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The collective coordinate method has been used to investigate the oscillation mode of the static and
moving 77 kink system of the double sine-Gordon equation. A condition for the linear stability of the
system has been found, the interaction parameter A <0.774. We have shown a pronounced effect of a
constant external perturbation generating nonlinear periodic nonsinusoidal oscillations. This radiation
appears due to interplay of the nonlinearity and of the perturbation.

PACS number(s): 03.40.Kf

I. INTRODUCTION

The double sine-Gordon equation (DSGE) appears in
many physically relevant systems [1-4]. Usually, the
DSGE is related to the sine-Gordon equation when add-
ing certain specific interactions. This is the case, for ex-
ample, of the charge- and spin-density waves in (1+1)D
phase models with SU(2) symmetry and with a half-filled
band when also including Coulomb interactions [3].

It is known that the DSGE

2 2
g—Q—iﬁé—-+-)»sin¢>-l—sin2q§=0 (1)
9t2  9x?

is not integrable. However, it is possible to find a reason-
able form of an ansatz for a solution in a specific range of
the interaction parameter A, A > 0.

The potential related to Eq. (1),

V[i¢]=A(1—cos¢)++(1—cos2¢) , 2)

has its minima at ¢=0 (mod2) and a local minimum at
¢=m for AL<2. Two free (uncoupled) 7 kinks which are
solutions of (1) at A=0 become weakly coupled for
0<A<2. In other words, the 27 kink of the SGE splits
into two separated 7 kinks for A sufficiently small. For
A >2 the local minimum at ¢ =7 disappears. The two 7
kinks are no longer distinguishable objects so that with
increasing A they shrink to a 27 kink. [In this case the
last term in (1) can be neglected]. Therefore, for A
sufficiently small, it is reasonable to choose the solution
to (1) in the form

¢x =2arctan[exp(6+A)]+2arctan[exp(6—A)] , (3)
where

0=02+N)2%E/Ey, E=x—ut—x,,

E=(1—u?'? and cosh’A=1+2/A .
The form (3) can be rewritten, alternatively, as

éx =2 arccos{ —tanh@/[cosh’A —sinh’A tanh?0]'/?}

= —2arctan{ —sinhA /sinh8} . (4)
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The centers of the m solitons x, are shifted due to the
repulsion parameter A:

xi:xoiA(2+}\)_l/2§0 . (5)

The excitation spectrum of the static solution (¥ =0)
has been investigated in [1], [2], and [5]. Except for the
zero (Goldstone) mode and the phononlike spectrum
®*(k)=2+A+k?, there was found an internal oscillation
mode which can be understood as related to the relative
oscillations of two 7 kinks. The perturbation calculation
of the frequency and the related eigenfunctions of this
mode for arbitrary values of A has been given by Hudak
[5]. However, there are still open questions regarding the
stability of this mode and of the related approximate
solution (3).

In this paper we shall use the method of collective
coordinates [6] for investigation of the DSG kink dynam-
ics in the case of the moving -7 system (3). The transla-
tional invariance in the presence of the soliton is mani-
fested by the arbitrary value of the soliton center x,. As
mentioned above, in the presence of the coupling A, there
appears a new degree of freedom which represents inter-
nal motion of the 7-7 kink system. The related quantity
A (3) determines then the shift of x, due to the effective
repulsion of the 7 kinks (5) and it is obviously transla-
tional invariant as well. Consequently, besides the collec-
tive coordinate x,(¢) [as usual, we generalize
ut —x,=x,(t)], we choose A(?) as a collective coordinate
related to the internal degree of freedom.

In Sec. III we shall investigate the oscillation mode of
the -7 system and find conditions for its stability in both
static and dynamic cases. In real systems, perturbations
are likely to be present in Eq. (1). The simplest case of a
small and constant field is shown to have a greater effect
on the kink excitation spectra in a nonlinear range than
in a linear one. In Sec. IV we shall show that a small
constant force is able to generate traveling nonlinear os-
cillations, with the amplitude proportional to the field.
We show that this radiation is of the same nature as that
we have found by nonlinear perturbation analysis of the
SGE in a small external constant field [7]. Generation of
this radiation is a result of an interplay of the nonlineari-
ty and of a small constant force.
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II. COLLECTIVE DYNAMICS

The Hamiltonian related to Eq. (1) in terms of the collective coordinates x,(¢) and A(¢) can be found with the use of,
e.g., ansatz (3) with the generalized argument

6+A—(2+A) 2 [x —xo(1)EA(1)]/(1—%3)1/? (6)
as
1 {ag ", 1 (8|’ 1
H=f_wdxl3 atl+3 ™ +k(l—cos¢)+;(l—cos2¢)l
XoX . AxgE, |2
=Ml e 2020 M(A) 1A+ 2220 | pcotnta [+ —22 _coma, )
2(1—x4) 1—%g 2(1—x%g) 1—%g (1—=x3)2+1)172
where
= 172 2A
m(A)=42+A)"* |1+ 2o |
(8)
_ 4 __2A
M(A)—(2+Mm [1 — x|
The ground state E, of the Hamiltonian (7) occurs for
CCheg oo | o, ¥
xO—A XO 0, aA A=A0 ) aA2 A=Ao (9)
The conditions (9) imply
Eo=H(Ay))=4(2+1)2+232AA=2(2+1)/%g O | (10)

where A, is given by its static value (3), cosh?A,=1+2/A. The ground state (10) can be perturbed linearly:
A()=A8o+1(2), |I| <A, . (11)

Then, let us expand the Hamiltonian (7) into a series of / as

m(Ag)x2 xoX M(A,) xo%, 1%
H=E,+———° 1+ [1+ 2 - —a A
21—%2) 1—x2 21—%2) 1—%32
. 2
2Q+0)12 = 1 .2 XoXo
+— — xg |1+ + ", (12)
(l_x(z)) ,,é] n! fln 0 I_Xg &n
where
__2A —enth2A |1 24 =
i sinh2A ’ f2=coth’A [1 sinh2A ’ » f3=Acothd,
_d" .
fin_mfi A=A0’ l'—ly2,3
= fint =2 (Fon+Af )
gn 1n 242 2n 3n/ >

i 172
m(Ao)=4<2+m“2ll+ A arcsinh(2/1) ] ,

[2(2+A)]12

M(A,)

. 172
4 l __ Aarcsinh(2/A) ] , (13)

T 2402 [2(2+1)]172
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(2)=24 —20
zZ)=24+—--—,
8o [z2(z+1)]/2
gl(z)zo )
2 6 8 12 16
£(2) z  (1+z2)  z(1+2) O 23214232 ZV/Y(142)2
__ 22 4 2(1+42)"?
(1+z)3/2 23/2(l+z)l/2 23/2 ?
6z'2 | 6(1+2)'72 -2 2 4z 4(1+2)
(z)= +Ay |—+ - -
8T 427 23 ol 22 (42?2 (42?2 2P
[32'2(14+2)12—38—22'2A0] (—1571/2—20232—5;%"2)
4 2 +4 2 3/2
z4(1+z) z5(1+z2)
172 172 2 172
+4[15(1+z) +15§(1+z)32+22(1+z) ]Ao’ (14)
zA(142)%
-8 8 16z 16(1+z) 16272
(z)=—+ - - - A
84 22 (14+2? (1427 22 (1+2)%27°
82780 16(1+2)'2, B(1+2)2
(1+2)52 2572 Y 2572 0
+8[45z2'2(1+2)2+45232(1+2) 24+ 62°/ X1 +2)" 2 — 8500 — 752 Ag— 32228 — 2230y ) /2521 +2)3/2
+16[ —32'2—2232 4+ 3(142)2Ag+2(1+2)2A,) /2% (1 +2) |
1 1 1
=— =+ Ay,
T PR
22 2z!72 2(142)!72
fo=—7- + 3/2 20 3/2 0>
z 1+z (142 z
Fo= 6z!72 6(1+2)!'2 2 2,4 _ 4tz
B (142)32 2372 2270 (1422 (14272 ° z? 0’
8 8 162 16(1+z)  16z'72 823/ 16(1+2)!72 8(1+2)32
fu=—7—3 2 2 2 572 80F 5/2 20 52 Dot 52 Qo
z (1+2) (1+2) z (1+2z) (1+2) z z
z=2/A . (15)
The potential V(I,A)=2(2+1)!/23"=41/nlg,(A)I" is plotted in Fig. 1. It is strongly anharmonic for / sufficiently
large. In the harmonic approximation one gets for the static case (x,=0) the frequency
wf(k)=2(2+k)1/2g2(k)/M(k)=1+%g2(k)/{1—Aarcsinh(2/7»)1/2/[2(2+k)]m'} . (16)
The frequency w2(A) shows almost linear dependence 1 ]
in the whole extent of A. This result can be compared 0.75 |
with the results of [S]—namely, for A+2 we get
0.5} —
0} (A=2)=2(2+1)"%g,(2)/M(2)=3.38358 . (17) Za\ !
5 0.25
Other values are B \ — —N0
X
®*(A=10*)=1600.27 , &*(A=10°)=163630 . o as \-\ i
The frequency (17) is identical with that w%(2) of [5], os \\\

corresponding to the oscillations of the linearly perturbed
ansatz (4). It can be shown that the frequencies of the
internal oscillation mode of both linearly perturbed an-
satzes (3) and (4) are identical, in contrast to the state- FIG. 1. Static potential V(A,l) for A=0.1 (thick solid),
ment in [5] that they are different. Namely, when going A=0.3 (thick dashed), A=1.6 (thin solid), and A=2 (thin
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from ansatz (3) to ansatz (4), we change the perturbation
Z\-—»Z&l, or
cosh?A,=cosh’A—1=2/A, A=<2

as has been done in [5]. Then, the functions g,(A) and
M(A) change as follows:

g,(A)=g,(ANdA/dA+g,(A)d*A/d A?
=g,(AXdA/dA,), (18)
as g,(A)=0 according to (14) and
M(A)=M(A)dA/dA,)? . (19)

From (18) and (19) it follows that (A ) given by (16) is
invariant against the choice of the perturbation as the
functions g,(A) and M(A) scale by the same scale factor.

III. DYNAMICS OF THE MOVING 7-7 KINK SYSTEM

The dynamic equations for the coordinates x, and /
defined by (11) related to the Hamiltonian (7) in a
simplified case, when X,=0 and %3 << 1, are

Py

Xo(t)= m (20)

and

e N
201017 3 ks e =0,

n=1
1)

Here, f;, f1., and g, are given by (13), (14), and (15).
Due to the definition (11), the dynamic equations (20) and
(21) are coupled. However, in zero-order approximation
when we put A=A, in (20), these equations decouple and
we get

. Py
Xo= mg
(22)
o, .. P 3
[+ a)s+7k2—2 I+A, > =0,
mg 0

where my=m[AyN)].
Here, we consider a harmonic approximation [N =2 in
(21)]. In Eq. (22), &? is given by (16) and

2= 14A/2)
! (l_fl)

f1; are given by (15).
The solution to Eq. (22) is simple:

fu, i=12. (23)

P} :
I=—A—5 5 (1%sinQ?) , (24)
mg§)
where
Qr=w?+1,P3/mi . (25)

From Egs. (24) and (25) it is evident that for a moving
soliton the plateau A between two coupled 7 kinks in-
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creases by [ —A,(A)P3]/m3Q2 [A(A)<O0 as f,, <0] and
the frequency Q2 (25) increases as well [A,(A)>0 for
A<A,=2.5125]. Equation (25) implies also the condi-
tion for the instability of the oscillation mode, 02 <0.
For a given A, this possibility occurs for 0<P} <P} .,
P%’cm(K) given by (Fig. 2):

P} i (M)=—m}(Mw2(R) /Ay A) , A,70 . (26)

As Ay(A) changes its sign at A, =2.5125, the instability
of the oscillation mode and of the ansatz (3) appears at
this point. For the static kink, P,—0, the value A, per-
sists as the critical value for its stability. For A <A, the
mode Q? is stable for any value of P3>0. However, we
have to have in mind that the linear approximation of the
dynamic equation (21) leads apparently to the overes-
timation of A,. In view of what has been said in the In-
troduction, A, is expected in the range 0<A, <2. We
shall return to this point in the Sec. VI where we shall
determine A, from other conditions.

IV. EXACT TRAVELING “NONLINEAR”
OSCILLATIONS GENERATED
BY A CONSTANT EXTERNAL PERTURBATION

In this section we shall show that in the presence of a
constant force f on the right-hand side (rhs) of Eq. (1),
there are generated qualitatively new “nonlinear” oscilla-
tions. Indeed, in [7] we have shown that in sine-Gordon
systems a small constant external field generates a period-
ic nonsinusoidal radiation with the amplitude proportion-
al to the field. On the other hand, the respective linear
perturbation spectrum is suppressed by the field.

The ground state ¢, of the Hamiltonian related to Eq.
(1) with additional force term f >0 given by

ksin¢0—ksin2¢o==__f‘, (27)

where f+A<2. In the linear approximation, f*<<1, the
solution of (27) reads

singy; =(—f)/(2+A), cospy >0
singg,~f/(2—A), cosgg, <0 .

(28)

Hence, the zero mode splits into two states; the lower en-
ergy evidently yields the state ¢, =¢,. Linear excitations

1000
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FIG. 2. P} [Eq. (26)] is discontinuous at A, =2.5125, where
A2==0.
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of the ground state ¥=¢ — ¢, obey the equation

P—¢" + =0, (29)

where
w3(f)=A cos(dy)+2 cos(2¢)

=A[1—f2/Q2+ A2V 242[1—2F2/(2+A)] .
_J

Let

V=1, explikx +io(k)t] ;
k

then the phonon energy becomes w*(k)=w?(f)+k?% The
gap for phonon excitations yields

W=203f)=2d—A{1—[1—f2/(2+A1)]"2=4f2/(2+1)*})
=W,—2M{1—=[1—f2/Q+AP1} )= f2/(1+1/2)%, (30)

Wo=2(2+1),

W, being the unperturbed gap.

On the other hand, when going over the linear approxi-
mation in Eq. (1) for the fluctuations ¥ in the filed f, we
get

Y—y'+F+ AYy—By*=0, (31
where
e 1 (f—3sin2¢,)’
6  cosR¢,
(f —3sin2¢,)?
q= 1 f éo , (32)
3.22 cos2¢,
B =cos2¢, .

For f2<<1, we have 4 >0, B>0. Then Eq. (31) admits
an exact solution [7,8],

ntcos[w(x —vt)]

= , 33

an2+cos[w(x——vt)] 33

where
n 24(n3—-1)

02:_14; 2 , a)2=———-—2 >0,

B (ni+1) (1—v2)(n}+2)
n,=-— nz——z— , ni>1, vi<l1.

n,

The relation — 4Aa +Ba>=F has to be fulfilled as well.
Equation (33) represents traveling periodic nonsinusoidal
oscillations with the amplitude a~f, f><<1. Let us
note that the coefficients 4, B, and F (32) imply the same
values for oscillations of the ground state ¢, as for the os-
cillations of the plateau at ¢ =¢,+; f > 0.

V. NUMERICAL SIMULATIONS

With these preliminary results in mind, we can under-
stand the results of the following numerical simulations:
For t <0 we assume the 7-7 kink ansatz (3) with the
traveling velocity u of the unperturbed double sine-
Gordon equation (1). At ¢z =0 we switch on (immediate-
ly) the external constant force f. Numerical simulation
of the solution to the equation

¢ ¢ . e

- + A sing+sin2¢= —

ar?  ax? ¢ ¢ f

was performed by using the difference approximation.
We introduce the following replacements:

2
%tjzlz[¢(x,-,tj+1)—2¢(x,-,tj)+¢(X,-,tj_l)]/(At)2, (34)

2
g—?S—z[¢>(x,-+1,t~)—2q5(x,~,t-)+¢(x,-+1,t-)]/(Ax 2.
j j J

ax?
(35)

Then, from Eq. (34) we express ¢(x;,; ). Further, if
we suppose that we know ¢(x;,t;) and ¢(x;,7;_,) for
x;=xi(At), i=0,...,], we are able to determine
é(x;,t; ;1) at the points x; =+i(At) for i =0,...,I —1, ac-
cording to Eq. (35). At each time step At (from ¢; to t; ;)
we lose one point (the region at the x axis where the kink
is defined is getting narrower). However, this does not
create a problem if the starting number of the points is
much larger when compared with the number of time
steps. We started with ] =500 and Ax=0.04, i.., at
t =0 the region of the definition of the kink is
x€[ —20,20]. The time step was At =0.05 and the num-
ber of the time steps was =~250. (Hence, the finite time at
which the time development of the kink was considered
reached =~10.) Finally, the kink was determined at the
interval xe[ —10,10]. As the dynamics during the tran-
sient regime was observed in the region xe[ —5,5], the
present consideration is sufficiently reliable.

The initial conditions, i.e., ¢(x;,ty), d(x;,to—At) at
x;=ti(Ax), i =0,...,]=500, are determined in accor-
dance with the unperturbed kink.

d(x,t =ty)=dg(x —vt)

and

¢ (x,t —tg)=—— ~[d(x,ty)—P(x,t,—AL)] /AL .

9 |i=o
The force f is switched on at t =0. The method was test-
ed by comparing with the behavior of the numerical
simulation of the solution to (1) (i.e., for f=0): We
checked on the time, when the numerical solution was
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FIG. 3. Time evolution of the 7-m pair (3)
for A=10"2, £=0.2, and u =0, as described
by Eq. (1) with additional term (—f) on the
rhs and with initial condition (3).

(®)

starting to differ from the analytical solution (which is
known for f=0). As this time was much larger when
compared with the duration of the transient regime, we
believe that the procedure yields a convergent solution
with f7O0 for a given Ax and At as well.

The num :rical simulations of the time development of
the solution to Eq. (1) are given in Figs. 3—11 for different
values of the parameters A, f and of the initial velocity
u=P,/m, (see below). The solutions exhibit the follow-
ing features.

(i) The kink walls are preserved for small times and
generate oscillations behind them traveling in the oppo-
site direction and with the amplitude increasing with in-
creasing f.

(ii) For small A when the 7 kinks are well separated
from each other, the oscillations of the uniform parts of
both kinks are identical. In the strong coupling regime
oscillations of the plateau disappear (Fig. 11). We identi-
fy these oscillations with those given above (33) as solu-
tions of Eq. (31). Large-time behavior clearly shows the
instability of the perturbed -7 kink system (Figs. 8 and
10).

VI. COLLECTIVE DYNAMICS IN THE CASE
WITH EXTERNAL FIELD

If we switch to the collective coordinates again, in the
case with external field f we arrive at the dynamic equa-
tion for x:

mg (A)x 0( t)
+25=P0+27ft . (36)
[ 1—x 0( t )]
From here we get the asymptotic value of % for t — o0,
%o— 1. For ft <<1 we can neglect x3 in the denominator
as in the case f =0, Eq. (20).

For the fluctuation of the oscillation mode /, we get, in-
stead of (21), the equation

I+ Q242,40

(Potaft) |1+, 3L P+ =0 |
my

mg

(37)

Here, the transient nature of the oscillations of / is evi-
dent. For small ft, 7ft <<P,, we get

d2L Y1 2
g LT ma=0, (38)
where  E=y;23(Q%+y,t),  y,=(4mfPy)/m3A,,

v,=(4mfPy)/m}A,, and L =1+vy,/y,; Q? is defined by
(25). Equation (38) is an inhomogeneous Airy equation,
the solution to which is given by [9]

‘yl Ll L2
L—‘C]Ll |C2L2 QZ Lz dé— L 'dg ,
,},3/3 f 774 1f 7%

(39)
L\=E7Z,,,287), L,=E7Z,,,(2i£"?) . (40)

Z, are cylindric functions. (Airy functions for v=11
and W=L,(dL,/d§)—(dL,/d§)L,.

For large t, one can neglect the inertial term in (37) and
1 approaches, asymptotically,

>0. 41)

According to (11), the perturbation approach is approved
if I < Ag=arccosh2!/2. This relation with the use of (41)
and (15) implies a constraint on A, A <0.774=A.. This
value of A, is smaller than that implied by the condition
of the instability of the oscillation mode Q (25),
A.=2.5125 (Sec. III). For the determination of the weak
coupling regime of the 7 kinks, we choose the smaller
critical value A, =0.774 <2 as the more reliable one (see
the note at the end of Sec. III). Namely, for A> A, e.g.,
A=1 (Fig. 11), the 7 kinks are no longer distinguishable
and the object represents a perturbed 27 soliton [7].

VII. CONCLUSIONS

The linear perturbation analysis of both the static and
moving - systems enabled us to ascertain precisely the
conditions for the stability of the ansatz (3) of the nonin-

¥(z,t)

FIG. 4. The same as Fig. 3 for A=1072,
f=0.4,and u =0.

(b)

-10.0 -5.0 0.0

5.0 10.0
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FIG. 5. The same as Fig. 3 for A=10",
f=0.2,and u =9.

FIG. 6. The same as Fig. 3 for A=10"7,
f=0.4,and u =0.

0 -50 0.0 5.0 10.0 100 -850 00 50

R P ——
----- t=10 s ‘f : i

< JJJ FIG. 7. Time evolution of the 7-7 pair (3)

?;i ' f as described by Eq. (1) with additional term

~_<\/ N | (—f) on the rhs and with initial condition (3)

oy | for A=1072, f=0.2, and 4 =0.7.
(o) |
-100 -5.0 0.0 50 10.0 ~100  -5.0 0.0 s 1oc
x x

E FIG. 8. The same as Fig. 7 for A=1072,
> f=0.4,and u=0.7.
(a) (b)
-100 -5.0 0.0 50 10.0 -10.0 -3.0 0.0 5.0 10.0
x x
 —-w0 y ‘::4 { )
,,,,, t=4 sl |
. ‘ ) fa*//’ ( N f - FIG. 9. Time evolution of the 7-7 pair (3)
s J /1 / 1 ;/ { ‘ as described by Eq. (1) with additional term
R ey | > L_“K (—f) on the rhs and with initial condition (3)
Jﬁ—\/ 1 | i for A=1073, f=0.2, and 4 =0.7.
(@ | |
~10.0  -50 0.0 5.0 10.0 100  -50 o«
x r

FIG. 10. The same as Fig. 9 for A=10"7,
f=0.4,and u =0.7.
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FIG. 11. Time evolution of the same object
as in Figs. 4-11 for A=1.0, f=0.4, and u =0.
Here, two 7 kinks are no longer distinguish-
able.

tegrable DSGE. We have found that only for a
sufficiently small A, A <0.774, is this ansatz approved,
i.e., the object behaves as two distinguishable 7 kinks.
Moreover, starting from small values of constant field f
in the DSGE there appear transient nonlinear oscillations
with the amplitude proportional to the field. Thus, the
nonlinearity is able to transform the energy supplied by
the field to the radiation. In the range of A, where the 7
kinks are well separated, the nonlinear fluctuations for
¢=¢,+m are identical with those for ¢ =¢, (at low con-
stant branches of the kinks for f >0), as can be seen from

10.0

expressions (32). For A so large that the kinks are not
more distinguishable, the oscillations appear only at the
low branch of the 27 kink (Fig. 11) and the case goes over
to the case we have investigated in [7].
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