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Earlier work on explosively unstable similarity solutions of Hamilton's equations with Hamiltonians

homogeneous of degree X and satisfying resonance conditions is applied to study the nonlinear stability
of linearly stable equilibria with neighboring positive- and negative-energy waves. A multiple-time-scale

expansion near equilibrium yields a Hamiltonian system of the assumed structure. In the inverse method
an explosively unstable similarity solution is assumed and one solves for the coefficients of the terms in a
Hamiltonian of some given structure. Through some general arguments and many examples one con-
cludes that explosively unstable solutions occur generally for wide ranges of coefficient values. Hence
the original equilibrium is nonlinearly unstable for wide ranges of interaction parameters.

PACS number(s): 03.20.+ i

I. INTRODUCTION

In 1925 Cherry [1]discussed two oscillators of positive
and negative energy that are nonlinearly coupled in a spe-
cial way, and presented a class of exact solutions of the
nonlinear equations showing explosive instability in-

dependent of the strength of the nonlinearity and the ini-
tial amplitudes, although linearized theory predicts abso-
lute stability. (For references on nonlinear instabilities
see J. Weiland and H. Wilhelmsson [2] and H.
Wilhelmsson [3]; see also Ref. [4].) Pfirsch [5] has refor-
mulated Cherry's example and generalized it to three os-
cillators satisfying the resonance condition g, co, =O. If
this condition is not satisfied, the system is still explosive-
ly unstable, but the initial perturbations must exceed a
certain threshold. It is easy to generalize this further to
an arbitrary number of oscillators, but the coupling terms
are restricted to be Cherry-like. In the quantum mechan-
ical language of Refs. [5] and [6], this means that the cou-
pling terms consist of products of creation operators only
and annihilation operators only. Such coupling terms do
not represent the general case, in which a sum of mixed
products of annihilation and creation operators occurs in
the coupling terms.

This paper explores the occurrence of explosive insta-
bilities in dynamical systems in the neighborhood of a
linearly stable equilibrium point where the frequencies of
the linearized motion satisfy resonance conditions. The
multiple time scale formalism has been applied previously
to this problein [6], and this paper employs many of the
results developed there. The occurrence of resonance in-
troduces an additional constant of the motion [6], which
ensures that for such systems nonlinear instabilities may
occur only if negative-energy waves are present. The
close connection between nonlinear instability and the ex-
istence of negative-energy waves has been considered by
many authors [7—9], and has led to extensive literature in

plasma physics examining the conditions for the existence
of negative-energy waves [10—12], and references cited
therein. Related dynamical problems also appear in the
context of nonlinear optics [13,14]. This paper examines
the connection between negative-energy waves and non-
linear instabilities.

If the origin is a linearly stable point of equilibrium

for a dynamical system with real-valued Hamiltonian

H(g , gk ),j,k = 1., 2, . . . ,M, then one may assume that

n

H= & ~(k'k+ V(01 0k»
/=1

where V(gi, gk ) has many derivatives with respect to its
arguments and the function and all its first and second
derivatives vanish at the origin and co( are real constants.
In order to examine solutions near the point of equilibri-

um, one may set

(i=ail, , j=1,2, . . . ,M, (2)

where

M

H(n, nk)= & ~(n(n('+& 'V(&n, &n(, ) .
1=1

(4)

The interaction function e V(eg ,elf ) is a . sum of
homogeneous polynomials of degree X in g. and gk mul-

tiplied by e, where N 3, plus an error term which is
multiplied by a higher power of e. The equations of
motion obtained from (3) and (4) are

where e is small, so that the variational form associated
with Hamiltonian's equations becomes

M M
i g (('dg( Hdt=@ i g rt('d—ri( H(ri, qk)dt, —(3)

1=1 1=1
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i /I ~l ql+e e V(eg'ieqk } i (5)
mation property:

(14)

where the second term on the right hand side of (5) is
small in e Hamilton's equations in the form (5) make ex-
plicit the linear stability of the original system (1), in that
for a=0, corresponding to small amplitude solutions, c.f.
(2), the solutions are purely harmonic oscillators. The
question then naturally arises: Do the small, nonlinear
terms in (5) cause the solutions to become unstable? That
is, do the small nonlinear terms in (S) cause the solution
to move away from the origin?

The system (5) has been treated in [6] with the multiple
time scale formalism, and if one introduces g&(t) by

i)i( t) =gi( t)e

[compare (11), (12), and (13)] and that any solution of (7)
also satisfies

g co lg. l
=const, (15}

as well as the standard relation for time-independent
Hamiltonian systems

W(g, gk }=const . (16)

From the transformation property (14), it follows that {7)
may possess explosive instability similarity solutions of
the form

then in lowest nontrivial order (I(t) satisfies

dpi BW
i(i =i —= (g,pk), l=1,2, ...,M,i

where

W(gj, gk)= lim —J dt'Vz(e ' gj, e " gk),

(7)

(8)

J
gf(t) =

Py[ (N 2)] P J 1 P 2P PM
[1 (N —2—)a~]

(17)

where a and P are real constants and p are complex con-
stants. In order that (17) be a solution of (7) the con-
stants must satisfy

nm =0.j Jj=1

More precisely, for the monomial

M

n ~,"(g)"
j=1

to appear in W, m, n. , and coj must satisfy

M

g (m +n )=N
j=1

and

M
(m nj )coj.=0 .—

j=1

(10)

(12)

(13)

Thus W(gj. , gk ) is a real-valued sum of monomials of the
form (11)—(13) multiplied by complex coefficients. If the
system (7), an approximation to the original system (5),
has solutions that move away from the origin, for in-
stance, explosively unstable solutions, then it is reason-
able to conclude that some solutions of the original sys-
tem also move far from the original, although they might
not be explosively unstable.

The following results are taken over directly from [6],
where it was shown that W(g, , pi*, } satisfies the transfor-

Vz(i', rtk) is the lowest order homogeneous polynomial
of degree N from V(g, gk ) which generates a nonvanish-

ing W(g, Q), and

N —2 (9)

The assumption that W(g, g ), a real-valued homogene-
ous polynomial of degree N, is nonzero has as its conse-
quence that the linearized motion possesses resonances,
that is, there are positive integers n such that

M

g, (r)=p, e (19)

a solution not relevant to the study of explosive instabili-
ties. Provided aAO, it is clear that the constants on the
right hand sides of (1S) and {16)must vanish, so that

and

g ~, lp, l'=0
j=1

W(v, t k)=0.

(20}

Both (12) and (13) may be obtained directly from (18) by
the formation of linear combinations of the individual
equations in (18},cf. [6].

Almost all the material in this paper relates to resonant
interactions, nonetheless for the purposes of comparison

aW
{a+&, '»It, =D,v,=, (vk Pl »1 J J J g e

j=1,2, .. . ,M . (18)

A further useful property of the similarity solutions (17)
is that if pj, a, and P characterize a similarity solution,

A+ice B
then also pje ', ae ' '",Pe ' '", with e" and

8 real, describe another similarity solution with ~ dis-

placed by a given ainount. Thus, of the 2M+2 real con-
stants that characterize a similarity solution, Re@j, Imp j,
a, and P, two may be specified independently of the in-

teraction W(g, gk ). This paper explores the realizability
of the explosively unstable solution (17) for the dynamical
systems under consideration.

In order that (17) represents an explosively unstable
motion it is necessary that aAO, which is assumed in the
remainder of this paper. In the limiting case a —+0, PAO
(17) reduces to
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it is useful to consider the Hamiltonian system (7) where

W(gj, g ) is a homogeneous polynomial of degree N, but
the additional resonance conditions (11},(12), and (13) are
not imposed. This case is referred to as nonresonant, and
is a purely formal example; it cannot be obtained by the
multiple time scale averaging employed in (8). Nonethe-
less the Hamiltonian W(g. , gk) satisfies the transforma-
tion property (15) provided one sets cu =0,j=1,2, . . . ,M.
Thus, (17) is still a possible solution of the system (7) pro-
vided (18) holds and one sets co =0 in (17) and (18). This
solution is characterized by 2M+1 real constants, of
which one may be specified independently of W( g, , gk ).
Finally the identity (20) is trivial, while (21) is not.

II. THE INVERSE PROBLEM

Q ~2M —d ~0 (22)

and that 2M —d is the rank of the matrix. In order that
(18) be solvable the left hand side of (18) must satisfy d
real consistency conditions, and these conditions involve
p. , a, and P only. If these d consistency conditions admit
nontrivial solutions then the system is solvable for the in-
teraction constants, which depend on Q —(2M —d) arbi-
trary parameters.

Normally, one gives the interaction Hamiltonian
W(g, ,g), a homogeneous polynomial of degree N satis-
fying the transformation property (14) and one attempts
to determine the coeScients characterizing the explosive-
ly unstable similarity solution p, , a, and P. The resulting
problem, the determination of the solvability of the large,
nonlinear algebraic system (18} is extremely difficult and
typically leads to the establishment of conditions for the
existence of real and positive solutions of a high order
algebraic equation [5,6]. The inverse problem is to con-
sider the quantities p, , a, and P as given, and to deter-
mine the coeScients in the 1Vth order polynomial charac-
terizing the interaction Hamiltonian. The inverse prob-
lem is greatly simplified by its linear character. By its
very nature the inverse problem changes the question
from "does a particular Hamiltonian admit explosively
unstable solutions?" to "for a Hamiltonian of a particular
structure how large is the range of values of the
coeScients in the Hamiltonian for which explosive insta-
bility solutions occur?"

The interaction Hamiltonian is composed of a sum of
monomials of the form (11}—(13) multiplied by interac-
tion constants y, 5, e, g, i}, p, o, etc. For the term

y ~gj ~ ~gk ~
to be real, it is clearly necessary that y be

real. Thus, not all interaction constants may be explicitly
complex. Here, it is assumed that Q real interaction con-
stants characterize W(g, , gk ), and the inverse problem is
to solve the real 2M equations given by the real and imag-
inary parts of (18) for the Q interaction constants. This
problem is the standard problem of linear algebra and the
solution is immediate. The coefficients of the interaction
constants on the right hand side of (18) form a matrix of
2M rows and Q columns. The rank of the matrix can be
no larger than 2M, or Q, so that in any case there must be
an integer d ~ 0 such that

The linearity of the system also implies that if a, P, p~.

are a solution for one set of interaction constants, then
A,a, AP, pj are a solution for the set of interaction con-
stants of the first case each multiplied by A, . Thus, in the
space of interaction constants, explosive instabilities
occur on full lines passing through the origin. It suffices,
then, to determine these points on the unit sphere in in-
teraction constant space for which explosive instabilities
exist. One may then speak of the fraction of the area of
the sphere of explosive instability Hamiltonians. This
fraction also represents the fraction of the entire space
for which explosive instabilities occur.

For the case of resonant interactions d ~ 1, since (20)
exhibits one dependency relation derivable from (18) no
matter whether Q ~2M or Q &2M. Other dependency
relations among the p, , a, and P may arise from con-
stants of the motion of the system, or from the require-
ments imposed by the linear algebra problem and which
have no clear dynamical origin. In the resonant case, as-
sumed for the rest of this paragraph, the constraint clear-
ly shows that explosive instabilities are possible only if
both positive-energy waves, co &0, and negative-energy
waves, co (0, are present. Otherwise only the trivial
solutions p =0 or stable solutions a =0 are possible. Un-
der the assumption that the d real constraints admit non-
trivial solutions, it is interesting to carry out a "counting
argument" to try to predict the dimensionality of the set
in interaction constant space in which explosive instabili-
ties appear. If the dimensionality of the set equals the
dimensionality of the full space, then by the previous ar-
guments some nonzero fraction of the space of interac-
tion constants is covered by explosive instabilities. The
2M+2 real constants Re@, Impj, a, and P are con-
strained by d real relations; furthermore, two of the pa-
rameters may be chosen arbitrarily without affecting 8'.
Thus, the linear system for the interaction constants de-

pends on 2M+2 —d —2=2M —d free parameters. The
solution of the linear system for the Q interaction con-
stants also depends on Q

—(2M —d) other free parame-
ters. Hence the Q interaction constants are characterized
by Q

—(2M —d )+2M —d =Q free constants. This
counting argument would suggest that the dimensionality
of the set of interactive constants whose Hamiltonians
admit explosive instability solutions is Q. Of course, this
argument is no proof, as the Jacobian of the transforma-
tion from interaction constants to free parameters may
vanish identically. Nonetheless, it is very suggestive.
This argument also assumes that d, an integer, is con-
stant. It is clear that d may change its value on lower di-
mensional manifolds in the space of coefficients p, . A
further, detailed discussion of additional pathologies ap-
pears of limited benefit. Nonetheless, in general one ex-

pects the set of solutions for the interaction constants to
lie in a Q dimensional set. Correspondingly, a positive
fraction of the set is associated with explosive instabili-
ties.

The situation with a nonresonant Hamiltonian is not
substantially different, other than d =0 is possible and
that the explosive instability solution depends on only
2M +1 parameters, since P=O. With appropriate
modifications the counting argument leads to the same
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conclusion; the Q interaction constants depend on Q free
parameters. After the examination of a number of expli-
cit examples, the conclusions section summarizes the re-
sults.

III. EXAMPLES

In each of the following examples the frequencies of
the interacting waves are chosen to be co„=n, where the
integers may be positive or negative. The choice of this
special form of the frequencies allows realization of vari-
ous resonance situations in a simple manner; it does not
imply any significant restriction. The resonance condi-
tion (10) requires that the interacting modes separate into
subsets, each of which has commensurable frequencies.
The case we have treated, with only one set of com-
mensurable frequencies, is, in fact, less restrictive than
the cases with two or more sets of commensurable fre-
quencies. In the latter case, the interaction Hamiltonians
are even more restricted.

A. Third order interaction of four waves

(1) A "typical" case, co 2= —2, co1=1,c03=3, co4=4,

re(4 —2}'+r "C4(k'-2) +PC441 k3 +P (441(3

++43(10—2+~ 4341k—2+5414—2+5 kl } 4—2 '

(23)

for which the linear system is

D —2P —2 r'(P'1 )'+ 5*(P'-1}'

D 114 1=+25I4 2J4'1+2(I4' 1I4

D &P&
=2&*@*2JM~ +26*Pl @2

D2I 2=+~i 1+01 ' 1}'.-

(29)

The system (29) has great similarity to the previous
case involving eight real equations and eight unknowns,
the real and imaginary parts of r, 5, e, and g. The system
is significantly difFerent, however. If one takes the com-
plex conjugate of the second and fourth relations, one
sees that (29) is a complex linear system for 0', 5', e',
and g', so that one need not split (29) into real and imagi-
nary parts, and moreover that

2IP 21
—D'1IP 1I

—D1IP11 +2D2 I@21'=0 (30)

so that one complex consistency relation exists. The
imaginary part of (30), provided a%0, yields the known
constraint

parameter space is eight dimensional.
(2) An "untypical" case, co 2= —2, co,= —1, co, =l,

c02 —2~

w rk —201+ Y P—2(41 } +5k—2(P—1} +5 0—2(k —1}

+42 k1+&*4(P1 }'+0'4(4-1)'+ N2 (4'-1}'

The system (18) is 2IP 21'+ IIM 11'—I@11'—2IP2l'=0 (31)

4P'4 r (P' 2} +P Plp'3—

D3p3=+pp& p4+u*p

D1P1=+P143144+oP 2P3+25 I4

D 2I 2=2r'I '-u4-+~'P1 3-+5'(I 1
}' .

(24)

Clearly (24) represents eight real equations in the eight
unknowns, the real and imaginary parts of r, 5, p, and 0.
There exists at least one linear dependency relation,

—2 IP 1'+2IP, I

'+ 3 IP31'+4 IP41'= 0, (25)

and another linear combination of the relations shows
that

W(}, I k}=0. (26)

It is convenient to replace the last complex equation of
(24) with the two real relations (25) and (26). One can
then solve the first three equations of (24} for r, o, and 5
as functions of p and p', insert the solutions into (26),
and one finds

@II,l'+31@31 +—8Ip4I')=pi ', I 3I 4+p I 11 3y4. (27)

Thus, provided p1p3P4«, (27} determines Re(pp1~p3p4}
w»1«m(pp1'p3@4) is arbitrary. The one arbitrary con-
stant Im(pp1 p3p4) then completely determines r, p, o,
and 5, provided that (25) holds. This is clearly the gen-
era1 situation of the inverse problem for which d =1.
One can also solve the direct problem, and with a little
efFort show that the domain of explosive instabilities in

while the real part, with (31), yields

P(11 11'—I@11'}=0. (32)

For the dynamical system with Hamiltonian (28) it is easy
to verify that for a general solution lg 1(t}I

—I)1(&)I
1s

not a constant of the motion. Thus, the constraint im-

plied by (32) is not a general dynamical property of a
solution. In order to verify that there are no other con-
straints than (30), so that d =2, it suKces to show that if
g' is given, but arbitrary, one can solve the first three
equations for r', 5', and e'. The solvability condition is
that

2p

(P 1)'

2p

2@iP2

=4P'-2(P1)'P2« . (33)

+2P3$3 glg2+2P3 $301

for which the system (18}is

(34}

Thus, except on the lower dimensional manifold

p zp,p2=0, the system is solvable and d =2, as claimed.
Except that d =2, one would expect an eight dimensional
manifold of parameters for which the Hamiltonian sys-
tem possesses solutions with explosive instabilities.

(3} An apparently overdetermined system, co 3= —3,
co~ —1, c02—2, Q)3 =3,

W=6rk 3(142+6r P 34-1 P2+P2k241+—P242(41 }
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D 3p 3=6/ p) p2

D,p&
=6y*p* 3p2 +2p2 p& p2+ 2p3 p2 p3

D2p2=6y'p' 3p', +p2(pi) +2p3p& p3

D3p3= +2P3pip2 .

Since (35) consists of eight real equations in terms of 6
unknowns, d must be at least two. It is easy to obtain the
complex consistency relation

~lp )I'= —~lp~l'=~lp31'. (45)

W= W(g,g, g;(Ii, g„,gi'), ka, &+p (46)

No nontrivial solution of (45), and thus (44), is possible
for aWO. Thus no explosive instabilities occur.

This example exhibits the possible effects of the ex-
istence of additional constants of the motion. For a
Hamiltonian system (7) if g and (& occur only in the
combinations g g and g'g&, so that

for which the imaginary part is, provided a&0,
—3lp, 31'+ Ipgl'+2lp21'+3lp3 '=0

and the real part, after the use of (36),

(37)

Di pal' —2D2 lp21'+ Ip, l'(2D, —D3 )

+Ip 3l (2D'3 D—3)=0, (36)

it follows easily from (7) that

lg, l
+ If'&I =const

and if

then

w =w(g.g,,g:g,g„,g;), km', imp

(47)

(48)

—2lp21'P=O . (38)
=const. (49)

It is easy to conclude that provided p 3p,p2p3%0 and
(36) holds, (35) possesses a unique solution. Thus, from
(38) one infers that

, I +If'2I =const (50)

Generalizations of (46)—(49) are readily made. For the
Hamiltonian (42} it follows

(39)
and

9 y I' & IP31', (40)

so that (37) and (39) are the solvability conditions for (35}
and d =2.

It is known [6] that explosive instabilities exist for (34)
if and only if

Ig'2I +lg3I =const (51)

so that no explosive instability is possible.
(2) An overdetermined system with noncompact con-

stants of the motion. If (42) is replaced by the Cherry-
like system

and it is interesting to see the result appear in this case.
One finds easily from the first and last equations of (35)

3
I y I

p —3I' 3 Ip3 I'+2lp2I'+ Ip g
I'

IP3I Ip, l' 3 p31'
(41)

B. Third order interaction of three waves

(1) An overdetermined system with a compact constant
of the motion, co

&

= —1, co2=2, co3=3,

where (37) has been employed to eliminate
I p 3 I

. Al-

though the domain of explosive instability Hamiltonians
is six dimensional in the space of coefficients y, p2, p3, it
does not cover the full space, as (41) clearly shows.

W=yg, gzg 3+V"g;gag'3

then the system of linear equations is

D 3p 3=y p)p

D,p, =y'p' p*,
D 2p2

—p p 3p

for which the consistency conditions are

D —3 lp —31 Di lpf I Dilpil

whose imaginary part yields (aAO)

Ip 31'=Ip)l'=Ip21'

(52)

(53)

(54)

(55)

w=yk ik4+y*k—*
ikA3

for which (18) is

(42) and whose real part requires P=O. Thus, explosively un-

stable solutions occur provided (55) holds. The dynami-
cal system (52} possesses the constants of the motion, see
(48) and (49),

D2pz='Vp —ip3 ~

D3p3 'Y p —ipse .
(43)

3I
—Ig, l

=const,

lg, l

—
Ig2I =const, (57)

D ilp )I'=Dflp~l'=D3lp31',

of which the imaginary part is

(44)

Clearly the system (43} is greatly overdetermined and the
consistency conditions for a solution are

equivalent to (53) for explosive instability solutions.
Thus, constants of the motion may or may not inhibit ex-

plosive instabilities. A more intricate example is given
below in terms of a five wave resonant interaction. Slight
generalizations of cases (1) and (2) are integrated explicit-
ly in the Appendix.
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(3) A case in which the interactions do not satisfy the
resonance conditions (12) and (13}. A variation of the in-

teraction (42) is

C. Third order interaction of five waves

,co i
—l, 602 —2, 603 =3,

~=r4 —ik 4+r'I'-1k'
+ —,

' I5( +5'(g')'+eg +@*((3)'I . (58)

Yk —142 (3+Y 0—1(243 +5(142 (3+5 Elf 2(3

+4—2(k —1} +~ k —2k —1+M—241+0 k —2((1 }

The subscripts —1, 2, and 3 no longer refer to mode fre-
quencies, but only indices that facilitate a comparison
with (42). Consistent with the discussion of nonresonant
Hamiltonians, one assumes P=O, but a%0, so that the
conditions for an explosive instability become

I,ap &
=y*p~3,

1+P2 YP' —1P3+5 (P2 }

iaP3=r P 1P2+—e (P3 )

(59)

It is clear that the system is solvable for y, 5, and e for
any nonzero values of a, p &, p2, p3. The fact that no
constraints of the form (20) exist is a direct verification
that the system is not resonant. Since solutions exist
without constraints, one expects the set of Hamiltonians
with explosive instabilities to be of dimension six in the
space defined by the real and imaginary parts of r, 5, and

For this simple problem a direct solution of (59) is pos-
sible, in which r, 5, and e are given and then a, P „P2,
and p3 are determined. It is convenient to define v. by
the relation

+nk-2k'- 141+v'0'-2k- Ai (64)

Ig'21 + Ig'31 =const . (65)

Hence the only admissible solution with explosive insta-
bilities would require

(2=4=0 . (66)

The interaction (64), with $2=(3=0, is quite similar to
(28), and it is easy to verify that explosive instabilities
occur. Thus, even with constants of the motion of the
form (65), if there are enough other interacting modes,
then explosive instabilities may easily occur.

D. Fourth order four wave interaction

The Hamiltonian (64) is a complicated extension of (42)
involving five mode amplitudes g 2, g „g„(2,(3, and

five complex constants r, 5, e, g, and ri. Thus, it would

seem reasonable that explosively growing modes would
exist. However, (2, gz, (3, and (3 occur only in the com-

binations (2(3 and gz(3, so that from (46) to (47) it fol-

lows for any solution

p~
= LQvj

so that

(60) This final example with co 4= —4, co,= —1, co2=2,
c03—3, and

V i g v2V3

v = —rv, v —5'(v')

v3=r*v'-iv2 ~'(v3 }'.
On elimination of v, one finds

5lll (vo )2

I
v21'=

1+ lrl'lv31'
'

~'(v' )'

1 —lrl'Iv21'
'

(61)

(62)

so that arg(v2) and arg(v3) are uniquely determined, and
finally,

r '
1+ Irl'Ip (63)

The relation (63) does not allow solutions for IP31 real
and positive for all values of Irl, 151, and lel. For in-
stance, no real, positive roots exist for lrl)151 and
lel =0, and thus by Rouche's lemma, also in some set
with I@I/lal sufliciently small. On the other hand, for
I r I (151 and I el /lal sufficiently small, real positive solu-
tions clearly do exist. The dimensionality of the set of
Hamiltonians with explosive instabilities is indeed six, al-
though it is not the full space.

~=r(2(A-ik-4+r "02(3g'-ig' 4

+5&2«- »'+5'42 (0'- i }'+4-4P-4k- ik'- i (67)

D21P21 1 P 4P 1P2P3 5 P—2P —1P 4——

D —1IP—11
=YP 4P 1P2P3'— —

+25P2(P i } P 4+&IP 4—1 IP 1—I——

D 41P 41 YP—4P —1Pz P3'— —

+5 P2P iP 4+&IP 4—1 IP il— — —

(68}

One can eliminate y and 5 in the third and fourth equa-
tions of (68) by the use of the first two relations and one
finds

D 4IP 41'—D2IP21'=~IP 41'IP il',
D 4IP 41'—D 1IP 11'+(2D2 —D2}IP21'

(69)

+(D3 —2D3 )IP31 =0, (70)

exhibits another significant aspect of the problem. In the
interaction Hamiltonian (67) e must be real, so that W is
characterized by five real interaction constants. The
equations characterizing explosively growing modes may
be written in the more symmetric form, derivable from
(18) by multiplication by P':
D3IP3I'=r'P' ~' iP2P3-
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and one may replace the last two equations of (68) with
(69) and (70). Clearly the first two equations of (68) deter-
mine y and 5 provided none of p 4, p &, p2, p~ vanish,
so it suffices to study only (69) and (70). The imaginary
part of (69) yields, provide a%0,

IP g'=IP31',

while the real part yields

(71)

~IP-gl'IP-gl'=(4IP gl'+2IP3}'P=6PIP gl' (72)

so that

el@ il'Ip 41'=6Plp 41'.

The imaginary part of (68) yields

0=I@ 4' —IP |I'—&1@21'+&IP31'

(7&)

(74)

The two relations (71}and (74) are equivalent to the reso-
nance identity

0= —
4IJ 41' —Ip il'+21ju21'+~I@31'.

Finally the real part of (70) gives

P[4IP gl' —IP 31'—21@21'—&1@31']=0

(75}

(76)

or

—2Plp |I'=0. (77)

while from (73)

@=0. (79)

Provided (78) and (79) hold, then (69) and (70) reduce to
(71) and (74}, [or (75}],and explosive instabilities exist. In
this case the dimensionality of the set of Hamiltonians
with explosive instabilities is no more than 4, since e=O,
and the dimensionality is lower than the dimension of the
set of Hamiltonians. Parenthetically, one can readily ver-

ify that

If p &=0, then there is no interaction and no explosive
instability; equally if p 4=0 then p2 =0, and again no ex-

plosive instabilities exist; hence p &p &%0 and from (77)

=0

problem by an inverse procedure. A form of interaction
Hamiltonian is given, corresponding to a homogeneous
polynomial of degree E, which is consistent with the
time-averaged resonant interaction hypothesis, and which
is a linear function of the interaction constants. The
question is then, for a given structure of explosive insta-
bility mode, is there a set of interaction constants which
is consistent with that mode? Typically, provided there
are enough interaction constants an explosive instability
is possible for a domain of positive volume in the space of
interaction constants. A positive volume also implies
that a positive fraction of the entire space is associated
with explosive instabilities. It is possible, however, that
for special cases the domain of interaction constants with
explosive instabilities is of lower dimension than the full

space. The existence of additional constants of the
motion may prevent explosive instabilities, or again it
may not, even if the additional constant of the motion it-
self appears inconsistent with an explosive instability. All
of these possibilities are shown in the many examples
given. Thus, this work strongly supports the idea that
explosive instabilities occur commonly for homogeneous
interaction Hamiltonians, provided there are enough in-

teraction terms between the various modes.
These results also have consequences for more general

Hamiltonian system. In the neighborhood of a linearly
stable equilibrium point, if there are modes of both
positive- and negative-energy type, then explosive insta-
bilities are likely for substantial ranges of values of the
higher order resonant interaction constants. The many
examples show that it is not possible to give absolute re-
sults, but provided many modes interact with many in-

dependent forces, the equilibrium point is most likely to
be nonlinearly unstable for wide ranges of parameters.

Finally, we point out that possible symmetries, imply-

ing momentum conservation in certain directions, can
lead to spatial resonance conditions which will not allow
the required resonance conditions to be fulfilled exactly.
According to results obtained in Ref. [5], such a
mismatch of the frequencies should have the consequence
that for nonlinear instabilities to occur nonzero minimum
initial amplitudes would be required. Except for this
modification, however, the general results should remain
valid.

&31
—

g ~1 =const (80)
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IV. SUMMARY

This paper examines the consequences of a multiple
time scale expansion of a Hamiltonian system of M in-
teracting modes. The expansion leads to the study of
Hamiltonians homogeneous of degree N satisfying certain
resonance conditions. An earlier work [6] established
many general properties of such systems and showed that
provided both positive- and negative-energy modes are
present, explosive instabilities originating in similarity
solutions may occur. This paper has addressed the same

APPENDIX

~=~ gl4 gl'+~314/1'+~31431'

+7 f 142 f3+ Y 0——14243 (A1)

The observation that the Hamiltonians (42) and (52)
have constants of the motion (50), (51), and (56), (57) as
well as the Hamiltonian itself permits an explicit integra-
tion of the equations of motion in a somewhat simpler
and more direct manner than employed in [4]. The Ham-
iltonian (42) may be extended somewhat to
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for which it is easily verified that

, I
+ lg2I =const=k

i 82(t)
g,(t)=p(t)~ '

then from (A2) and (A3)

(A4)

and

I$2I +If'sl =const=l . (A3)

g, (t)=+k —p'(t)e

g,(t)= t/ I p—'(t)e '
(A5)

(A6)

If one sets
and froro the constancy of 8' one infers that there is a
constant h' such that

c0'p2(t)+2lylp(t)+[k —p (t)][l p—(t)]cos(8, 8—2+8&+5)=h', (A7)

where

y= lyle" (A8)

Eq. (52),

~=~+)lg)l'+~2lg~l +~ 3lg —31

and

CO
—M2 N

~ COp .

+ykkk ~+y*k(M* s-
(A9) the two constants of the motion are

(A12)

The differential equation of motion for $2(t) is

tk242 +24202 +yk 1424—3 &

whose imaginary part, after the use of (A7) is

(A10)

I 4 pl' —i(21'=k,

lg, l' —lg, l'=l,
so that with the definitions (A4), (A8), and

(A13)

(A14)

p(t)p(t) =
I I y I'p'(t) [k —p'(t) ][l—p'(t) ]

i [h
~ &~p2(t)]2] 1/2 (Al 1)

Clearly p(t) is determined by quadrature, and the phases
~(t), 82(t), and 8s(t) are subsequently also determined

by quadrature. Thus the system given by (Al) is integra-
ble.

For the Hamiltonian studied in [5], a generalization of

N =CO~+C02+N

one finds, in analogy with (Al 1),

p(t)p(t) = [lyl'p'(t)[k+ p'(t)][l+p'(t)]

[h c0 p2( t ) ]2 ]
1 /2

(A15)

(A16)

a result given in [5]. The systetn with Hamiltonian (A12)
is thus integrable.
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