic elements. In addition
to obtaining this deeper understanding of the
phenomenon, the advantage accrues that far less comput-
er time is required for the simulation of the Langevin
equations than for the original computer model, or for
the simulation of the equivalent master equation, when
the number of channels is large.

III. HODGKIN-HUXLEY EQUATIONS

The deterministic Hodgkin-Huxley equation for the
voltage (omitting the so-called leakage terms) is [1,3]

dy, 1

dt v AC

in which V is the transmembrane voltage (in mV) in squid

axons, C is the membrane capacitance density (in

puF/cm?), A is the area of the membrane region under

study (typically 1 or 5 um?), Ex, =55 mV is the reversal

[Gna(V—Ex)+Gx(V—Eg)], (1)
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voltage for sodium, Ex =—72 mV is the reversal voltage
for potassium, Gy, is the sodium conductance, and Gy is
the potassium conductance. These conductances are
products of three factors: an individual channel conduc-
tance, I'y,=6 pS (picosiemens) or I'y =4 pS, respective-
ly, the number of channels in the area 4, Ny, or Ny re-
spectively, and a factor representing how many channels
are in the open state at a given time ¢. For sodium this
last factor is m *h while for potassium it is n*, and m, h,
and n satisfy the equations

d = — p—

dtm_a"'(l m)—B,m, (2)
4 h=a,(1—h)—B,h (3)
dt h R

d _ o

dtn_a"(l n)—B,n , (4)

in which each of the rate constants (in reciprocal msec)
a,,, a,, a,, B,., By, and B, depends on the global voltage
V. Explicit parametrization of the voltage dependence
for these rate constants in the nerve membrane may be
found in Ref. [3]. Taken together, these expressions and
Egs. (1)-(4) make up the Hodgkin-Huxley equations.

The powers used in the nonlinearities n* and m *h are
not absolute. For example, in kinetic models of the node
of Ranvier in a myelinated frog sciatic nerve, a motoneu-
ron, the description is given by n? and m 2k instead. Con-
sequently, the analysis that follows in Secs. V and VII for
the master equations will be given in a manner that is
easily generalized to other powers. Ultimately, biochemi-
cally oriented electrophysiologists must address the ques-
tion of the physico-chemical basis for these expressions.
Tentatively, it is thought that the fourth power in the po-
tassium case represents the cooperative action of four re-
gulatory molecules (proteins) constituting a single chan-
nel.

IV. STOCHASTIC AUTOMATON MODEL

The published stochastic interpretation of this
phenomenon is given in a different form [3]. It is ex-
pressed directly in terms of a computer algorithm. Every
5 usec the state of the system is updated. For the potassi-
um channels, 4N two-state elements (proteins) are con-
sidered. Each element may be either open or closed.
They are grouped in groups of 4 which represent a single
channel. If an element is closed at time ¢, then the proba-
bility that it remains closed at time ¢-+At is
exp[ —a,(V)At], and if it is open at time ¢, then the
probability that it remains open at time z-+At is
exp[ —B,(V)At]. These probabilities are realized in the
computer algorithm by random number generation. If all
four elements in a group of 4 are open at time ¢, then that
particular channel is considered conducting at that time
with conductance I'g; otherwise, it is nonconducting. At
each time the total conductance is the sum over all of the
conducting channels. An entirely analogous procedure is
used to compute the sodium conductance. Each sodium
channel is also considered a group of four elements, but
this time there are three m elements and one h element.
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The probabilities to remain closed or open are deter-
mined as above for potassium elements but with the ap-
propriate a’s and [8’s for m and & elements. This comput-
er algorithm amounts to a particular type of automaton.
For the particular parameter values indicated above, this
automaton is very noisy when Ny, and N¢ are of order
300 and 30, respectively. However, when they are of or-
der 1500 and 150, respectively, the computed behavior is
very similar to the output from the deterministic
Hodgkin-Huxley equations. Small fluctuations superim-
posed on nearly periodic spiking emerge. This is the
phenomenon we want to understand.

V. MASTER EQUATION
FOR POTASSIUM CHANNELS

The first step toward explaining emergent, regular
behavior is to render the automaton as a master equation.
This is possible because the essential ingredient for a mas-
ter equation is the transition probability [11,12]. This
quantity is given by the exponential probabilities for
remaining closed or open given above. Let us denote the
configuration of a two-state element (of type, m, h, or n)
by the symbols u, for open, and d, for closed:

1
0

0

=1

u= (5)

The state at time ¢ + At may be determined with the 2X2
transition-probability matrix W(At) given by

1—B(V)At
B(V)At

a(V)At

W(At)= 1—a(V)At

, (6)

if At is sufficiently small. For example, u "w(at)d
denotes the probability that an element makes a transi-
tion from closed to open in time A¢, i.e., a(V)At. For a
potassium channel, the channel state is the direct product
of four element states, i.e., an eight-state quantity [3,13].
Only the channel configuration u,®u,®u,®u, is con-
ducting. Let p denote the number of open elements in the
channel. Let W,(p’,p) denote the transition probability

J

for a channel to go from p open elements to p’ open ele-
ments in time At. We can construct W,(p’,p) from a
direct product of four matrices like the W in (6), except
that for potassium channels the a’s and [8’s must carry
the subscript n. The result is (both p and p’ go from O to
4),

(B, At)(1—B,At)P ™1

4 ip
W,(p',p)= 3 l

q=0 g
x|, N Ap )Y —pta
p'—p+g (a, Aty
X(1—a,At)* P77, (7

The global coupling, which makes each factor of a, and
each factor of B, in this expression depend on the same
value of the voltage, ¥, is the key to our ability to go fur-
ther with the analysis. For sufficiently small At, this
simplifies considerably to

W,(p',p)=[1—pB,At—(4—p)a,At]3, ,

+pB,AtS, ,_+(4—pla,Atd (8)

p,pt+t1
Thus, if there are Ng channels, the master-equation
probability distribution must be a function of Ng chan-
nels. Let the number of channels with p open elements be
denoted by C,. The number of channels with all closed
elements is not independent and is simply
Cy=Ng—C,—C,—C;—C, (we use the shorthand nota-
tion C, in the equations below), and the number of con-
ducting channels is simply C,. It is now possible to write
the probability distribution for N channels as a function
of the C,’s. Let the vector C denote the configuration
(Cy,C,,C4,C4). The probability distribution may be
written as P(C,t) and the transition probabilities may be
denoted by W,(C’,C). We obtain

w,(C,C)=C,W,(p’,p) 9)
if any only if C,=C,—1, C,,=C,+1, p'—p==1, and

all other C,’s and C,’s are identical. The master equation

takes the form

—P(C,1)=3 {(C,+Dw,(p—1,p)P(C, _,—1,C,+1,0)+(C,_,;+ Dw,(p,p—1)P(C,_,+1,C,— 1,1)

—[Cow,(p—1,p)+C, _w,(p,p —1]P(C,1)} , (10)

9 4
ot =
where
w,(p’,p)= lim Walp'op)
At—0 At
=8y p—1PBy 8y p 14— P, (11)

for p’'#p, which follows from Egs. (8) and (9). In the first
two terms on the right-hand side of (10) we have made
explicit the two C,’s that change while leaving implicit
the remaining two which do not change.

V1. FOKKER-PLANCK EQUATION
FOR POTASSIUM CHANNELS

For sufficiently large Ng, we may use standard
system-size procedures [11,12] to obtain a Fokker-Planck
equation approximation to this master equation. Let
x=C/Nx and denote by x, the quantity
1—x,—x,—x3—x4. Also define
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K, (x)=w,(p,p+1)x, 1, —w,(p+1,p)x,
+w,(p,p—1)x, —w,(p—1,p)x,
for p=1,2,3, (12)

K (x)=w,(4,3)x;—w,(3,4)x, , (13)
1
D, (x)=~— m[w,.(p,q )x, +w,(q,p)x,]

for p—gq==x1, (14)

1
Dpp(x>=m[wn([’,[’+1)xp+1+wn(l’+I,P %,

+w,(p,p—1)x, _+w,(p—1,p)x,]
for p7#4, (15)

Do(x)==——[w,(3,4)x, +w,(4,3)x,] . (16)

1
2Ng
The Fokker-Planck equation is

8 pix e o B
atP(x,t)—— p};,l ax, K, (x)P(x,t)
4 4 3?

+t2 2

p=1¢=1

3,3, D P (1)

The first term on the right-hand side determines the
deterministic limit behavior through K, (x). The fluctua-
tions are governed by the second term, the diffusion term
D,,(x).

VII. SODIUM CHANNEL RESULTS

Sodium channels also have four elements, three of type
m and one of type h. Let C,, denote the number of chan-
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nels with p m-type elements open and r h-type elements
open. In the sodium case, p=0, 1, 2, or 3 and r=0
or 1. Only the channel configuration u,,®u,®u, ®u,
is conducting [3,13]. Cy, is not independent and will be
used as shorthand for Cyy =Ny, —C10—C20—C3—Cq
—C,;—C,; —Cj;;. The number of conducting channels
is C;;. The probability distribution for Ny, channels
may be written as a function of the C,’s. Let the
seven-component vector C denote the configuration
(C10C20,C30,C015C11>C21,C3;). The probability distri-
bution may be written as P(C,t) and the transition prob-
abilities may be denoted by W,,,(C’,C). We obtain

W,4(C',C)=C,, W,,(p',p) (18a)

if and only if r'=r, C,=C,—1, C,,=C, +1,
p'—p=z=lor

W, (C',C)=C,, Wy (r',r) (18b)

if and only if r'#r, C,,=C,,—1, C,,=C,.+1, p’=p
where W, (p’,p) and W,(r',r) are defined as in (8) but
with the appropriate changes in subscript and argument
labels. In parallel with (11), we define

W..(p',p)
At

= p’,p—lme+8p',p+l(3_p a,, , (19)

I’ —_— 1'
W(P",P) Ao

(1) = lim 22"
PR T A

=8r’,r——1rBh+8r',r+l(l_r)ah . (20

The master equation takes the form

3 1 3
5PCH=3 3 [(Cpp+ VW, (p—1,p)P(C,_y, —1,Cpp +1,)+(Cp -1, + 1wy (p,p — DP(C, 1, +1,C,, = 1,1)]

r=0p=1

3
+ 2 [(CP1+1)w,,(O,1)P(Cp0—1,Cp,+1,t)+(Cp0+l)wh(l,O)P(Cpo+1,Cpl— 1,¢)]
p=0

13 3
- (C,,+w,(p—1,p)+C,_,w,(p,p —1P(C,t)]— I, [C,jw;(0,1)+C,ow,(1,0)P(C,1)] .
P P A P
=

r=0p=1

For sufficiently large Ny,, we may use standard
system-size procedures [11,12] to obtain a Fokker-Planck
equation approximation to this master equation. Let
y=C/Nyn, and denote by yy the quantity
1=y10=Y20~¥30~Yo1 —¥11 Y21 ~¥3. Also define

K, (y)=w,(p,p+1)y, 1, —w,(p+1,py,
Fw, (p,p =1y, —1, W (p—L,p )y,
+w,(0,1)y,; —w,(1,0)y,0
for p=1and 2, and r=0, (22)

(21)

r
Ky (y)=w, (p,p + 1)y, 41, —wn,(p+1,p)y,
tw, (p,p— 1)y, —,~w,,(p—1,ply,
—wh(O,l)ypl-l-w,,(l,O)ypo
forp=1and 2, and r=1, (23)

K3o(y)=wm(3,2)y20‘*wm(2,3)y30
+wh(0,l)y31—wh(l,0)y30 ’ (24)
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K (y)=w,,(3,2)y; —w,(2,3)y3

—w,(0,1)y3; +wy,(1,0)y4 , (25)
Ky (y)=w,,(0,1)y;, —w,,(1,0)yy,

—w,(0,1)yg; +w,(1,0)p49 - (26)
In addition, we define a much longer list of D, ,,(y) ex-
pressions in parallel with Egs. (14)-(16). For the pur-

poses of this paper, it is not necessary to explicitly exhibit
these quantities. The crucial point is that they are pro-
portional to 1/Ny,.

The Fokker-Planck equation is

—P(y,

K, (y)P(y,1)

pr

8
——K,(y)P(y,t)
Wor ol\y) £y

3003 3?

+2222

=0s=0 1 anpr P’vq-‘(y)P(y,t) .
r=0s=0p=1q=

(27

The last term in this equation is expressed very compact-
ly for brevity, and whenever » =0 and p =0 or s =0 and
¢ =0 then the corresponding D, ,; vanishes. Thus, there
are no y, derivatives, in keeping with the fact that y is
not an independent variable.

Needless to say, the Fokker-Planck equation for sodi-
um is rather more complicated than that for potassium.
Explicit expressions for D, . (y) take up more than twice
the space used for equations (22)-(26) because there are
49 separate quantities.

VIII. DETERMINISTIC LIMIT

The deterministic limits of the Fokker-Planck equa-
tions for potassium and sodium are obtained for very
large values of Ny and Ny, respectively. In this limit,
the diffusion terms in Egs. (17) and (27) may be dropped.
What remains are partial differential equations with first-
order derivatives on both the left and right-hand sides:

3 px=—3 -2 K, (xP(x1) (28)
a7 P axp ? T
—P(y, =— 2 2 a y)P(y,?)
r=0p=1
()
———K, (y)P(y,t) . (29)
Ayo; O y)Fty

These equations have the solutions

P(x,t)=8(x—x(t)) and P(y,t)=8(y—y(t)), (30)
where x(¢) and y(¢) satisfy the deterministic equations

d -

Exp(t)—Kp(x), dtyq,(t) o (y) (31)
in which p=1, 2, 3,and 4, ¢=1, 2, and 3, and r=0 and

1; or ¢g=0 and r =1. The explicit forms of the right-hand
sides of (31) are given by (11)-(13) and (19), (20),
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FIG. 4. Figures 4-11 are for Ny,=300, Nx =30, C=1
wF/cm?, and 4 =1 um? with a time step of 5 usec. The initial
conditions are the unstable steady-state values. This figure is the
voltage for the Hodgkin-Huxley model.

(22)-(26), respectively.

This implies that the deterministic limit of the stochas-
tic model is not precisely the Hodgkin-Huxley model
given in (1)-(4), but is modified. Instead, we get (1) to-
gether with (31) with Gk and Gy, expressed by

GK:rKNKX4 and GNaeraNNaySI . (32)

The quantities x, and y;; replace the quantities n* and
m3h found in the conductances in (1). Nevertheless,
comparison of numerical simulations of the original
Hodgkin-Huxley equations and these new, modified ver-
sions show remarkable quantitative agreement. This is
shown in Figs. 4 through 11. In fact, the steady-state
values of x, and n* and of y;; and m 3h are identical.
Especially important for the understanding of the emer-

60.0 —— [

40.0
20.0 —
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1 ~
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~80.0 —+ et : T
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FIG. 5. This figure is the voltage for the modified Hodgkin-
Huxley model.
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FIG. 8. This figure is m3h for the Hodgkin-Huxley model.

FIG. 9. This figure is y3;, the fraction of conducting sodium
channels, for the modified Hodgkin-Huxley model.

gence of collective regular behavior in the stochastic
model for large numbers of channels is the fact that Eqgs.
(1), (31), and (32) exhibit periodic spiking, just as do the
original Hodgkin-Huxley equations (1)—(4).

IX. LANGEVIN DESCRIPTION

To every Fokker-Planck description there is associated
a Langevin description. Since the Fokker-Planck
description is in terms of partial differential equations,
numerical simulations require a large lattice and become
very time intensive. The Langevin description, on the
other hand, involves stochastic, ordinary differential
equations that are more easily realized by numerical
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V (mV)
I

-80.0

IIII|IIII|IIII|IIWI|I1ll[l|\¥
159.0 160.0 161.0 162.0 163.0 164.0 165.0
t (ms)

FIG. 10. This is a direct comparison of the voltage for the
two models with the time axis expanded about 100-fold com-
pared with Figs. 4 and 5. The dashed curve is for the Hodgkin-
Huxley model and the solid curve is for the modified Hodgkin-
Huxley model.
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FIG. 11. This a direct comparison of n* with x,, and of m3h
with y;;, with the time axis expanded about 100-fold compared
with Figs. 6, 7, 8, and 9. The dashed curve is for the Hodgkin-
Huxley model and the solid curve is for the modified Hodgkin-
Huxley model. The higher pair of curves are for potassium.

simulations. Certain technical issues must be addressed
in making this correspondence. Every stochastic thing
we do here is done in the sense of Stratonovich [14].

Consider the Fokker-Planck equation (17) for the
potassium-channel case. The associated Langevin equa-
tion may be written as [15]

o (=R, (x(1) 48, (x(1))g, (1 (33)

in which the summation over the repeated index ¢ is im-
plicit, the g’s are statistically independent Gaussian white
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-60.0 | [
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FIG. 12. Figures 12-19 are for Ny, =300, Nx =30, C=1
uF/cm? and A =1 um? with a time step of 5 usec. This figure
is for the voltage calculated from the master equations (10) and
(21) and the voltage equation (1).
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FIG. 13. This is the voltage calculated from the stochastic
Hodgkin-Huxley model, Egs. (41)-(44), and from the voltage
equation (1).

noises with zero means and covariances of strength 2:

(g,(1))=0 and (g,(1)g,(t"))=28,,8(r—1') (34)
and R, and S, are defined by
S(x(2))=[D(x(t))]'/?, (35)

2 5 (x(1))

Ry (==K, (x(0)— | 5

Si(x(1) . (36)

Since the matrix D,, is symmetric, its square-root matrix
Spq is well defined. Moreover, since qu is of order
1/Nk, the correction to K, in the expression for R, is
also of order 1/Ng. While technically necessary, this

0.8 — . ‘

n
—

T AR T
uwwmugw%ﬁﬁﬂ A
j u { i u |

0.0 —+—

T T T T T T T T S
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T T
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FIG. 14. This shows variable n determined from the master
equations. To get n from the master-equation simulation, one
counts the total number of first elements (out of four) in each
channel that are open and divides by Ng.
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FIG. 15. This shows variable n determined from the stochas-
tic Hodgkin-Huxley model.

correction term sometimes may be omitted since it is so
small for large N.

Similar expressions are possible for the sodium-channel
case. However, because the deterministic equations (1),
(31), and (32) are so well approximated by the Hodgkin-
Huxley equations (1)-(4), it turns out to be very accurate,
and much simpler, to implement what amounts to a sto-
chastic version of the Hodgkin-Huxley equations. That
is, we simply introduce stochastic versions of Egs. (2)—(4)
and then raise n and m to the appropriate power for in-
clusion into the conductances for Eq. (1). This is vastly
easier to implement than the procedure just outlined in
the preceding paragraph. Nevertheless, if one works out-

1.0

0.8 —

0.6 —

0.4 —

FIG. 16. This shows variable m determined from the master
equations. To get m from the master-equation simulation, one
counts the total number of first m elements (out of three) in each
channel that are open and divides by Ny,.
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FIG. 17. This shows variable m determined from the stochas-
tic Hodgkin-Huxley model.

side the parameter regime in which there is such good
agreement between the modified Hodgkin-Huxley equa-
tions and the original Hodgkin-Huxley equations, then
the more complicated scheme must be used instead.

The stochastic versions of (2)-(4) are special cases of
the master equations (10) and (21). Instead of considering
the potassium channels to be made up of four elements,
we consider them to be made up of a single element of
type n. Instead of considering the sodium channels to be
made up of four elements, we also consider them to be
made up of a single element, but this time there are two
types, the m type and the h type. In all three cases, the
master equation is simply of the form

1.0

0.8 —

0.6 —

0.4 4

0.2 4

0.0 T T T T T T T T T T T T T T T

50.0 75.0 100.0 125.0 150.0
t (ms)

FIG. 18. This shows variable h determined from the master
equations. To get A from the master-equation simulation, one
counts the total number of 4 elements in each channel that are
open and divides by Ny,.
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FIG. 19. This shows variable 4 determined from the stochas-
tic Hodgkin-Huxley model.

%P(C,I)I{(c+l)ﬁ,,(t)P(c+ 1)

+(Ngx —c+1a,(t)P(c—1,t)
—[eB, (1) +H(Ng —c)a,(t)IP(c,t)} ,  (37)

which is explicitly for the n-type case and in which ¢
denotes the number of one element channels that are
open. For the m and 4 cases, only the subscripts » and K
need to be changed. A master equation of this sort was
studied by Fitzhugh [16] in 1965 but was not contracted
down to a Langevin equation.

The corresponding Fokker-Planck equations are also
special cases of the Fokker-Planck equations (17) and
(27). Letting n=c/Ng and P(c,t)/Ng =P(n,t), we ob-
tain

J —-_9 - \
atP(n,l‘) an[oz,,(l n)—pB,n]P(n,t)
PY: 'a,,(l—n)+Bnn
, 07 TP s on
an? N, (n,t), (38)

which is explicitly for the n-type case. For the m and A
cases, again only the argument n and the subscripts n and
K need to be changed.

Before we write down the corresponding Langevin
equations, one more simplification is possible. In (38), the
diffusion term may be replaced by its steady-state value
for the instantaneous value of the voltage

a,(1—n)+B,n a,B,

— , (39)
2Nk Ngla,+B,)
because
__ % 40)
s a,+B, (40

This approximation is independent of variable n and

eliminates the analog of the second term on the right-
hand side of (36).

The stochastic versions of (2)-(4), i.e., the Langevin
equations, may be written as

d - — —
dtn——a,,(l n)—pB,n+g,(t), 41
d__ \
L =a,,(1—-m)—B,,m+g,(t), (42)
%h:ah(l—h)~3hh (1) 43)

in which the g’s are statistically independent Gaussian
white noises with zero means and mean squares given,
e.g., in the n-type case, by

anﬁn

m&(t—t ) (44)

(g, (t)g,(t"))=2

or with appropriate changes in the subscripts for the m
and h cases. It is perhaps remarkable that after our long
excursion from automaton through master equations,
Fokker-Planck equations, and (finally arriving at)
Langevin equations that a highly accurate approximation
turns out to be simply a stochastic version of the original
Hodgkin-Huxley equations with noise terms having the
simple correlations given by (44). This is shown in Figs.
12 through 19.

In the general case, one must check by numerical simu-
lation that this approximate treatment is an accurate sub-
stitute for the more intricate treatment we have
developed in the preceding sections. So far, no purely an-
alytic method has been developed for deciding this
choice.

Two technical remarks are necessary in order to imple-
ment the stochastic equations (41)-(44). The noise terms
are generated at each integration step by the Box-Muller
[17] algorithm which starts with the generation of two
uniformly distributed random numbers from the unit in-
terval. Since n, m, and h are each bounded between 0O
and 1, it is necessary to check, after each integration step,
whether or not the noise term has taken the updated
values of n, m, or h outside of [0,1]. If so, then one must
redo the integration step, i.e., repeat the Box-Muller steps
with new random numbers, until the updated values of n,
m, and h each stay within [0,1]. This effective truncation
of the Gaussian random numbers, the g’s, is usually only
required when the values of n, m, or h are near the ex-
tremes of the interval [0,1] and is in keeping with the con-
straints rigorously required by the underlying master
equation. Since the Langevin description is an approxi-
mation to the master equation, it is consistent to approxi-
mate the Langevin implementation itself where necessary
so that the master equation constraints are respected. In
our programs, we achieve this truncation by internal do-
loops. This is much less singular than, say, resetting n,
m, or h to either O or 1 whenever its updated value leaves
[0,1] at O or 1, respectively.

X. CONCLUDING REMARKS

In this paper, we have investigated the phenomenon of
emergent, regular behavior in globally coupled, indepen-
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dently stochastic ion channels as the number of coupled
channels increases. While this kind of phenomenon
occurs in a variety of contexts [4—10], our focus has been
on the Hodgkin-Huxley model [1] for the generation of
action potentials in squid axon. An important underpin-
ning for our work was the realization that individual ion
channels behave as stochastic elements. This insight was
gleaned by Neher and Sakmann [2] in their revolutionary
patch-clamp experiments, and was used in stochastic au-
tomaton modeling by DeFelice and co-workers [3] and by
others [13].

The observation made in this earlier work [3] that
caught our attention was the fact that global coupling of
many otherwise stochastically independent ion channels
leads to regular, or periodic, macroscopic behavior, i.e.,
the generation of bursting, spiking, or action potentials.
It seemed obvious that the deterministic perspective of
Hodgkin and Huxley and the stochastic perspective of
DeFelice and others could be combined by standard pro-
cedures [11,12] that involve a succession of description
contractions involving automatons, master equations,
Fokker-Planck equations, Langevin equations, and finally
the deterministic limit of these equations. That these
contractions can occur is a consequence of the global
coupling, which in this case is created by the membrane
capacitance and the voltage-dependent rate constants.
We foresaw that what would appear as purely stochastic
behavior in small numbers of channels described by a sto-
chastic automaton model would appear as periodic spik-
ing in large numbers of channels described by the deter-
ministic limit of the underlying automaton description.
All that was needed to be done was to spell out the details
of the successive contractions.

What we found to be the case, however, was more deli-
cate than originally foreseen. In essence, the scenario just
developed was realized, but with an important proviso.
The automaton model does not literally contract into the
Hodgkin-Huxley model. Instead, it leads to a modified
Hodgkin-Huxley model given by Egs. (1), (31), and (32).
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Nevertheless, in the parameter regime of interest in ear-
lier studies, these two models yield quantitatively nearly
identical results in numerical simulations of the voltage
profile with time. Moreover, the Langevin stage of con-
traction for the automaton model is a stochastic exten-
sion of the modified Hodgkin-Huxley model. Its quanti-
tative behavior is nearly indistinguishable from the
behavior of a simpler, stochastic version of the Hodgkin-
Huxley model, which is given by (1), (41), and (44). In the
course of making these realizations, we have developed a
master equation the equivalent of the automaton model
and have done so in a way which is easily generalized to
model variations. These variations include changes in the
number and type of channel elements in multielement
channels. We also showed how to contract out the corre-
sponding Fokker-Planck equations and the equivalent
Langevin equations. These developments make up the
bulk of the content in Secs. V-IX. Thus, while achieving
our goal with regard to explaining emergent collective
behavior, we have also provided a general setting for a
large class of master equations and their contractions for
describing globally coupled ion channels and similar phe-
nomena in other physical contexts [S—10].

An especially useful benefit of this extension is the ob-
servation that numerical implementation of Langevin
descriptions is vastly more time efficient than numerical
implementation of the corresponding master equation.
In the case of the sodium and potassium action poten-
tials, the savings were roughly 100-fold for Ny, =1500
and N¢ =150.
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