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Fluctuations in radioactive decays. I. Nenequilibrium efFects and noise
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Radioactive decay is a nonequilibrium process. For most practical purposes it can be modeled
as a steady-state process, but there are instances vrhere counting statistics should not be assumed
constant; this remark is particularly relevant for long counting intervals. We give explicit formulas
for the probability distribution of counts, the expected values of the mean, the variance, and the
Allan variance. These formulas, rather than the Poissonian ones, should be used as benchmark for
experiments aimed at revealing exotic effects. Formulas are compared to numerical simulations and
actual experiments.

PACS number(s): 05.40.+j, 02.50.—r, 23.90.+w

I. INTRODUCTION

The essential presence of 1/f noise in electronic de-
vices, and in other diverse physical systems [1], has in-
spired several studies of fiuctuations in radioactive decays
with the aim of detecting the same phenomenon, or other
departures &om Poissonian statistics. At present exist-
ing experimental data are not easily reconciled: several
authors confirm the Poissonian behavior [2—7], while oth-
ers find variances higher than the Poisson value by more
than one order of magnitude [8—13]. Following the orig-
inal papers by Handel [14—17], several mechanisms have
been considered to explain the excess variance [1,11,18],
but a»opaque interpretation of the experimental data is
missing at present [1,19].

The importance of such studies is best understood by
reminding the reader of the basic assumptions that de-
termine the Poissonian nature of the counting statistics:
the probability per unit time for the decay of a nucleus is
a constant, and the decay of each nucleus of the ensemble
is independent of the decay of its neighbors. The first as-
sumption, which is equivalent to exponentially decaying
amplitudes for unstable states, agrees with available ex-
perimental data &om unstable nuclei and particles. How-
ever, one cannot avoid noticing that the amount of data
available is not large, perhaps because a precise determi-
nation of the time dependence of the decay probability
over long intervals is by no means trivial. The second
assumption might also fail. For instance, coherent efFects
among the nuclei in the lattice might introduce correla-
tions among decays. In this regard, even if outside the
scope of the present work, we suggest the interesting pos-
sibility of studying counting statistics in radioactive de-
cays as a means of getting information on such coherent
efFects.

The main purpose of this paper is to spell out what we
like to call the standard picture for decay fiuctuations:
deviations from this picture would indicate interesting
new phenomena. We show that the time dependence of
the decay statistics produces sizable deviations from a
pure time independent Poisson distribution for definite
ranges of parameters; these deviations are well under-
stood and should not be interpreted as novel efFects. This
no-new-physics result is then compared to several experi-
mental studies of fluctuations in radioactive decays which
we find particularly instructive.

By not taking correctly into account the time depen-
dence of the statistics, one could be misled into interpret-
ing as 1/ f noise, or more exotic physics, deviations from
the Poissonian statistics, which are mere consequences of
the exponential drift. Moreover, the understanding of the
dependence of the phenomenon on the experimental pa-
rameters (basically mean count per unit time and mean
life of the nucleus) is essential in comparing experiments,
which are in general run at diferent counting rates: our
analysis yields formulas that depend on the counting rate,
while in the &amework of Poissonian distribution results
are independent of the counting rates.

The main conclusions of this paper have already been
anticipated in a previous work [7] where we reported
our preliminary experimental results for the p decay of

50Sn. Here we wish to give a more careful derivation
of the formulas, discuss some of their consequences, and
compare them to several published results. In a corn-
panion paper [20], which we shall refer to as II, we shall
report our complete experimental data for the p decay of
119m S50

In Sec. II we give an intuitive description of the ef-
fect, estimate the leading corrections to the Poissonian
expected values of the the mean counting, and give the
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Allan variance [21,22] over n consecutive intervals. In
Sec. III we report numerical simulations that estimate
statistical uncertainties of measurements and systematic
errors due to data treatment and compare them to pub-
lished data. Finally, we draw our conclusions in Sec. IV.
In the Appendix we derive our formulas within a more
rigorous framework: we find that, for all practical pur-
poses, results do not differ from the simpler calculation
in Sec. II. In the Appendix we also report formulas for
the probability distributions of counts and for the usual
variance over n consecutive intervals.

erage countings of two contiguous periods is of order T,
the leading term when we expand the exponential that
describes the decay, while the fluctuations around the av-

erage values are of order ~T: therefore fluctuations dom-
inate at small T. It follows that the expectation value of
MI, is constant

p„—:E[M„] = E[My] = E[Mp]

Moreover for Poissonian fluctuations, i.e. , E[M~Mq] =
8~&E[Mg] = p„, the expectation value n2 (j) of the gen-
eralized Allan variance, defined by Eq. (3), is

II. TIME DEPENDENT STATISTICS ~.'(j) =
2(„

n —1—2

When decay statistics are time dependent, we expect
sizable deviations kom pure time independent Poisson
distributions for definite ranges of parameters. We shall
illustrate the reason of these deviations and describe the
two physical effects present in these kind of processes:
the statistical fluctuation and the exponential decay. In
the Appendix we report a more rigorous approach that,
yields results identical to the leading order to the ones
obtained in this section.

Let us consider an ensemble of identical nuclei with
mean life ~ and call Mp the number of decays recorded
in the time interval between kT and (k + 1)T for k =
0, 1, . . . , n —1. The statistics we shall presently consider
are the average count over n consecutive intervals:

n —1
1M„—= —) My
n

k=O

and the corresponding Allan variance [21,22]

2(n

n —1—2). [v-+ I -] = v-

a.„'(1) 1
2

Pn Pn
(4)

Conversely, differences between contiguous periods are
dominated by the exponential decay at long enough T, for
the same reason for which Poissonian fluctuations domi-
nate at short T: fluctuations grow like ~T while the ex-
ponential decay produces differences of order T. In this
limit, then, each measure gives the same result, which is
also the expected value, and we need only to take into
account that the number of nuclei is decaying exponen-
tially:

E[MI,] = Mp exp[ —kAT] = Mp(1 —z)"

which yields the Poissonian result for the reduced Allan
variance:

A„—: ) [Mi —My+i]
2 n —1

We also de6ne a new variance

(2) where z = 1 —exp[ —AT] = AT has been defined, with
A = 1/r. Therefore, our statistics are simply obtained
by summing up geometric series and keeping the leading
terms in the small parameter x:

1
G„(j)—: ) [Mk —Mg+, ]

k=O

which we call generalized Allan variance since it includes

Eq. (2) as a particular case for j = 1. We introduce
this generalized Allan variance because we find it a very

sensitive tool to study drifts in the counting statistics.
Moreover, the dependence on j of the generalized Allan
variance, which we shall show in Eq. (7), provides an
additional test of our calculation. We shall come back to
these remarks in II, where we present our experimental
data [7,20]. Notice that in Eqs. (1)—(3) we should write
M (T), A (T), and G (T,j ), but we prefer not to show

explicitly that these quantities depend on T to make the
notation less cumbersome.

The heuristic derivation we present in this section is

based on the physically motivated knowledge of the ex-

act results in the two opposite limits: small and large
T. For small counting periods T the difference of the av-

1 —(1 —z)"„„=M,-) (1 *)"=M. -
n nz

n —1*+O(z')
2

MO (1 z) 2(n —j)
[1 —(1 —z)']

2(n —j) 1 —(1 —z)'
M2

2
(jz) [1 —(n —2)z+ O(z )]

2

2" (jz)'[1+z + O(z')] .

Finally, we add the two contributions, the one due to
fluctuations and the one due to the exponential decay; to
leading order in x we And
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1 1 2 1B= —+ p„=p„2(p„r)' " p„~z
1+ —z
2

in particular the reduced Allan variance is

(9)

We wish to point out that the crossover &om one
regime, the one dominated by Poissonian fluctuations,
to the other one, the one dominated by the exponential
decay, depends on the counting rate. Experiments at dif-
ferent rates will see the crossover at different periods or
even fail to see it depending on the range of periods con-
sidered. We suggest two possible experimental tests of
the results reported in this section. One is to verify the
dependence of the Allan variances on the counting rate,
and in particular Eq. (10), by taking data for several
rates. The other is to plot the the measured generalized
Allan variance as function of j2 and verify Eqs. (7) and
(8); we report such tests in II.

Since it is common practice to plot fluctuations against
the average count M„or the time interval T, we pre-
sented Eqs. (7)—(9) as function of p„, the expectation
value of M, and of x AT; to this end, we introduced
p„:—p„/T = p„/(7.z), the expected value of the aver
age rate r„= M„/T. Note that interchanging any or
all of the measured values M„, A2 (j), and r„with the
corresponding expected value p,„,n2 (j), or p„does not
modify results to leading order in z.

At this point we wish to remark that, while Eqs. (7)—
(9) have the correct behavior for small and large T, they
could have in principle correction terms at intermediate
T. The incoherent sum of the decay and Poissonian con-
tributions could miss, when the sizes of the two terms
are comparable, some cooperative efFect. Nonetheless,
the most interesting qualitative feature of Eqs. (7)—(9),
i.e., the presence of a minimum, is already guaranteed by
our knowing the exact limiting behaviors: the variance
grows both at small and large T. It turns out that the
more rigorous and lengthy treatment reported in the Ap-
pendix does not add any new term to Eqs. (7)—(9), i.e.,
which therefore remain valid for every T, even outside
those limits within which they were originally derived.
The second contribution due to the exponential drift of
the mean count can often be dropped compared to the
first one because of the smallness of x AT; however, if
we take T large enough, it will eventually become domi-
nant, even for times T much shorter than the mean life 7.
This is a major point of this paper, as this effect has of-
ten been underestimated. In this regard, we contrast the
expression of 8 given by Eq. (9) with the one reported
in Ref. [3]

and with the one reported in Ref. [10)

In both these expressions, it is always possible to drop
the correction term for times T much shorter than the
mean life r. In our Eq. (9) for the Allan variance the
two terms become comparable for T —T~;„,which is the
value of T for which Eq. (9) has its minimum:

at T;„=r(p„r) 3 . (10)

III. MC SIMULATIONS AND EXISTING DATA

In this section we discuss the results of the Monte Carlo
(MC) simulation of the decay of a closed system of emit-
ter centers. MC simulations will be used here not only to
confirm the analytical results but also to estimate statis-
tical uncertainties. We point out that analytical expres-
sions of the uncertainties could have been obtained by
methods similar to the ones reported in the Appendix,
even if with greater effort; nevertheless numerical meth-
ods seem more appropriate to our present purpose of ev-
idencing general trends and getting order-of-magnitude
estimates. Moreover, simulating the specific conditions
in which experiments reported in the literature were car-
ried out will help us to discuss the interpretation of the
experimental results. In particular, we shall examine here
a few representative experiments on (i) the p decay of
~~

sDSn, investigated in II; (ii) the n decay of 2s~4oPo [5];
(iii) the P decay of ~ssrsCs [6]; and (iv) the o. decay of
24'Am [4].

First, we illustrate the effect of the decreasing num-
ber of nuclei on the decay statistics and, for the sake of
concreteness, we refer to the physical situation experi-
mentally investigated in II: a source of 50Sn with an
average counting rate of 5500 counts per second, having
a half-life of 293.0 days [23]. Our simulation reproduces
strictly the experimental procedure. We consider N& time
intervals, multiple of a basic interval: T; = 2' TD with
i = 1, . . . , Nq. For each T;, the statistics are calculated
using the decays recorded in n consecutive intervals of
duration T, . The same value of n = 64 is used for every
interval; we count the decay events in n(2~' —1) consec-
utive intervals of length TD and we group the counting
results as follows: the first n are taken as the n measures
at period t = T0, the successive 2n are used to give the n
measures at t = 2TD, and so on. Therefore, our simula-
tion consists in generating n(2 ' —1) numbers from the
appropriate distribution. Operatively, we start up with
N nuclei and generate the number of decays in the first
interval of length To according to the binomial probabil-
ity distribution of independent events with probability p
out of a sample of N events; p is chosen so that Kp is the
expected number of decays. In the Appendix we argue
that this is the correct distribution when no novel effects
are expected. As a second step, we subtract the decayed
nuclei &orn N and generate the number of decays in the
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next interval according to the new binomial probability
distribution (N has changed). The iteration of the second
step provides us with a set of data which corresponds to
a complete experiment; parameters of the simulation, N,
p, and To, are obviously chosen to match the rate, length
of the time interval, and decay constant in the real ex-
periment. We then repeat the simulation a given number
of times (typically 64) to estimate statistical errors.

In Fig. 1 we report the results of the simulation, where
data and error bars are averages and standard devia-
tions over 64 simulations. For comparison we also show
the expected result for a stationary Poissonian process
(dashed 1-'ne), as given by Eq. (4), and the theoretical
behavior predicted by our Eq. (9), which takes into ac-
count the exponential decay (full curve). In agreement
with the latter, the simulation results show the extent
at which the decreasing number of nuclei is expected to
affect the dependence of the counting variance at long
periods: the variance decreases on increasing T, as ex-
pected for a Poisson process, until a minimum is reached
at T ' = 1.6x10 s and it increases for longer values
of T. The agreement between the experimental results
and the simulation ones will be discussed in II. Here we

emphasize that once the Allan variance is dominated by
the decay, say for T ) T;„with T;„given by Eq. (10),
a strong reduction of its standard deviation from the av-

erage value occurs, as shown in Fig. 1.
In Figs. 2 and 3 we compare our simulations with

the results reported by Azhar and Gopala [5,6]. These
authors have investigated experimentally the statistics
of the the ct decay in 2&~4oPo [5] and of the P decay in
~sss7Cs [6], searching for traces of 1/f noise in the de-

pendence of the relative Allan variance on the counting
period T. At variance to their expectations, they found
that the decay of both sources obeys the simple Poisson

statistics up to periods as long as 10000 and 3300 min,
respectively. Here we show that, according to the the-
ory presented in Sec. II, a departure kom the Poissonian
behavior should be clearly observed in both cases.

In Fig. 2, open circles are experimental data taken from
Ref. [5] on the a-particle decay of 2s4Po, the dashed line
plots Eq. (4), valid for a stationary Poissonian process,
and the full line plots Eq. (9) which takes into account
the exponential decay of nuclei. We find puzzling that
experimental data fail to show the effect of the decay, as
this effect should dominate the statistical fluctuations at
the longest period explored.

One might relate the disagreement to the circumstance
that add-up procedures were used in data treatment in
Ref. [5]. We recall that the so called add-uJI or summing
procedures are used in most of the experimental inves-
tigations on the statistics of decay processes and aim at
saving data acquisition time. They consist in using the
same n counting measures taken with a period To to give
not only n data points at time To but also n/2 data points
at period 2TO by grouping pairs of consecutive measures,
n/4 data points at period 4To by grouping four consecu-
tive measures, and so on. An immediate consequence of
this procedure is that measures at longer and longer pe-
riods have lower and lower statistics; moreover, measures
at different time intervals are not fully independent: the
correlation between measures could, at least in principle,
introduce systematic errors. To make clear this point, we

also carried out MC simulations that make use of these
procedures. The results of our simulations are reported
as full circles in Fig. 2. Following Ref. [5], the add-up
method was applied for periods longer than 1000 min;
we used 138.367 days as the 2sto4Po half-life [23] and esti-
mated &om their figures, since it is not explicitly reported.
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FIG. 1. Relative Allan variance vs 1/T for ~sIISn decay.
Filled circles are averages over 64 MC simulations; error bars
are the corresponding standard deviations. The dashed line

corresponds to a stationary Poissonian process, described. by
Eq. (4), with an average counting rate of 5500 counts per
second. The full line reproduces our Eq. (9) which takes into
account the exponential decay with a 293.0 day balf-life [23].

FIG. 2. Relative Allan variance vs 1/T for s4Po decay.
Filled circles are averages over 64 MC simulations; error bars
are the corresponding standard deviations. Open circles are
data from Fig. 1 of Ref. [5]. The dashed line corresponds to a
stationary Poissonian process, described by Eq. (4), with an
average counting rate of 2.6 counts per minute. The full line

reproduces our Eq. (9) that takes into account the exponential
decay with a 138.367 day half-life [23].
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in Ref. [5], an average rate of 2.6 counts per minute. The
number of measurements for each time interval is also
not reported by Ref. [5]: we made 32 measurements for
periods up to 1000 min, a nuxnber estimated &oxn the
dispersion of the data, and we halved that nuxnber at
each successive period so that only four measurements
were made for the last time period, which was 8000 min
long. We also performed 64 Monte Carlo sixnulations of
the experiment to verify whether data were compatible
with a statistical Buctuation away &om the full curve or
whether systematic effects due to the add-up technique
might shift the data towards the dashed line; as evident
in Fig. 2, the results of the simulations indicate that nei-
ther statistical Buctuations nor such a systematic effect
gives any significant contribution.

In Fig. 3, we show the same kind of inforxnation shown
in Fig. 2 but for the P decay of isss7Cs: now oPen circles
are experimental data taken from Ref. [6], the dashed line
plots again Eq. (4), and the full line plots Eq. (9). We
are again surprised that data are better fitted by Eq. (4)
than by Eq. (9); MC simulations also fail to explain this
result in terms of statistical Quctuations. For the sake
of completeness, we report the parameters of the simu-
lation: we estimated them from the figures of Ref. [6],
since none of them are given there. We did not use any
add-up method, since it is not mentioned in Ref. [6], and
we made 32 measurements for each period, that number
estimated &oxn the dispersion of the data. We used 30.0
years as the iss&~Cs half-life [23] and an average rate of
159600 counts per minute.

We analyze in detail one last case. The reason of its
interest is that it is the only case we were able to find in
the literature where the authors [4] realize that is possi-
ble to get sizable contributions to the variance &om the
exponential drift; they choose to take it into account by

correcting the data. Figure 4 compares two runs &om
Ref. [4] to our simulation of the a decay of a sample of
2~@si Am, whose half-life is 432.7 years [23], with an average
counting rate of 600000 decays per minute. Apart &om
the three shortest time intervals, data are taken using
the add-up technique in such a way that the longest time
interval has only four measures, the second longest eight
measures, and so on. Correction was done by dividing
out the exponential decay &om the data. Averages over
64 iterations seem unaffected by systematic errors and
have a Poissonian behavior, as expected after the decay
contribution to the variance has been eliminated; disper-
sion around the average increases at longer time intervals,
corresponding to the decreasing of the number of mea-
sures. Both runs f'rom Ref. [4] are statistically compatible
with a pure Poissonian behavior (dashed line).

Finally, we wish to point out that, in spite of our stress-
ing the importance of contributions to the variance com-
ing from the decay, there are instances when these con-
tributions can be neglected. One of these cases is when
the experimental settings are such that deviations would
only appear for time much longer than the maximum in-
terval considered: given the lifetime of the nucleus, the
lower the rate the longer the maximum time interval, ac-
cording to Eq. (10). We find one such case in Fig. 8
of Ref. [10]: application of Eq. (9) to the ssAm n de-
cay with a rate of 18000 counts per minute yields that
the decay becomes important for times of the order of
or longer than 18000 min; deviations from a pure Pois-
sonian behavior in the considered range between 1 and
104 min cannot be explained by the exponential drift.
We can also fail to observe the contribution of the decay
to the variance when the variance exceeds not only the
Poissonian formula Eq. (4) but Eq. (9) as well. Nonethe-
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FIG. 3. Relative Allan variance vs I/T for ~sssCs decay.
Filled circles are averages over 64 MC simulations; error bars
are the corresponding standard deviations. Open circles are
data from Fig. 2 of Ref. [6]. The dashed line corresponds to
a stationary Poissonian process, described by Eq. (4), with
an average counting rate of 159600 counts per minute. The
full line reproduces our Eq. (9) that takes into account the
exponential decay with a 30.0 year half-life [23].

FIG. 4. Relative Allan variance vs 1/T for +sAm decay.
Filled circles are averages over 64 MC simulations; error bars
are the corresponding standard deviations. Open circles and
crosses are data of, respectively, run 1 and run 2 &om Fig. 5 of
Ref. [4]. The dashed line corresponds to a stationary Poisso-
nian process, described by Eq. (4), with an average counting
rate of 600000 counts per minute. The full line reproduces
our Eq. (9) that takes into account the exponential decay with
a 432.7 year half-life [23].
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less we think it more correct to measure the excess of
variance over the latter. For example, Ref. [12] reports a
study of the 2s~ Tl P decay; the rate reported implies that
the decay drift becomes important at times larger than
2000 min. They observe a relative Allan variance that
is, for their longer times, about twice the one given by
Eq. (9), but almost an order of magnitude larger than the
Poissonian result. The evidence for excess noise is only

marginal, once errors are taken into account, if we cor-

rectly use Eq. (9) as our reference —evidence that would

have appeared more convincing had we used Eq. (4) as
reference.

IV. CONCLUSIONS

The experimental study of fluctuations of the num-

ber of radioactive decays appears to be an interesting

way of gaining information about correlations in the sam-

ple or about other coherent effects that might contribute
to the decay process [1]. However, fluctuations are also

as sensitive to spurious correlations as the ones intro-
duced by hardware drifts, making this kind of experi-
ment rather delicate. In particular, we claim that the
apparently small drift of the averages due to the expo-
nential decay cannot be disregarded and, actually, such
small drift can give sizable contributions to the variance.
Small time intervals are dominated by Poissonian fluc-

tuations, but long enough time intervals are dominated

by the decay [7]. In this paper, we support this claim

with explicit calculations and numerical simulations. We

have already reported preliminary experimental evidence
of this result in a previous work [7]. Our complete data
analysis for the p decay of 50Sn shall appear in II.
Since this contribution to the variance can be exactly
taken into account, it does not, even when it is large,
prohibit the study of smaller, but perhaps more interest-

ing, contributions. We report a formula that includes the
effect of the radioactive decay and we suggest measuring
deviations from that formula. Finally, we find a few sus-

picious cases [5,6] in the literature that fail to see the
effect of the exponential decay in spite of the fact that
no correction was reported.

decay of its neighbors.
From the first assumption, we can derive the probabil-

ity that a given nucleus present at time t be still present
at a later time t+ T: it is the product of the probabilities
that the nucleus has not decayed in any of N subinterval
of length ~, in the limit of large N

(
p(T) = lim

]
1 —A —

)

= exp[ —AT],
N &oo (— +)

which implies that the mean life of the nucleus v is related
to A by w = &. Therefore, the probability that a nucleus

present at time t = 0 decays in the time interval between
t and t + T is given by the product of the probabilities
that the nucleus has not decayed between 0 and t and
that it decays between t and t + T:

p(t, t + T) = exp[ —At] (1 —exp[—AT]) .

Since we shall consider times t multiple of T, it is useful

to define the probability of a nucleus decaying between
kT and (k+ 1)T:

pl, = exp[ —AkT](1 —exp[ —AT]) = z(1 —z)" (A1)

P(MI„T, W) =
~ M ~ pq '[1 —pI, ]~ "lO(N —Mt, )

k )
pk

Ma -
dMq

N

M„! dpM" P=O
e=& —Pk

Similarly, the combined probability of M~ nuclei decaying
in the jth time interval and My of them decaying in the
kth time interval is

where we have introduced z—:1 —exp[—AT], which is

typically a small parameter z = AT = T/r; we should

keep in mind that pg is a function of T, even if it is not
shown explicitly.

Given a sample with N nuclei, our second assumption,
that the decays are independent, yields that the proba-
bility of Mp of them decaying in the kth time interval is

given by the binomial distribution corresponding to the
possible combinations of Mk nuclei decaying and N —Mp
nuclei surviving:

ACKNOWLEDGMENTS P(M, , Mg, T, X)

We wish to thank A. Devoto for a critical reading of
the manuscript. Financial support has been given by Ital-
ian Ministry of University and Research and by Istituto
Nazionale di Fisica Nucleare.

pk

M~] Mg'f

dM, d
„(».+ p. + ~)"

dp dp2 P&=O, PQ=O
a=1 —PZ

—P»,

APPENDIX

In this appendix we treat more carefully the statistics
of radioactive decay. Our basic assumptions shall be that
the probability of a nucleus decaying in the infinitesimal
interval dt is a constant times the interval: Adt; the decay
of each nucleus of the ensemble is independent of the

it should now be obvious how to generalize the result to
combined probabilities in more than two intervals. We

should remark that, even if we correctly use the binomial

distribution, it is often a very good approximation, being
the number of nuclei very large, to use a Poissonian dis-

tribution if the number of expected decays in the interval

is less than or of order of one or a Gaussian distribution
if we expect a large number of decays.

The expected value of a stochastic variable fq(MI, ),
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defined as a function of the nu~ber of decays Mk in the
kth time interval, is

and

N

E[fi(Mk)] = ) P(Mk,.T, N) fi(Mk)
MIc =0

t'= fi
I
p —1(p+v)

P=P gg

&=1—Pa

(A2)

NE[MqMk] = pi p2 (pi +p2+ q)
pl p2 P1=Pj s PQ=P Jg

9=1—Pj—Pfs

= N(N 1)-J,J.+ ~,kNpk

= N(N —1)z (1 —z)~+ + b'~kNz(1 —z)
(A5)

The expected value of a stochastic variable f2(M~, Mk),
defined as function of the numbers of decays M~ and Ml,
in the jth and kth time interval, is

E[f2(M, , Mk)]

N

) P(M~, Mk., T, N) f2(M, , Mk)
Mj ——0
Mg =0

f d d l
fz i Jid p2d i(pi+p2+e)

dpi dp2) P1 =Pj ~ PQ =Pp
e=& —Pj —Pg,

(AS)

Analogous definitions for functions of the number of de-
cays in more than two intervals are not needed presently.

At this point we have the tools to calculate the ex-
pected value of any stochastic variable that is a function
of the number of decays in the intervals; in this paper we
shall need only two such variables:

1
p

—E
n

1=Nz-
n

n —1

) Mk
le=0
n —1

) (1—
le=0

n —1

= —) E[Mk]
k=O

)k N ( *)
nz

=Nz 1 — z+O(z')
2

(A6)

from which we can calculate the expectations of the
statistics we are presently interested in.

The expected value of the average count over n con-
secutive intervals, from the definition (1) and using

Eq. (A4), is

E[Mk] = p—(p+ q)
d N

. dp P=PIs
@=1—Pg

= Npk = Nz(1 —z)"

(A4)

which is exactly the same as Eq. (5), if one identifies Mo
and Nz.

The expected value of the generalized Allan variance
of the counts over n consecutive intervals, from definition

(S) and by means of Eqs. (A4) and (A5), is

n —1—j
a„(j)= E . ) [Mk —Mkp~]

n —1—j
) (E[Mk) + E[Mk~ ]

—2E[MkMk+~])
k=o

) ((1 ) + (1 ) +g) + 2 ) ((1 )2k + (1 )2k+2j 2(1 )2k+g)

Then we sum up the geometric series

1 —(1 —z) ~"-» 1 —(1 —*)'&"-»
o2(j) = Nz[1+ (1 —z)~] + N(N —1)z [1 —(1 —z)~)2(n- j)z 2( —j)[1—(1 —*)'1

= Pn —
&

1+ (1 —z)~ (N —1)z . 1+ (1 —z)+ [1 —(1 —*)')'
2 2 2 —x (A7)
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If we expand in the small parameter x, we get

c ' (j) = y,„1+""—(Jx)'
]

I ——
~
[1+x + O(x')]

2

(A8)

where N is the total number of decays we would detect
if all nuclei decayed, which is less than the total number
of nuclei unless the whole solid angle is covered with ef-
ficiency of 100%, but it is still a large number; therefore,
we can always neglect & compared to 1. In conclusion,
once we introduce the expected value of the average rate
p„= ls„/T, the expectation for the generalized Allan
variance to leading order becomes

p 2tp 7) p 7x 2

( n 1—
—) Mg("s=o

1 n —1—+ 2(p-r)' "
n' —1~'

+ —2'
p7z 6 2

(A10)

(A11)

always the case for the experiment to make sense. How-
ever, as discussed in the main text, we cannot generally
drop p wx compared to 1: this term can be larger than
1, in spite of x being smaller than 1; it is enough that
p 7., the number of decays we would see if the rate stayed
constant for a time equal to the lifetime of the nucleus,
is much greater than one.

For the sake of completeness, we also report the result
analogous to Eq. (A8) for the variance:

which we can compare with the identical results, see
Eq. (7), obtained with considerable less effort.

Notice that we shall be able to drop compared to 1 the
small parameter 2: = T/r, when the time interval T is
much smaller than the mean life of the nucleus, which is

We notice that the variance, contrary to the Allan vari-
ance, has a dependence on n already in its leading cor-
rection; the correction is also a factor n larger than in
the Allan variance. The larger n the earlier (smaller T)
this statistics deviates from the Poissonian behavior.
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