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Oscillation mode and "nonlinear" radiation of the double sine-Gordon 2~ kink
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The collective coordinate method has been used to investigate the oscillation mode of the static and

moving m.-~ kink system of the double sine-Gordon equation. A condition for the linear stability of the

system has been found, the interaction parameter A, (0.774. We have shown a pronounced effect of a

constant external perturbation generating nonlinear periodic nonsinusoidal oscillations. This radiation

appears due to interplay of the nonlinearity and of the perturbation.

PACS number(s): 03.40.Kf

I. INTRODUCTION

The double sine-Gordon equation (DSGE) appears in

many physically relevant systems [1—4]. Usually, the
DSGE is related to the sine-Gordon equation when add-

ing certain specific interactions. This is the case, for ex-

ample, of the charge- and spin-density waves in (1+1)D
phase models with SU(2) symmetry and with a half-filled

band when also including Coulomb interactions [3].
It is known that the DSGE

a' a'
+A, sing+ sin2$ =0

c}t2

is not integrable. However, it is possible to find a reason-
able form of an ansatz for a solution in a specific range of
the interaction parameter A, , A, & 0.

The potential related to Eq. (1),

V[/ ]=A( 1 —cosf ) +—,
'

( 1 —cos2$ ), (2)

has its minima at /=0 (mod2~) and a local minimum at
P=m for A, &2. Two free (uncoupled) n. kinks which are
solutions of (1) at A, =O become weakly coupled for
0 & A, & 2. In other words, the 2n kink of the SGE splits
into two separated n kinks for A, sufficiently small. For
A, &2 the local minimum at P=m disappears. The two m

kinks are no longer distinguishable objects so that with
increasing A, they shrink to a 2nkink. [In th. is case the
last term in (1) can be neglected]. Therefore, for l
sufficiently small, it is reasonable to choose the solution
to (1) in the form

Px =2 arctan[exp(8+ 6 ) ]+2arctan[exp(8 —b, )], (3)

where

8=(2+A, )'~ g/go, g=x ut —xo, —

go=(1 —u )' and cosh b, =1+2/k .

The form (3) can be rewritten, alternatively, as

px =2arccos{ —tanh8/[cosh b, —sinhzb, tanhz8]'~2]

= —2arctan{ —sinhA/sinh8] .

The centers of the m solitons x+ are shifted due to the
repulsion parameter A, :

x+ =xv+5(2+A, )
'~

go . (5)

The excitation spectrum of the static solution (u =0)
has been investigated in [1], [2], and [5]. Except for the
zero (Goldstone) mode and the phononlike spectrum
co ( k }=2+ A, +k, there was found an internal oscillation
mode which can be understood as related to the relative
oscillations of two m kinks. The perturbation calculation
of the frequency and the related eigenfunctions of this
mode for arbitrary values of A. has been given by Hudak

[5]. However, there are still open questions regarding the
stability of this mode and of the related approximate
solution (3).

In this paper we shall use the method of collective
coordinates [6] for investigation of the DSG kink dynam-
ics in the case of the moving nnsystem (.3-). The transla-
tional invariance in the presence of the soliton is mani-
fested by the arbitrary value of the soliton center xp ~ As
mentioned above, in the presence of the coupling k, there
appears a new degree of freedom which represents inter-
nal motion of the m-m kink system. The related quantity
b, (3} determines then the shift of xo due to the effective

repulsion of the ~ kinks (5) and it is obviously transla-
tional invariant as well. Consequently, besides the collec-
tive coordinate xo(t) [as usual, we generalize
ut —xo=—xo(t)], we choose b(t) as a collective coordinate
related to the internal degree of freedom.

In Sec. III we shall investigate the oscillation mode of
the m.-m. system and find conditions for its stability in both
static and dynamic cases. In real systems, perturbations
are likely to be present in Eq. (1). The simplest case of a
small and constant field is shown to have a greater effect
on the kink excitation spectra in a nonlinear range than
in a linear one. In Sec. IV we shall show that a small
constant force is able to generate traveling nonlinear os-
cillations, with the amplitude proportional to the field.
%e show that this radiation is of the same nature as that
we have found by nonlinear perturbation analysis of the
SGE in a small external constant field [7]. Generation of
this radiation is a result of an interplay of the nonlineari-

ty and of a small constant force.
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II. COLLEC. IIVE DYNAMICS

The Hamiltonian related to Eq. (1) in terms of the collective coordinates xp(t) and h(t) can be found with the use of,
e.g., ansatz (3) with the generalized argument

8kb, ~(2+ A, )' [x—xp(t)kb (t)]/(1 —x p
)'

as

'2 '2

where

m(h)
2(1—io )

1+xp

1 BPH= dx—a) 2 Bt

1 BP
2 Bx

~ ~ 2

1+ xpxp

1 —x p

M(b, )

2(1—xo)

MpXp5+ +2coth 6 +
1 —x 0

+A,(1—cosP)+ —(1—cos2$)
1

2

cothb, , (7)
(1—x 11 )(2+A, )

'/

m(h) =4(2+A, )'/ 1+
sinh26

M(b, }= 1—
(2+/)'/2 sinh25

The ground state Ep of the Hamiltonian (7) occurs for

BV BV
xp =6=xp =0

~ =0, &0.

(8)

(9)

The conditions (9}imply

E =H(h, )=4(2+A, )' '+2' 'b, A, —:2(2+A, )' ' "'
where ho is given by its static value (3), cosh ho= 1+2/A, . The ground state (10) can be perturbed linearly:

4(t)=ho+ l(t),
~
l

~ «ho .

Then, let us expand the Hamiltonian (7) into a series of I as

(10)

m ( 5o }X11 XpX 11H =Ep+
2

1+ 1+
2(1—xo) 1 —xp

M(ho) «oxo+ 1+ I
2(1—Xp) 1 —ip

I

+ 2(2+A, }'/
~ 1 f . 2 1+ Xoxo

(1—xo) „=1 tt ' 1 —i11

'2

(12)

where

f1= . , f2=coth b 1 — . , f,=b c thob, ,
2 2 2

sinh26 sinh26

f;„= f;, i =1,2, 3
d 5 4=40

4(2+~)1/2 1+ A, aI'cs1Ilh(2/A, )

[2(2+A, ) ]'

4 A, arcsinh(2/A, )'/2

(2+g) 1/2 [2(2+ /) ]1/2 (13)
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60
go(z) =2+

[z(z+ 1)]'/2

g, (z)=0,

2 6 8 12 16
g2(z) = ——+ + +60(1+z) z(1+z) z (1+z) z' (1+z)

2z 4 2(1+z )'/

(1+z} / z /2(1+z}'/ z3/

(1+z) / z z (1+z)
4z

(1+z)
4(1+z)

z2

gq(z) = 16(1+z)
z2

+16[—3z' —2z +3(1+z)'/ bo+z(1+z)'/2l}0]/z5/2(1+z),

[3z ' (1+z)' —350—2z ' 50] ( 15z i/2 20z 3/2 5z 5/2)

z (1+z) z (1+z) /

[15(1+z)' +15z(1+z)'/ +2z (1+z)' ]+4
z (1+z)2 3/2

—8 8 16z 16z'"+
5//2 0z (1+z) (1+z) (1+z) /

~0 + 16(1+z)' 8(1+z)'/2
( 1 +z)5/2 z 5/2 0 5/2

+8[ '"( + )'"+ '"(1+z)'"+6z'"(1+z)'"—4560 —75zbo —32Z'b, —2Z'Z, ]/z'"(I+z)' '

(14)

1 1 1fii= +
z ' (1+z)' z (1+z) 0 &

2 2 + 2z'
~ + 2(1+z)'121+(1+)00

6z ' 6(1+z)'
(1+z)3/2 z3/2

+

8 8 16z

z (1+z) (1+z)
fi4=—

Z=2A.

2 2 4z 4(1+z}~
z (1+z) (1+z) z

16(l+z) 16z'
~ 8z ~ + 16(1+z)' ~ + 8(1+z)

2
( 1+ )5/2 0

( 1+ )5/2 0 5/2 0 5/2

(15)

The potential V(l, A)=2(2+A)'/ g"„= l4in/!g„(A)l" is plotted in Fig. l. It is strongly anharmonic for l sufficiently
large. In the harmonic approximation one gets for the static case (xo =0) the frequency

co, (A ) =2(2+A, )' g2(A )/M(A )=1+—g2(A )/[1 —
A, arcsinh(2/k)'/ /[2(2+1 )]' (16)

The frequency co, (A. ) shows almost linear dependence
in the whole extent of A, . This result can be compared
with the results of [5]—namely, for A, +2 we get

0.75

A@2(A.=2)=2(2+A)'/ g2(2)/M(2)=3. 38358 .

Other values are

co (A, =10 )=1600.27, co (A, =10 )=163630 .

(17)
0.25

-0.25

The frequency (17) is identical with that co&(2) of [5],
corresponding to the oscillations of the linearly perturbed
ansatz (4). It can be shown that the frequencies of the
internal oscillation mode of both linearly perturbed an-
satzes (3) and (4) are identical, in contrast to the state-
ment in [5] that they are different. Namely, when going

FIG. 1. Static potential V(A, , I) for A, =0.1 (thick solid),
A. =O. 3 (thick dashed), A, = 1.6 (thin solid), and A, =2 (thin
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=g2(&)(d&/d &&)',

as g, (h) =0 according to (14) and

M(b, , ) =M(h)(db/dh, )

(18)

(19)

From (18) and (19) it follows that rp, (A, ) given by (16) is

invariant against the choice of the perturbation as the
functions g2(h) and M(h) scale by the same scale factor.

III. DYNAMICS OF THE MOVING m-m KINK SYSTEM

The dynamic equations for the coordinates xp and l
defined by (11) related to the Hamiltonian (7) in a
simplified case, when Xp =0 and x p « 1, are

and

Pp

m [b,(t)]
(20)

N

l+[2(1—f, )] ' g, (f,„xp+g„)l" '=0.
n —1!

(21)

Here, f„f,„,and g„are given by (13},(14), and (15).
Due to the definition (11), the dynamic equations (20}and
(21) are coupled. However, in zero-order approximation
when we put 5=ho in (20), these equations decouple and

we get

from ansatz (3) to ansatz (4), we change the perturbation

h~h), or

cosh 6,=cosh b, —1=2/1, , 1,& 2

as has been done in [5]. Then, the functions gz(h) and

M(b, ) change as follows:

g2(~)) =gp(b, )(db /db, ))2+g, (b, )d25/d52

IV. EXACT TRAVELING "NONLINEAR"
OSCILLATIONS GENERATED

BY A CONSTANT EXTERNAL PERTURBATION

In this section we shall show that in the presence of a
constant force f on the right-hand side (rhs} of Eq. (1),
there are generated qualitatively new "nonlinear" oscilla-
tions. Indeed, in [7] we have shown that in sine-Gordon
systems a small constant external field generates a period-
ic nonsinusoidal radiation with the amplitude proportion-
al to the field. On the other hand, the respective linear
perturbation spectrum is suppressed by the field.

The ground state Pp of the Hamiltonian related to Eq.
(1) with additional force term f & 0 given by

A, sinPp+ sin2$p = f, — (27)

creases by [ —A&(A)Pp]/mpQ [A&(A}&0 as f&& &0] and
the frequency Q (25) increases as well [A,2(A, ))0 for
A, &A,,=2.5125]. Equation (25) implies also the condi-
tion for the instability of the oscillation mode, 0 (0.
For a given A,, this possibility occurs for 0&PO Po,„„
P p,„,(A, ) given by (Fig. 2):

Pp„;,(A, )=—mp(A, )tp, (A, )/A2(A, ), A2+0. (26)

As A2(A. ) changes its sign at A.,=2.5125, the instability
of the oscillation mode and of the ansatz (3) appears at
this point. For the static kink, Pp ~0, the value A,, per-
sists as the critical value for its stability. For A, & A,, the
mode Q is stable for any value of Pp ~0. However, we

have to have in mind that the linear approximation of the
dynamic equation (21) leads apparently to the overes-
timation of A, In view of what has been said in the In-
troduction, A,, is expected in the range 0&A,, &2. We
shall return to this point in the Sec. VI where we shall
determine A,, from other conditions.

Po
Xp

mo

P2 P2
l+ rp, +A2 2

l+A,
& z

=0,
(22) sinPp, =(—f)/(2+l(, ), cosfp~ )0

sinPpz =f /(2 —
A, ), cosgp2 &0 .

(28)

where f+A, & 2. In the linear approximation, f « 1, the
solution of (27) reads

where m p
=m [b,p(A, }].

Here, we consider a harmonic approximation [N =2 in
(21)]. In Eq. (22), rp, is given by (16) and

Hence, the zero mode splits into two states; the lower en-

ergy evidently yields the state Pp, =Pp. Linear excitations

1000
(1+A,/2)
(1 f ))—

f&; are given by (15).
The solution to Eq. (22} is simple:

p2
l = —

A, , (1+sinQt ),
m 00

where

Q =co+A, P /m

(23)

(24)

(25)

750-

500-

250-

~ o 0
Q

-250

-500

-750

-1000

From Eqs. (24) and (25} it is evident that for a moving
soliton the plateau 5 between two coupled m. kinks in-

FIG. 2. Po [Hq. (26)] is discontinuous at A,,=2.5125, where
A,2=0.
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of the ground state f=P $—0 obey the equation

0—"+~4'=0

where

(29)

Let

g= g—og exp[ikx+ico(k)t ];
k

co2o(f) =A, cos(Po)+2 cos(2$o)

=A, [1—f /(2+1, ) ]'~ +2[1—2f /(2+A, ) ] .
then the phonon energy becomes rv (k)=coo(f)+k Th. e

gap for phonon excitations yields

W=2a)0(f)=2(coo —
A, [1—[1—f /(2+1, ) ]'i —4f /(2+A, ) ])

= Wo —2A( [1—[1—f2/(2+A, ) ]]'i~) f l(—1+k/2)2,

Wo =2(2+ A, ),
(30)

Wo being the unperturbed gap.
On the other hand, when going over the linear approxi-

mation in Eq. (1) for the fiuctuations 1( in the filed f, we

get

a' a' +A, sing+ sin2$ = —f
Bt Bx

was performed by using the difference approximation.
We introduce the following replacements:

Q" +F+—AQ Bg =0—,

where

(f—3 sin2$O)F=—
6 cos 2/0

(31}

, =[/(x, , r, +, ) 2$(x, , r,
—)+P(x, , r, , )]/(br)', (34)t'

2
= [P(x;+„t ) 2$(x;, t )—+P(x;+„t )]/(hx )

Bx

(f—3 sin2$o)

3.2 cos2$0

B =cos2$0 .

(32)

n, +cos[co(x —vt) ]=a
n, +c so[ or( x vt)] '—

where

(33)

n, , 2A (nz —1)
a CO 0,

(n +21} (1 v}(ni—+2)

n = — n1 2
n2

22) 1, U2(1

The relation —Aa +Ba =F has to be fulfilled as well.
Equation (33) represents traveling periodic nonsinusoidal
oscillations with the amplitude a-f, f «1. Let us

note that the coeScients A, B, and I' (32) imply the same
values for oscillations of the ground state Po as for the os-

cillations of the plateau at P =$0+vr; f)0.

V. NUMERICAL SIMULATIONS

For f «1, we have A )0, B)0. Then Eq. (31) admits
an exact solution [7,8],

(35)

Then, from Eq. (34) we express P(x;, t +, ). Further, if
we suppose that we know P(x, , tj) and P(x, ,tJ, ) for

x, =+i (b, t ), i =0, .. . ,I, we are able to determine

P(x;, t +, ) at the points x; =ki (b,t ) for i =0, ...,I —1, ac-

cording to Eq. (35}. At each time step At (from t; to t;+, )

we lose one point (the region at the x axis where the kink

is defined is getting narrower). However, this does not
create a problem if the starting number of the points is
much larger when compared with the number of time

steps. We started with I =500 and Ax=0. 04, i.e., at
t =0 the region of the definition of the kink is

xe[ —20, 20]. The time step was ht =0.05 and the num-

ber of the time steps was =250. (Hence, the finite time at
which the time development of the kink was considered
reached =10.) Finally, the kink was determined at the
interval xe[ —10, 10]. As the dynamics during the tran-
sient regime was observed in the region xe[ —5, 5], the
present consideration is sufficiently reliable.

The initial conditions, i.e., P(x;, to), P(x, , to b.t) at-
x;=+i(Ax), i =O, . . . ,I=500, are determined in accor-
dance with the unperturbed kink.

P(x, t =to)=P~(x —vt)

and

With these preliminary results in mind, we can under-
stand the results of the foBowing numerical simulations:
For r &0 we assume the vr @kink ansat-z .(3) with the
traveling velocity u of the unperturbed double sine-
Gordon equation (1). At t =0 we switch on (immediate-
ly) the external constant force f. Numerical simulation
of the solution to the equation

ay
P, (x, r —r, )= =[/(x, r, ) P(x, r, bt)]/br .— —

I —
O

The force f is switched on at t =0. The method was test-
ed by comparing with the behavior of the numerical
simulation of the solution to (1) (i.e., for f =0): We
checked on the time, when the numerical solution was
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I—10.0 —5.0 0.0
x'

5.0

(a)
10.0 —1 0.0 —5.0 0.0 5.0

(b)
10.0

FIG. 3. Time evolution of the mn. -pair (3)
for 1,=10 2, f=0.2, and u =0, as described

by Eq. (1) with additional term ( f)—on the
rhs and with initial condition (3).

starting to differ from the analytical solution (which is
known for f=0). As this time was much larger when
compared with the duration of the transient regime, we
believe that the procedure yields a convergent solution
with f%0 for a given hx and ht as well.

The nurr. .:rical simulations of the time development of
the solution to Eq. (1) are given in Figs. 3—11 for different
values of the parameters A, , f and of the initial velocity
u =Po/mo (see below). The solutions exhibit the follow-

ing features.
(i) The kink walls are preserved for small times and

generate oscillations behind them traveling in the oppo-
site direction and with the amplitude increasing with in-
creasing f.

(ii) For small A, when the ir kinks are well separated
from each other, the oscillations of the uniform parts of
both kinks are identical. In the strong coupling regime
oscillations of the plateau disappear (Fig. 11). We identi-
fy these oscillations with those given above (33) as solu-
tions of Eq. (31). Large-time behavior clearly shows the
instability of the perturbed m.-m kink system (Figs. 8 and
10}.

VI. COLLECTIVE DYNAMICS IN THE CASE
WITH EXTERNAL FIELD

If we switch to the collective coordinates again, in the
case with external field f we arrive at the dynamic equa-
tion for xo..

mp(A )xp( )r
=Pp+2wft .

[1—xp(t)]
(36)

From here we get the asymptotic value of xo for t~ 00,

xp ~1. For fr && 1 we can neglect xp in the denominator
as in the case f =0, Eq. (20).

For the fiuctuation of the oscillation mode 1, we get, in-
stead of (21), the equation

I+ 0 +A2 (Pp+nft) I+A, , 2
(Pp+nft)=0.

mo mo
(37)

Here, the transient nature of the oscillations of I is evi-
dent. For small ft, oft «Pp, we get

2L
+gL — 0 =0,

dg2 y5/3
(38)

gl/2Z (
2 g3/2) L gl/2Z (

2 g3/2)

(39)

(40)

Z„are cylindric functions. (Airy functions for v=k —,
'

and W=L i(dL&

Id)�}

(dL i ld g)—L2.
For large r, one can neglect the inertial term in (37) and

I approaches, asymptotically,

1l~ &0.
12

(41)

According to (11), the perturbation approach is approved
if I & hp=arccosh2'/ . This relation with the use of (41)
and (15) implies a constraint on A, , A, &0.774=A, This
value of A,, is smaller than that implied by the condition
of the instability of the oscillation mode 0 (25),
A,, =2.5125 (Sec. III). For the determination of the weak
coupling regime of the rr kinks, we choose the smaller
critical value A,,=0.774 &2 as the more reliable one (see
the note at the end of Sec. III}. Namely, for A, )A,„e.g.,
A, = 1 (Fig. 11), the rr kinks are no longer distinguishable
and the object represents a perturbed 2m soliton [7].

VII. CONCLUSIONS

The linear perturbation analysis of both the static and
moving m-m systems enabled us to ascertain precisely the
conditions for the stability of the ansatz (3}of the nonin-

where g=y2 (0 +y2r), yi=(4nfPo)/'mori
yz=(4mfPp)/mpl2, and L =1+y, ly2, 0 is defined by
(25). Equation (38) is an inhomogeneous Airy equation,
the solution to which is given by [9]

yi L, L2
]L]+~2LQ +

5/3 L2 L ]

I—1 0.0 —5.0 0.0
x'

5.0 10.0
I—1 0.0 —5.0 0.0 5.0

(b)
1 0.0

FIG. 4. The same as Fig. 3 for A, =10
f=0.4, and u =0.
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——t=6
t=B
t=10

FIG. 5. The same as Fig. 3 for A, =10
f=0.2, and u =0.

I—1 0.0 —5.0 0.0 5.0

(a)
1 0.0

I—10.0
I—5.0 0.0 5.0

(b)
!

10.0

t=6
t=B
t=10

I—1 0.0 —5.0 0.0
x'

5.0

(a)
10.0 10.0 0.0

x

(,, ) t

j

5.(',' 10 0

FIG. 6. The same as Fig. 3 for A, =10 ',
f=0.4, and u =0.

t=6
t=s
t=10

—10.0
I—5.0 0.0

x

(a)
10,0 —1 0.0

1—5.0 0.0
x

5.0 ; 0.(.(

FIG. 7. Time evolution of the m-m pair (3)
as described by Eq. (1) with additional term
( f) on the —rhs and with initial condition (3)
for (t, = 10,f=0.2, and u =0.7.

FIG. 8. The same as Fig. 7 for A, =10 ',
f =0.4, and u =0.7.

I—10.0 —5.0 0.0
x

5.0 10.0 —1 0.0 —5.0 O. '0

(b)

5.0 10.0

year
/

(a) '

t=6
t=8
t=l0

FIG. 9. Time evolution of the m-~ pair (3)
as described by Eq. (1) with additional term
( f) on the rhs and—with initial condition (3)
for it=10 ', f=0.2, and u =0.7.

—1 0.0 —5.0 0.0
x

5.0 1 0.0 T0;) C

t=o
t=2
t=4

FIG. 10. The same as Fig. 9 for A. =10
f=0.4, and u =0.7.

10.0 —5.P 0.0 5.0 1 0.0 —10.0 —5.P 0.0 5.0
I

1 (j.o
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t=o
t=2
t=4

I—1 0.0 —5.0 0.0 5.0

(a)
10.0

I—1 0.0 —5.0 0.0
x'

5.0

(b)
10.0

FIG. 11. Time evolution of the same object
as in Figs. 4—11 for A, = 1.0, f=0.4, and u =0.
Here, two m. kinks are no longer distinguish-
able.

tegrable DSGE. We have found that only for a
sufiiciently small A, , A, &0.774, is this ansatz approved,
i.e., the object behaves as two distinguishable ~ kinks.
Moreover, starting from small values of constant field f
in the DSGE there appear transient nonlinear oscillations
with the amplitude proportional to the field. Thus, the
nonlinearity is able to transform the energy supplied by
the field to the radiation. In the range of A, , where the rr
kinks are well separated, the nonlinear fiuctuations for
P=Po+m are identical with those for P=Po (at low con-
stant branches of the kinks for f)0), as can be seen from

expressions (32). For A, so large that the kinks are not
more distinguishable, the oscillations appear only at the
low branch of the 2n kink (Fig. 11) and the case goes over
to the case we have investigated in [7].
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