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Identifying chaotic electron trajectories in a helical-wiggler free-electron laser
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When taking into account the equilibrium self-fields of the beam, it is confirmed that the motion of an
electron in a helical wiggler with guide field may be chaotic. There is evidence of chaos from numerical
calculations of nonzero Lyapunov exponents using different approaches of Benettin's method which are
described and compared. Very accurate Poincare maps are also performed.

PACS number(s): 41.60.Cr, 05.45.+b

I. INTRODUCTION

The electron orbits in a helical wiggler are examined in
the presence of a guide field. When the self-fields of the
beam are taken into account, some trajectories become
chaotic.

The nonintegrability of the electron motion is demon-
strated in this work by calculating nonzero Lyapunov ex-
ponents. These are derived by using different approaches
of Benettin's [l] method which are described in detail.
The largest Lyapunov exponent is estimated considering
two trajectories with very close initial conditions and also
by using the tangent vector method. The good agreement
between the difFerent results makes us confident that, in
some circumstances, a nonzero Lyapunov exponent ex-
ists.

Poincare maps are also generated very accurately, to
confirm that some trajectories are chaotic. The results
obtained are similar to those of Chen and Davidson [2].
Local Lyapunov exponents [3] are also calculated. The
resulting mixing time for the trajectories shows that the
predicted chaos can be a proper problem in an experi-
ment.
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where co~& =n&e

cameo,

Pq = V~/c, and n& is the electron
density in the laboratory frame.

The scalar and vector potentials, P, and A, can be
defined by
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A=Boxe +A„(e„coskz+e„sink z)+ P,e, , (4)
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H=[(P+e A}zc +m c ]'~ —eP,

with A =B„jk. Let us examine electron trajectories.
The single-electron Hamiltonian is

II. THEORETICAL FORMULATION
OF THE PROBLEM =ymc —eP, , (6)

Consider the motion of a relativistic electron in a uni-
form axial field Boe„aconstant amplitude helical
wiggler magnetic field B = —8„(e„cosk„z+esink„z),
and the self-electric and self-magnetic fields produced by
a relativistic non-neutral electron beam [2]. The beam is
assumed to have an average axial velocity Vbe„where Vb

is a constant. A uniform density profile for the beam is
considered. The self-fields can be expressed as [2,4]

x, =k x, , P;= mc'
eA

T=ck t, Q
mc

where y is the relativistic Lorentz mass factor and P the
canonical momentum.

Introducing the following dimensionless variables and
parameters,
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This set of equations is solved numerically using a
fourth-order lunge-Kutta method. Figure 1 shows the
projection of the electron motion on the (x,y ) plane in
the case of some initial conditions (in this case, 0, is
smaller than its critical value). The motion looks "chaot-
ic" for high beam densities and becomes more and more
regular as the density decreases. At this stage, one can
conclude that the chaos seems to be strongly correlated
with the density of the beam.

Figure 2 shows two very close electron trajectories
when the density of the beam is assumed to be zero, and,
again, when 0, is smaller than its critical value. Figure
3, in contrast, shows two trajectories starting from the
same initial conditions as in Fig. 2, but for a high-density
beam case, nb =2 X 10"cm, while all other parameters
are as those in Fig. 2. A strong divergence between the

- 2.94
- 1.70

8 8
8 8

! . 8 !

- 0.30
A
X

1.30

FIG. 2. Projection of two nearby electron trajectories on the

(x,y) plane, for Pb =0.91, BO=0.715 T, B =715 G, f1, =2,
8=3 between the two times T, =602 and T, =630, and for the

following initial conditions: x
&
=x& = —0.25, y &

=y& = —O. 93,
",=zz=0, P„=P„=1.85, P» =0.5, P» =P» (I+SX10 '),

1

P, =P, =1.97.

two trajectories can be observed. The corresponding
Lyapunov exponent has been calculated in order to check
whether the two trajectories have an exponential rate of
divergence. First, the nonzero Lyapunov exponent is cal-
culated using a first approach of Benettin's method [1,5].
%e consider the two trajectories having an initial tangen-
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FIG. 1. Projection of an electron trajectory on the (x,y)
plane, for nb=2X10" cm ', P&=0.91, B0=0.715 T, B =715
G, 0, =2, 8=3, and for the following initial conditions:
x= —0.2S, y= —0.93, z=0, P„=1.85, P =0.5, P, =1.97.

FIG. 3. Projection of two nearby electron trajectories on the
(x,y) plane, for n& =2X10" cm ', P& =0.91, B0=0.715 T,
B =715 G, 0, =2, 8=3, between the two times T, =602 and

~& =630, and for the same initial conditions as Fig. 2.
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tial vector with norm dp. A sequence of distances d„cor-
responding to these trajectories is calculated numerically.
For every fixed time interval h~, or for every fixed dis-
tance ratio d„/dp=2, we renormalize d„to dp', that is to
say, we consider another trajectory such that the new ini-
tial conditions have an initial tangential vector with norm
dpe

The Lyapunov exponent is defined as

1 no= lim —gin
If-txt r dp
dp~p

(8)

W =M(x(r}).w,d7.

where

(10}

and its approximate numerical values, as obtained in our
calculations for finite n and dp, are shown in Fig. 4. The
convergence of our results with respect to dp was verified.

The Lyapunov exponent is also calculated using anoth-
er approach consisting of integrating the differential
equation on the tangent vector [1] w, =(x;—x~), where
the xj are the coordinates of a point on a trajectory at
time r defined by the initial condition xp, and x; are the
coordinates of a point on a nearby trajectory at the same
time, r, determined by the initial condition xp+Exp. The
time evolution for w is found by linearizing the equation

X
=V;(x)

d7.

to obtain

time interval or distance ratio d/dp.
The curve I in Fig. 5 shows the numerical results ob-

tained for the Lyapunov coeScient when the high beam
density is considered. The curve II, in contrast, shows
that, when the self-fields are neglected, the Lyapunov ex-
ponent goes to zero as time increases. In this case, the
problem is integrable [2,6,7].

With the linearized set of equations, only one limit
must be taken (dp does not have to be small). Still, the
Jacobian matrix M can be very complicated in some
cases. When two trajectories are considered, the accura-
cy of the numerical integration of Eq. (9) can be very easi-
ly tested using the constants of motion Nearly the same
Lyapunov exponent has been obtained with the different
approaches and the different renormalization ways. This
makes us confident in the fact that our dynamical system
does have a positive Lyapunov exponent.

Another physical situation was considered which is less
chaotic for higher currents (0, larger than its critical
value). A nonzero Lyapunov exponent has been calculat-
ed from two trajectories with very close initial conditions
[Fig. 6(a)]. It has also been derived by integrating the
difFerential equation on the tangent vector [Fig. 6(b)]. In
the next part, we show how a second constant of motion
can be found in order to simplify the problem.

The energy of the system is the first constant of
motion, as H does not depend explicitly on time. In or-
der to reduce the dimension of the phase space, a second
constant can be easily found using Noether's theorem. It
states that if the Lagrangian L of a system is invariant
under the infinitesimal transformation [8]

UM=
X

t~t+e'8(t, r), r~r+e'rl(t, r),
(11)

where e' is a small dimensionless parameter; then

By integrating Eq. (10) numerically, we calculate the
quantity d = ~~w(r) ~~, leading to d„when renormalizations
are necessary. Then, the Lyapunov exponent is given by
Eq. (8}. In most cases, renormalizations are necessary as
d becomes too large. They were performed every fixed

dL dLr}+ L —v @=const.
Bv Bv

For convenience, another gauge,

(12}
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FIG. 4. Lyapunov exponent corresponding to the trajectories
shown in Fig. 3, when integrating two trajectories and renor-
malizing (a) every fixed time hv =30 or (b) every fixed distance
ratio d„/d 0 =2.7.

FIG. 5. Lyapunov exponents correspondent to the trajec-
tories shown in Figs. 3 (curve I) and 2 (curve II), when integrat-
ing the linearized equations and renormalizing every fixed time
6~=30.
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FIG. 6. Lyapunov exponent calculated for n0=3.2X10"
cm, Pa=0. 93, B0=1.42 T, B„=7106, Q, =4, H =3 using
two different approaches, the first considering two trajectories
with the following initial conditions: (a) x

&

=x &
= —0.25,

y&=y&=0. 72, z, =z~=0, P„=P„=—2. 88, P» =0.99,

P =P (1+SX10 '), P, =P, =1.45 (b) the second consider-

ing the first trajectory and integrating the linearized equations.
Renormalizations are performed every fixed distance ratio

d„/d 0
=2.7.

A= —Bo—+ A cosk z e„+Bo—+ A„sink z e'2

P„=(2mQ,P )'» cos(y+k z'),

P =(2mQ, P~)'~ cos(%—k z'),

P, =P, kP +—k Pq, .

(20)
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The Hamiltonian in the new variables becomes

with Q, =eB„/m. The following dimensionless parame-
ters and variables are introduced:

+ (tr, e, ,c
(13)

and the following screw transformation, t ~ t,
x~x+s'k y, y —+y —e'k x, z~z —e', were used. The
Lagrangian of the system is invariant under the transfor-
mation when neglecting terms of O(e' ). Since 8=0 and

q = (k„y,—k x, —1), a second constant of motion is

8(rp, +,P,Pq„P,)

+rI2Q, P +a +2a (2Q,P )'i cosy

+P + 1]1/2

2.83

(23)

E=P„k„y—P k x —P, , (14)

where the P s are the components of the canonical
momentum in the new gauge. To transform the constant
of motion in terms of the first gauge, the following invari-
ance relation is used:

p=P+e A=P+e A .

The constant of motion becomes

1.65-

E =k (yP„xP)+—,'eBok (y —x) P, . — —(16)

This constant of motion can also be found by perform-
ing three canonical transformations. They show that
when the self-fields are neglected, the system is integrable
[2,6,7]. One of these transformations consists in choosing
—K as a new momentum (P, ). The product of these
three transformations is the transformation given by
Chen and Davidson [2], namely,
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FIG. 7. Surface of section plots corresponding to the trajec-
tory shown in Fig. 1, with %'=0 I,'mod2m).
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FIG. 12. Local Lyapunov exponents for 12 initial conditions
about those of one trajectory used for Fig. 6. The average value
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FIG. 13. Same surface of section plot as Fig. 7, with a limited
time ~=700.

FIG. 14. Same surface of section plot as Fig. 8, with a limited

time ~=700.

The new variables defined by Eqs. (17)—(22) permit us
to describe the motion by four equations instead of six.
This improves the accuracy of numerical calculations.
To obtain very accurate Poincare sections, a fourth-order
Runge-Kutta method with adaptive step size was used to
integrate the equations of motion. The following energy-
conservation condition has been verified for each trajec-
tory 10 &hH/H (10 . The Poincare maps (Figs. 7
and 8) corresponding to the two trajectories were per-
formed using Henon's method [9] to obtain very accurate
intersections with the plane of section 4=0 mod(2m. }. In
our case, the step size for the numerical calculation is so
small that this method does not modify our results
significantly. Figure 9, compared to Fig. 5(a} of Ref.
[2(a)], shows that our results are in good agreement with
those of Chen and Davidson [2].

The Lyapunov exponent shown in Fig. 4 was calculat-
ed again by using the variables of Chen and Davidson. A
similar asymptotic result was obtained (see Fig. 10). The
existence of a positive Lyapunov exponent is a signature
of the chaos in the asymptotic limit. Since the electrons
leave the wiggler after a finite time, it is interesting to cal-
culate a "local Lyapunov exponent" [3] for times shorter
than or equal to the time they spend in the wiggler. In
the vicinity of the initial conditions of the two studied
chaotic trajectories, twelve additional initial conditions
were chosen (Figs. 11 and 12). An average local
Lyapunov exponent was calculated by using these nearby
trajectories. It has the same order of magnitude as the
asymptotic one. It has been verified that all the local
Lyapunov exponents go to zero when the self-fields are
neglected. As a consequence, both local and asymptotic
exponents give the "mixing time" for trajectories. It is
shown on short-time Poincare sections (Figs. 13 and 14)
that the electron visits uniformly the whole ergodic re-

gion of the phase space in the same time as that chosen
for the calculation of the local Lyapunov exponents. In
the considered stochastic region, electron trajectories will

entangle after 8-18 periods of the wiggler. As a conse-
quence, chaos has to be considered in this problem.

III. DISCUSSION

Efficient numerical tools allowing us to find out wheth-
er a trajectory is chaotic or not were suggested. The cal-
culation of Lyapunov exponents was performed and test-
ed by comparing results obtained using different ap-
proaches of Benettin's method. The Poincare maps were
calculated with great accuracy. A very stringent condi-
tion on energy conservation was used.

A second constant of motion was found by using the

symmetry of the problem. It reduces the dimension of
phase space and can help to introduce the variables of
Chen and Davidson [2]. The chaoticity of some trajec-
tories predicted by calculating nonzero Lyapunov ex-

ponents is confirrned by performing Poincare maps,
which are similar to those of Chen and Davidson.

Local Lyapunov exponents were also calculated in or-
der to find the mixing time of the electron trajectories. It
was shown that chaos due to the self-fields of the beam
can be a crucial problem in an experiment. In the cases
considered, the growth length for the chaotic trajectones
is 8—18 wiggler periods.
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