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Calculations of Smith-Purcell radiation generated by electrons of 1—100 Mev
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Smith-Purcell radiation is produced when a charged particle moves close to a conducting grating. Re-
cent experiments using electrons of 3.6 MeV have demonstrated the potential use of this effect as a
strong tunable radiation source in the infrared spectral range. Large intensities can be expected using
high-energy electrons but apparently no detailed calculations have been published until now for this en-

ergy domain. We have calculated spectra of Smith-Purcell radiation generated by 1-100-MeV electrons
using the integral method, which is of general validity for any type of grating profile, and using the
modal expansion method and the improved point-matching method for lamellar and sinusoidal gratings,
respectively. The calculations are restricted to perfectly conducting surfaces and to electron trajectories
perpendicular to the grating rulings. Some problems related to an extension of the model to include
finite electrical conductivity (as needed for ca1culations of Smith-Purce11 radiation in the uv and x-ray
spectral range) and for arbitrary tilting angles of the electron beam with respect to the grating rulings
are discussed.

PACS number(s): 41.60.—m, 42.25.Fx, 42.79.Dj

I. Im'RODUCrrON

In the submillimeter range of the electromagnetic spec-
trum only a few intense and tunable practical sources are
available. Recently, Doucas et al. [1]have demonstrated
the production of Smith-Purcell (SP} radiation at wave-
lengths of 0.35-1.86 mm using 3.6-MeV electrons. The
intensity observed in this experiment attracted consider-
able interest in recent literature [2,3] and the SP effect
was discussed as a possible tunable source of intense
coherent radiation.

In 1942 Frank [4] predicted that a fast electron passing
close to a diffractive structure would emit polarized light.
The first experimental confirmation was obtained in 1953
by Smith and Purcell [5]. Since then, several studies have
been carried out exploring this phenomenon in view of
possible applications as a tunable electromagnetic source
[6], for particle acceleration [7], or in a free-electron laser

[8—11].
In 1960 Toraldo di Francia [12] established the analogy

between the Cherenkov and the SP effect. In this ap-
proach, the electric field of the moving electron is de-
scribed by a set of evanescent plane waves and the refrac-
tion (Cherenkov eff'ect} or the diff'raction (SP} of these
waves produces the outgoing light. However, the general
problem of electromagnetic-wave diffraction by a period-
ic surface was not solved at this time, except for some
particular structures [13]. Calculations of the SP effect
were generally carried out using an approximation based
on the Rayleigh hypothesis for shallow gratings [14]. A
rigorous solution for arbitrary grating profiles was given

by Petit and Maystre [15] and by van den Berg [16],who
later on applied this theory to the special case of the SP

effect where the incident waves are evanescent [17].
Gover, Dvorkis, and Elisha [18] made a comparison of
different models of the SP effect and concluded that the
van den Berg model Gts best with the experimental data.

To our knowledge up to now in most experiments on
the SP effect [5,6,8,11,14,19] only moderately relativistic
electrons with energies in the range of some hundred keV
have been used. The recent experiment of Doucas et al.
[1]at 3.6 MeV was the first evidence for the feasibility of
using high-energy electrons to produce SP radiation.
From these experiments it appears that a strong increase
in power of SP radiation can be expected when using
higher-energy electron beams.

The purpose of this article is to present theoretical pre-
dictions of SP radiation generated by relativistic electrons
with energies up to 100 MeV. The calculations are based
on the theory developed by Toraldo di Francia [12]. In
this approach the Coulomb Geld of the electron is
represented by the superposition of evanescent waves,
some of which are diffracted from the grating as propa-
gating waves. %e use the integral method, which has the
most general validity. For two particular cases we
present other approaches which have the advantage of
greater ease in calculation. The power radiated in a cer-
tain direction of observation is related to the so-caHed ra-
diation factors, which are analogous to the reQection
coeScients in the "classical" diffraction problem of light
and are calculated from the rejected-field Fourier trans-
forms.

II. THEORY

In the fo11o wing, we adopt with some minor
modifications the description of the problem and the no-
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tation proposed by van den Berg [17],to which the reader
is referred for more details. Figure 1 gives a schematical
description of the relevant geometrical quantities. The
electron moves in vacuutn parallel to the surface of a
grating with a constant velocity voi„along the trajectory
y =0 and z =zo=const. i,i, i, are unit vectors in the
x,y, z directions, respectively. The top of the grating is in
the (x,y) plane and the grating profile is described by a
periodic function z=f(x)=f(x+D) with the direction
of the rulings parallel to the y axis. The grating surface is
assumed to be electrically perfect conducting. By con-
vention, the vector n normal to the surface is pointing in-
side the grating.

The field vectors E'=E'(x,y, z, t} and H'=H'(x, y, z, t)
of the Coulomb field of the electron are expanded in
terms of Fourier integrals:

E'(x,y, z, t)=(2m ) 'Re f dco f 8'(x, z;P, cp)

X exp(iPy i cpt }d—P

(2.1)

H'(x y z, t) =(2m ) 'Re f dcp f %F'(x,z;P, co)

X exp(iPy i cot)dP—

(2.2)

The x and z components of the Fourier transforms 8',gf'
can be expressed as functions of the y components E„' and
H', which satisfy the two-dimensional Helmholtz equa-
tions

c}„E„'+d,E'+(k P)E'=(p /—e )' (P/k )c}„J„,

(2.3)

with d'(x, z;P, co)=q exp(iapx)5(z —zp)i„, ap=cp/vp
=kpcp /vp q is the electron charge, and cp is the vacuum
speed of light. The solutions are given as

E»(x z 'P cp) = (pp/&p) (Plkp )(ap/1'p)
2

X exp(i apx +i y p~z
—zp ~ ), (2.5)

H»( xz;P, co)= — sgn(z —zp) exp(iapx +iyp~z —zp ),

(V+iPi» ) X 4'" icppP—F"=0,

(V+iPi ) X%"+icpspg"=0,

(2.7)

(2.8)

and a boundary condition at the surface. For a perfectly
conducting surface this boundary condition is

nX(g'+g")=0, (2.9)

(2.6)

in which y p=i (a +P k—}' with (a +P —k )' & 0
Since up & cp we have ap & k p and yp is always imaginary
and nonzero. This means that the Coulomb field of the
electron is represented by a set of evanescent plane waves
exponentially decaying in the direction away from the
electron trajectory. In the absence of any perturbing de-
vice the free electron moving in empty space does not ra-
diate. But if the electron moves close to a grating these
evanescent waves are diffracted by the grating and some
of them give rise to propagating reflected plane waves.
Therefore the calculation of the SP radiation is reduced
to the grating diffraction problem and may be solved by
the same techniques.

The reflected field is given by E'=E—E' and
H"=H —H', with E=E(x,y, z, t) and H=H(x, y, z, t) be-
ing the total field above the grating. These reflected fields
are also expanded as Fourier integrals in which the
Fourier transforms 8",ff" satisfy the source-free Maxwell
equations

a'„H„'+a,'H,'+(k', —P')H,'= —a,J„, (2.4)
in which n is the unit vector normal to the surface. For
this case it can be shown [16] that the three-dimensional
vectorial problem can be separated into two scalar prob-
lems of two dimensions called the two fundamental cases
of polarization, viz. , the E polarization and the H polar-
ization. For the E-polarization case, where E %0 and

Hy =0, the component Ey Ey Ey satisfies the
Helmholtz equation

c} E"+(i E"/(k —P )E"=0 (2.10)

with the boundary condition Ey 0 on the surface of the
grating. For the H-polarization case, where H WO and

Ey =0, the Fourier component Hy Hy Hy satisfies the
Helrnholtz equation

g2Hr+g2Hr+(k2 P2)Hr (2.11)

FIG. l. Schematical layout of the geometry. The electron
moves with constant speed vo at a distance zo parallel to a per-
fectly conducting grating and perpendicular to the rulings.

with the boundary condition n VH„=O on the surface.
The reflected field above the grating (z &0) can be
represented by a Rayleigh expansion which describes the
field in terms of propagating and evanescent waves:
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E"(x,z;P, co) = g E'„(P,co) exp(ia„x +i y„z),

(2.12)

the Green's theorem to obtain the coefficients E"„and
H'„as functions of the total field at the surface of the
grating:

H~(x, z;P, co)= g H~ „(P,to) exp(ia„x+iy„z),

(2.13)

lE"„= (n VE ) exp( i—a„x iy„—z}ds,
2y„a

lH"„=— H (n V) exp( i—a„x i—y„z)ds,
2y„D

(3.1)

in which a„=ao+2nn/D and y„=(ko —P —a„)'~
with Re(y„)~0 and Im(y„) ~0. The SP radiation is the
sum of all emerging propagating waves, i.e., those waves
for which Im(y„)=0. Therefore a„+P ~ko and only
negative orders n can contribute. The angles of emer-
gence g„and g„satisfy the relations [17]

a„=ko sin( rl„),
P=ko cos(g„}sin(g„),

y„=ko cos(ri„) cos(g„) .

(2.14)

(2.15)

(2.16)

From (2.14) the following relation is obtained for the
wavelength Ao=277/ko.

—nio=D [co/vo —sin(ri„)] . (2.17)

According to (2.17) photons of fixed wavelength A.o are
emitted at difFerent angles of observation g„ in difFerent
emission orders n. Since ~sin(ri„) ~

~ 1, the number of an-

gles ri„at which this wavelength A,o is emitted is given by

~n, „(=[co/vo+1]D/Ao . (2.18)

III. SOLUTION OF THE GRATING PROBLEM

A. The Rayleigh method

A simple method to solve the grating problem is to as-
sume that the Rayleigh expansion (2.12) and (2.13) is val-

id also inside the grooves of the grating and to apply the
boundary conditions at the surface of the grating. It was
used [21] in calculations of SP radiation for shallow grat-
ings with triangular profile. However, it has been shown
[20,22] that this method is not generally valid, e.g., for
deep sinusoidal gratings, and we did not use it.

B. The integral method

The integral method [15,16] was used by van den Berg
[17] to give the first complete treatment of the SP effect.
The method makes use of the two-dimensional form of

In order to find the intensity of one of these propaga-
ting waves the coefficients E'„and H'„ in the Rayleigh
expansions (2.12) and (2.13) have to be calculated. This
problem, referred to as the grating problem, has been
treated in detail in literature [20]. In the forward direc-
tion and using high-energy electrons, D/A, o becomes very

large and the computational effort becomes appreciable.
We have applied some of the now available methods to
calculate the radiation produced by a relativistic electron
beam and give a brief description of these methods in the
following section.

(3.2)

in which the path of integration L is at the grating sur™
face along one period of the grating at constant y.

Applying Green's theorem, one arrives [17] at a set of
integral equations of either first or second kind, in which
the equations of second kind for n VE'„and H"„have
the same structure. The numerical solution of integral
equations of the second kind is generally easier than for
integral equations of the first kind because of singularities
in the kernels of the integrals. Following van den Berg
[17] we use the following integral equations of second
kind, i.e., for the two fundamental cases of polarization:

—,'n V E (xz,z )+Pf (n VE~)( —
nz V G)ds

L

P .'"»
,'H (x,z )—+Pf H~(n VG)ds =H'(x~, z ),

L

(3.3)

(3.4)

where the point (x,y ) is on L and P denotes the Cauchy
principal value of the integral. Green's function G is
given by

G(,xz; zx, z )= g (i/2y„D) expIia„(x —x)

(3.5)

C. The improved point-matching method

Exact results can be obtained using a variational
method [23], with moderate computational effort for
shallow gratings. This method is called the improved
point-matching method (IPMM}. We use a procedure in

analogy to the method used by Ikuno and Yasuura [24] to
calculate the diffraction of light. In this approach E„"and
0„"are approximated by truncated Rayleigh expansions

The set of integral equations (3.3) and (3.4) can be
solved using a discrete Fourier transformation and trun-
cating the infinite system of equations. This method,
however, is recommended only for cases where the
coefficients of the system can be obtained analytically,
e.g., for triangular and trapezoidal grating profiles

[16,20]. A more general method to solve the grating
problem consists in a discretization of the unknown func-
tions n VE and H at N points on the surface. This
leads to a matrix equation of order X. Since this method
can be used for any kind of grating profile we have

chosen to use it in our calculations. For details of this
method the reader is referred to the paper of van den
Berg [16]and to the book of Petit [20].
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and the coefficients of these expansions are found minim-

izing the following quantities IE and IH for the two fun-

damental cases of polarization:

I~ =f )E'+E»
~
ds,

IH= f fn. V(H'+H»)/ ds . (3.7)

The truncated Rayleigh expansions used for E' and H"
are

+N
E»(x,z;P, to)= g E» „(N;P,co) exp(ia„x +iy„z)

and

(3.8)

+N
H»(x, z;P, to) = g H» „(N;P,co) exp(ia„x +iy „z) .

n= —N

(3.9)

It has been proven [24—26] that both quantities IE and

IH vanish for N ~ 00 and the set of coefficients

E» „(N;P,to) and H»„(¹13,co) in (3.8) and (3.9) con-
verges to the Rayleigh coefficients E» „and H„"„ in (2.12)
and (2.13). Minimizing IE and IH, we obtain two systems
of linear equations which can be expressed in the form of
matrix equations MXE=Vand MXH=V. For the E
polarization, one obtains [24] the following elements of
the matrix M and of the vector V:

gratings with a height h &0.25D making the approxima-

tion
~
f'(x)~ &&1 and ds =+I+f'(x) dx =dx. Then,

M „and V can be calculated analytically in terms of
Bessel functions. We found agreement better than 10%
with the results obtained using the integral method.

D. Modal expansion method

In the (x,z) plane, i.e., for (=0', the SP effect is re-
duced to the study of the H-polarization diSraction be-
cause (=0 implies P=O, for which the E-polarized con-
tribution of the incoming waves vanishes. In this special
case the formalism is very similar to the one applied in
calculations of SP radiation from a line charge extended
in y direction and moving in x direction parallel to a grat-
ing. Such a theory was derived by van den Berg [27] for
gratings of rectangular profile (lamellar gratings) using
the treatment of Deryugin [28]. Figure 2 shows schemat-
ically the relevant parameters. Again, the electric and
magnetic fields are represented by Fourier integrals,
which are given in the following form because of the
two-dimensional nature of the problem:

E(x,z, t)=m'Re. f C(x,z;co) exp( itot)d~—
0

(3.14)

H(x, z, t) =m 'Re f ff(x,z;to) exp( i tot)dco—
0

(3.15)

M„= exp i n —p x+i „—y* x s,2m

I.

In this case, % has only a y component

%=Ui (3.16)

(3.10) and

V= exp i —p x+i —y0
—y* x s,2K g =(icos ) [J„i„+B,Ui„—B„Ui,], (3.17)

and for the H polarization

ia„' x —iy„ ia&
' x —iy

X [1+f '(x)']

(3.11) in which J„represents the Fourier transform of the
current density quu5(x uut, z —z—u). U(x, z;co) satisfies
the two-dimensional Helmholtz equation and the bound-
ary condition n VU =0 at the grating surface. Above the
grating (z )0) U(x, z;t0) is given [27] by

X exp i(n —p) x +i (y„y» )f(x) ds,—

(3.12)

V = ia 'x+iy0 ia 'x —iyz
* 1+ 'x

X exp i( —p) x+i( yo y»)—f(x)—ds .
v=1

(3.13)

The size of the matrix systems is increased until con-
vergence to the desired level of accuracy is obtained. For
deep gratings the computation time increases drastically
and the integral method becomes preferable [26]. We.
have used the IPMM for moderately deep sinusoidal FIG. 2. Cxeometry of a lamellar grating profile.
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U(x, z;co) = — sgn(z —zo) exp(iaox +i yolz —zo l )

+ g U„"(co)exp(ia„x+iy„z) . (3.18)

X g A cos(mex„/a)
m=0

X [ exp( lKmz)+I m exp(+lKmz)]

(3.19)

Inside the grooves (z & 0) U(x, z;co) is obtained from the
known solutions of waveguide modes

U(x„,z;co) = exp(iaovD)

the computational time became long. Therefore, for
lameBar gratings we present only the results obtained us-

ing the MEM. A similar method can be used for gratings
of symmetric triangular profile [20,29], but in this ease
the integral method is also well suited and is recommend-
ed because it is valid for all kinds of triangular gratings,
as explained in Sec. II.

IV. RESULTS

The energy loss due to emission of SP radiation of a
single electron of charge q = —e when traversing one
period of the grating at a distance zo above the surface is

given [18]by

with ()&x, &a, —h &z &0, a. =[ko (mm/—a)']'",
=exp(2iz h), and x denotes the local x coordinate

in the vth groove, i.e., x =vD+x, . Using the boundary
conditions for the field at the open end of the grooves
(0&x, &a) and on the ridges (a &x, &D) the following
system of equations is obtained [27]:

with

Dso nI2 ni2 (P i———sinai)

zo

h;„, „(ri,g)

X costi d ri d g (4.1)

(ynD4 n
—I'kn) U:, =Ck

in which

(3.20}

D (P ' —sinri)

4vrlnl(P 1+ co—s r) sin g)'

~n

4m (P —1+ cos ri sin g) '~ (4.2)

Ck
2

exp( i YO 0 ) y(P flak, 0
g

00 I —1

+apex
m=0 Pl

Qo I —1

k, n a g em m +m, k m, n

m=0 m

a„=a ' cos(marx/a) exp( ia„x)dx, —

(3.21)

(3.22)

(3.23)

and ek =2—5k 0. In order to find the unknown factors
U„ this in6nite system of equations is truncated and the
order of truncation is increased until convergence is
achieved.

One advantage of the modal expansion method (MEM}
is the speed of computation. The coefficients of the ma-
trix system can be calculated analytically whereas for the
integral method this has to be done numerically. Another
advantage is that the inversion of the matrix system gives
directly the solution for all different modes whereas for
the integral method first the fields on the surface have to
be calculated and then one integral for each diffracted or-
der has to be calculated numerically. Furthermore, the
MEM automatically takes care of the singularities at the
edges of the rectangular profile, which require a special
treatment when using an integral formalism. %'e com-
pared the results to calculations using the integral
method for lamellar gratings, approximating the rec-
tangular grating profile by a differentiable function
z =f (x). We found good agreement of the results but

which gives

h;„, „= Py4~
(4.3)

(P n g}I
=

2 exp(2lyolzo } ' IEy, I
+ l&y",

e pp

X(1—cos

raisin

g) (4.4)

The term exp(2l yolzo ) in (4.4) is introduced in order to
compensate for the zo dependence of E~ „and H~ „.With
this definition, the radiation factors do not depend on the
distance zQ of the electron trajectory to the grating sur-
face and the total power of SP radiation emitted by an
electron beam is obtained integrating (4.1) analytically
over y and zQ, i.e., over the beam profile. Assuming an
electron beam of width b smaller than the width B of the
grating and of height h ))h;„„with a constant current
density Jo and passing over a grating of length L, and
period D, the power emitted in order n by the beam per
unit solid angle in direction (i),g) is given [18]by

in the plane (=O'. In (4.2) and (4.3) we have introduced
the reduced speed p=uo/eo and the Lorentz factor

y = (1 —p )
' . The summation is to be taken over all

propagative orders n. The parameter h;„, „can be con-
sidered as an effective interaction range analogue to the
"formation zone" found in other types of radiation, e.g. ,
transition radiation and the Cherenkov effect. The so-
called radiation factors

l R„(p,ri, g) l correspond to the
classical refiection coefficients of a grating and are given

by [17]
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FIG. 5. Radiation factors ~R, (P, q, g)~' for a lamellar grat-

ing as a function of observation angle q for (=0' and for elec-
tron energies of 1, 2, and 5 MeV. The grating parameters are
h /D =0. 1 and a /D =0.5. The data for 1 and 5 MeV have been

multiplied by factors of 10 and 0.1, respectively.

g (deg)

FIG. 7. Radiation factors ~R, (P, q, g)~' for a sinusoidal

grating with h /D =0.1 as a function of observation angle g for
(=0' and for electron energies of I, 2, and 5 MeV. The data for
1 and 5 MeV have been multiplied by factors of 10 and 0.1, re-

spectively.

the electron and on the grating profile. It mainly deter-
mines the spectra of SP radiation. In Figs. 5 —8 we

present some results of our calculations of the radiation
factor ~R, (p, rl, g)~ . All values have been calculated for
the first propagative order n = —1 and for an observation
angle (=0', for which the intensity is expected to be larg-
est. %e have restricted our calculations to observation
angles g (45' where reliable convergence of the numeri-

cal solution of the integral equations was obtained. Two
types of gratings have been considered, viz. , lamellar and
sinusoidal profiles.

The radiation factors for rectangular profiles are func-
tions of the ratios h/D and a/D, for which we have
chosen h /D =0. I and a/D =0.5 in our calculations. As
explained above, we used both the MEM and the integral
method and found overall good agreement. In Figs. 5

and 6 the g dependence of the radiation factors
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FIG. 6. Same as Fig. 5 but for electron energies of 10, 50, and

100 MeV.

g (deg)

FICx. 8. Same as Fig. 7 but for electron energies of 10, 50, and

100 MeV.
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~R, (P, rj, g) ~
as calculated using the MEM are given for

several electron energies between 1 and 100 MeV. Strong
variations of the radiation factor can be seen near certain
values g =g in the forward direction. These resonances
are related to the Wood-Rayleigh anomalies [20,27]
where an evanescent refiected wave becomes radiating.
The angles where these anomalies appear are given

by the condition y„=0, from which one obtains
sin(g )=n '[(n —1)P ' —lI with integer numbers n

We performed the calculations on an angular mesh of
0.25 except near these anomalies, where we calculated at
angles rl„k(10,10,10 3). In most cases a strong de-

crease of the radiation factor is observed at angles near

g, but in certain cases also a strong increase of the radi-

ation factor is observed (see, e.g., in Fig. 5 the sharp peak
just before g=20' for an electron energy of 2 MeV). At
these angles the SP radiation is strongly collimated. It is
worthwhile to note that the radiation factors decrease
with increasing energy. A more detailed investigation
shows that this energy dependence of the radiation fac-
tors is moderate for electron energies of 1-5 MeV but
very strong at higher energies.

For the sinusoidal grating we have chosen a ratio
h /D =0.1. For such a shallow grating the radiation fac-
tors can be calculated using either the integral method or
the IPMM. We have used both methods and obtained
good agreement. Figures 7 and 8 show the results ob-
tained by the integral method. The radiation factors de-
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FIG. 9. Spectra of SP radiation in first order at /=0' using a lamellar grating with B =5 cm L =10,D =
an a/ =0.5. Gaussian beam profile with cr~ =o, = 1.5 mm at z() = 1.5 mm. Peak current of 10 A. Electron ener ies of (a) 1 MeV
(b) 2 Mev, (c) 5 and 10MeV, and (d) 50 and 100 MeV.
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FIG. 11. Comparison of SP spectra in first order at (=0' us-

ing 5-MeV electron beams and different gratings with B =5 cm,
L = 10 cm, D =1 mm: (a) lamellar grating with h /D =0.1 and
a/D =0.1; (b) lamellar grating with h/D =0.1 and a/D =0.5;
(c) lamellar grating with h/D=0. 1 and a/D=0. 9; and (d)
sinusoidal grating with h /D =0.1. Same beam parameters as in

Figs. 9 and 10.

We did not try to optimize the beam and grating pa-
rameters to find a maximum radiative power. The results
can easily be adapted to different experimental
configurations using Eqs. (4.5) and (4.6) as long as the
same types of gratings and the same electron energies are
used. Obviously a beam profile of small height elongated
in y direction would be more advantageous. Since the ra-
diation factors do not depend explicitly on the grating
period D but only on the ratios h /D and a/D the results
can also be used for different grating periods as long as
these ratios remain the same. The wavelength range
changes, of course, according to (2.17).

It is worthwhile to note that (4.6) takes into considera-
tion a finite beam size of Gaussian shape but assumes a
nondivergent electron beam (~e~ &h;„,/L is probably a
good approximation). It would be straightforward to
adapt (4.6) to electron beams of finite divergence integrat-
ing (4.1) over the beam profile, which varies as a function
of x. This approach, however, would assume an electron
trajectory considered as stepwise parallel to the grating
surface along one period D and we did not use it. The
problem of oblique incidence of the electrons will be dis-
cussed below.

V. DISCUSSION

A. Numerical difBculties

0 y cTz 1.5 mm. The beam axis is at zo = 1 .5 mm,
which corresponds to h;„, at electron energies of 10 MeV
and wavelengths of about 1 mm. The grating dimensions
are B =5 cm and L =10 cm and the grating period is
D =1 mm. The plane of observation is always at (=0',
i.e., perpendicular to the surface of the grating. We
present the results as a function of the wavelength using
Eq. (2.17).

(a) (b) (c) (d)

i0—

The application of the different methods outlined
above to the calculation of SP radiation implies some
peculiar numerical difficulties not seen in the "classical"
difFraction theory of gratings. (i) The amplitude of the in-
cident field can vary rapidly in the grooves of the grating,
whereas it is constant when the grating is illuminated
with a classical source. Therefore, when a discretization
procedure is used in the integral method as explained in
Sec. III C, the number of points used on the surface of the
grating has to be chosen carefully. Since the exponential
decrease of the incoming wave is related to the quantity
cp /Up this is more problematic when using low-energy
electrons of a few hundred keV. (ii) In classical spectros-
copy use can be made of the energy conservation
theorem, stating that the difFracted energy must be equal
to the known incoming energy. In the case of SP radia-
tion this energy conservation theorem cannot be used. A
modified formula was derived by van den Berg [17] relat-
ing the amplitudes of the propagative diffracted waves of
order n to the amplitude of the zero-order evanescent
wave:

g IE» „I'y, = —e(pc/eo)' '(P/k, )ao

0
1.0 1.2 1.3

XRe[E"o exp(i y t»ro )],
g ~H» „~ y„=e Re[H»oycexp(iyozo)],

(5.1)

(5.2)

& (mm)

FICx. 12. SP spectra at /=0 using a lamellar grating with
8=5 cm, L =10 cm, D =1 mm, h/D =0.1, and a/D =0.1.
Same beam parameters as in Figs. 9-11. Electron energies of (a)
5 MeV, (b) 6 MeV, (c) 7 MeV, and (d) 8 MeV.

in which the summation is taken over all propagative or-
ders n. As mentioned in the preceding sections, in our al-
gorithm for the integral method we increase the number
of points of the surface discretization, the number of
terms in the Green's function, and the number of orders
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taken in the Rayleigh expansion until convergence is

achieved. Then we use relations (5.1) and (S.2) as a check
for the validity of the results. Similar checks are used in
the MEN and IPMM calculations.

B. Practical aspects

Spectra of SP radiation in the millimeter wavelength
range obtained using lamellar or sinusoidal gratings ex-
hibit some characteristic differences. The lamellar grat-
ing emits radiation in sharp peaks, with an optimum elec-
tron energy of about 2 MeV. For the sinusoidal grating
the emission is stronger in the forward direction and op-
timum electron energies are at about 10 MeV. Apparent-

ly, the use of high-energy electron beams is of no advan-

tage in this spectral range. This may be different in the
x-ray energy domain, where our model is not valid.
When using relativistic electrons (co/vo= 1) photons of
very short wavelength are emitted in forward directions
g=90'. For example, using a commercial optical grating
of 1800 lines per millimeter, at g=80' the corresponding
wavelength is A, =84 A. At such short wavelengths, how-

ever, the hypothesis of a perfect conducting surface fails
and one has to use a more complete theoretical model in-

cluding the conductivity 0 (A. ). In addition, the small ra-

tio A, /D implies a very large number of diffracted orders.
Under these circumstances the solution of the integral
equations becomes awkward and an asymptotic theory
for the diffraction of small wavelengths at large incident
angles should be used. Due to these difficulties we have
restricted our calculations to (i) wavelengths for which
the conductivity of the surface can be considered as
infinity, i.e., from infrared to visible light, (ii) gratings for
which the ratio A, /D is not too small, and (iii) emission

angles that are not too close to the forward direction,
typically g & 45'.

Figure 11 shows a comparison of SP spectra using a 5-

MeV accelerator and different gratings. A set of gratings
with different parameters could be used to taylor the SP
radiation spectra to the experimental needs. By collima-
tion of the SP radiation into a solid angle
bQ=cos(rj)bi15( one obtains radiation of bandwidth
AA, /X=cos(g)[p ' —sin(7))] 'hi) in first order. Using a
5-MeV electron beam and a lamellar grating, a peak pho-
ton flux of 5 X 10' s ' in a solid angle of 1 JMsr can be ob-
tained [cf. the maximum of curve (a) near A, = 1 mm in

Fig. 11]. This photon fiux would be quasimonochromatic
with a bandwidth hA, /A, = 10 . Continuous tuning of
the peak intensity in the SP spectra is also possible by
varying the electron energy. Figure 12 shows spectra cal-
culated for a 1-mm lamellar grating at several electron
energies between 5 and 8 MeV. The peak is shifted from
1.04 to 1.18 mm when the electron energy increases from
5 to 8 MeV.

For electron energies of 350 keV we obtain h;„,= A. /10
at /=0. This means that at very low electron energies
very sma11 beam sizes are needed in order to get a reason-
able fraction of the electrons interacting effectively with
the grating. Furthermore, careful alignment of the elec-
tron beam close and parallel to the grating surface is
mandatory. At 10 MeV we find h;„,=1.6A, and at 100

MeV h;„,= 16K,, which means that for production of pho-
tons in the far infrared or millimeter range even electron
beams with a diameter of the order of 1 —10 mm would
still be efficient. Indeed the entire beam would interact
with the grating and even the positioning of the beam
above the grating is not critical. In the far infrared
aluminum gratings with periods D ~ 1 mm can be used

taking advantage of (i) an electrical conductivity that can
be considered as infinite in this spectral range and (ii) a
very good thermal conductivity, which reduces the risk
of possible damage caused by the beam. Such gratings
can easily be produced.

From these technical considerations it appears that ac-
celerators of moderate energy and relatively low cost
could be used as strong sources of SP radiation in the
long-wavelength range. The results of Doucas et al. [1]
using a 3.6-MeV electron beam confirm this expectation.

C. Extensions of the model

As mentioned above, the SP effect could also be used to
produce radiation in the uv and soft-x-ray energy domain

using high-energy electron beams. In this spectral range
a finite electrical conductivity o (A, ) has to be included in

the boundary condition (2.9). Although this problem has
been treated [30] for nonrelativistic velocities Uo ((co, to
our knowledge there is at present no rigorous theory of
SP radiation available including a finite conductivity of
the grating surface.

In order to obtain short wavelengths of SP radiation,
observation angles close to the forward direction g=90'
have to be chosen. This implies a very large number of
diffracted orders, which makes the solution of the in-

tegral equations difBcult. In a recent publication Moran

[31] presented a different approach adapting the Ter-
Mikaelian [32] description of radiation produced when a
relativistic electron passes a linear slit to the grating
problem. In this approach, the radiation is expressed in a
closed form, which is very convenient for designing SP
experiments. It assumes, however, infinitely thin screens,
an assumption which may be questionable for photon
wavelengths around 100 A.

In all our calculations we assumed an electron trajecto-
ry perpendicular to the grating rulings. Steering the elec-
tron beam at some angle to this direction but still parallel
to the surface of the grating would allow to tune the SP
spectra because the effective grating period seen by the
electron is changed. Maystre and Petit [33] and van den

Berg [16] have treated the general case of conical
diffraction in spectroscopy, where the incident light does
not fall on the grating perpendicularly to the rulings. In
the SP approach [17] we have used in our calculations
conical diffraction at finite observation angles (%0 is al-

ready included. Therefore it should be possible to adapt
these models to the case of SP radiation when the elec-
tron beam travels at an arbitrary angle relative to the
grating rulings.

D. Estimate of a SP free-electron-laser gain

In the preceding sections we have restricted the discus-
sion to spontaneous SP radiation. The stimulated emis-
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sion of SP radiation, problems related to the active cou-

pling of the electron beam to the electromagnetic surface
waves [8—11,34—36] and the presence of a strong guiding
magnetic field [37,38] have not been taken into considera-
tion. With some simplifying assumptions, however, we
can estimate the stimulated emission gain from the calcu-
lated spontaneous emission power. Friedman et al. [39]
have derived general relations between spontaneous and
stimulated emission of radiation for several quasi-free-
electron radiation effects. For an open resonator SP
free-electron laser (FEL) they get for the gain at max-
imum gain detuning point [39]

gmax
=0 5~~

mcoA, DP y

X(1+P y cos2rl sin g)
dP
dQ

(5.3)

in which m is the electron mass and A, is the effective
radiation beam cross section. We take the radiation
beamwidth equal to the full width at half maximum of
the electron beam in y direction and the length of the ra-
diation beam spot on the grating equal to the grating
length, i.e., A, =&8 1n2o L cosr). Friedman et al.
[39] give an example based on experimental values [18]
obtained using a 100-keV electron beam and a blazed
grating with D =556 nm and h/D= —,'. In this experi-

ment 5.8X10 ' W/sr were observed in second order at
tl= —16' and /=50', which gives a maximum gain

g,„=5.6X10 s. This rather low value is mainly due to
(i) the relatively low beam current of 0.25 pA used in the
experiment and (ii) the fact that the dimension of the
beam in z direction was rather large (h;„,/cr, =3X10 ).
For comparison, we use Eq. (5.3) to calculate the max-
imum gain for some of the parameters used in the discus-
sion of spontaneous SP radiaticn in the preceding sec-
tions. At 1 MeV and using a lamellar grating we find
from Fig. 9(a) a gain of g,„=13% at A, =0.7 mm

(h;„,/o, =0.1) and g,„=5.5% at A, =0.42 mm

(h;„,/a, =0.06). At 2 MeV we get from Fig. 9(b) a value

g,„=6% at A, =0.7 mm (h;„,/o, =0.2) and at 5 MeV
we find from curve (a) of Fig. 11 a gain ofg,„=1.7% at
A, =1.03 mm (h;„,/o, =0.6). As emphasized above, we
did not attempt to optimize the different parameters in
order to find a maximum power of SP radiation. We also
did not investigate the applicability of Eq. (5.3) to the ex-
perimental configurations for which these values were
calculated. The main objective of these simple considera-
tions is merely to illustrate that it might be worthwhile to
consider in the design of a SP FEL such parameters as

the grating profile, electron energy, and observation an-

gles in order to choose optimum values for maximum
spontaneous emission of SP radiation.

VI. CONCLUSIONS

We have calculated SP radiation produced by relativis-
tic electrons of 1-100 MeV in the frame of an elec-
tromagnetic theory. Some techniques to solve the grating
problem have been discussed. In our calculations we
used the integral method, which is of most general validi-

ty. For lamellar gratings and an observation angle (=0'
we also used the modal expansion method and for shal-
low sinusoidal gratings the improved point-matching
method, which both require less computational effort.
Good agreement was found between the results of these
specialized methods and the integral method. Special at-
tention was given to the case of high-energy electrons
with vo/co= l. The results show that in the millimeter

wavelength range reasonable intensities of SP radiation
could be obtained using 1-10-MeV electrons. High-
energy electrons are of no advantage in this spectral
range. The models used in our calculations do not in-
clude a finite electrical conductivity o(A, }. Also, due to
numerical difficulties, these models are not applicable at
forward angles. Therefore our conclusions do not apply
for generation of SP radiation in the uv or x-ray energy
range. The SP effect seems to be a good candidate for the
construction of coherent, tunable radiation sources. By
careful selection of the grating special characteristics of
the radiation can be adapted to the experimental needs,
e.g., tunability, , broad spectral range of moderate intensi-

ty, or large intensity concentrated in a few peaks of nar-
row bandwidth. The use of oblique incidence of the elec-
trons for convenient tuning of the SP radiation remains
to be investigated. The emittance of the electron beam
becomes a severe limitation for generation of SP radia-
tion in the uv and soft-x-ray energy domain but is less
crucial at longer wavelengths.
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