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Negative-energy modes in a magnetically confined plasma
in the framework of Maxwell-drift kinetic theory
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The general expression for the second-order perturbation energy of a Maxwell-drift kinetic system de-

rived by Pfirsch and Morrison [Phys. Fluids B 3, 271 (1991)j is evaluated for the case of a magnetically
confined plasma for which the equilibrium quantities depend on one Cartesian coordinate y. The condi-
tions for the existence of negative-energy modes with vanishing initial field perturbations are also ob-

tained. If the equilibrium guiding center distribution function fs„of any particle species v has locally
the property v1(Bfs„'/Bui ) )0, where v

i
is the guiding center velocity parallel to the magnetic field, and

if this holds in the minimum-energy reference frame, parallel and oblique negative-energy modes exist
with no essential restriction on either the orientation or magnitude of the wave vector. This condition
also holds for the equilibria of a homogeneous magnetized plasma and an inhomogeneous force-free
plasma with sheared magnetic field. If vl(Bfs„'/Bul ) (0, the oblique negative-energy modes possible in

a magnetically confined plasma are nearly perpendicular. The condition for purely perpendicular
negative-energy modes reads as (dP'o'/dy)(Bfs, '/By)(0, where P' ' is the plasma pressure. For the

cases of tokamaklike and shearless stellaratorlike equilibria, which are described on the basis of, respec-

tively, a slightly modified Maxwellian and a Maxwellian distribution function, the existence of perpen-
dicular negative-energy modes is related to the threshold value —,

' of the quantity q, =8lnT, /Bin%, , ,

where T„ is the temperature and X, the density of some particle species. This is lower than the critical
g„value for the onset of linear temperature-gradient-driven modes. For various tokamaklike and stel-

laratorlike, analytic cold-ion equilibria with non-negative and negative values of q„ for which the cri-

terion above is not necessary, a substantial fraction of thermal electrons is associated with negative-

energy modes (active particles). In particular, for linearly (marginally) stable equilibria with g, = 1, near-

ly one-third of the electrons are active. For all equilibria considered, the phase space occupied by active

electrons increases as one proceeds from the center to the plasma edge region. Consequently, negative-

energy modes, relating to nonlinear instabilities that could cause anomalous transport, exist equally well

in both confinement systems.

PACS number(s}: 52.25.—b

I. INTRODUCTION

The existence of negative-energy perturbations in a
linearly stable plasma may be related to nonlinear insta-
bilities and cause anomalous transport. An instability of
this kind was exemplified in a transparent way for the
first time in 1925 by Cherry [I]. He examined a simple,
linearly stable system of nonlinearly coupled oscillators,
one possessing positive energy, the other negative energy,
and the frequency of one oscillator was twice that of the
other, which means third-order resonance. The exact
two-parameter solution set he found exhibited explosive
instability for arbitrarily small initial perturbations.
Pfirsch [2] considered the corresponding three-oscillator
case and found the complete solution of this problem. It
shows that in the resonant case almost all initial condi-
tions lead to explosive behavior, whereas in the non-
resonant case the initial perturbations must exceed
threshold amplitudes which are related to the frequency

'Permanent address: University of Ioannina, Department of
Physics, Division of Theoretical Physics, GR 451 10 Ioannina,
Greece.

mismatch. Self-sustained drift wave turbulence in a
linearly stable plasma regime resembling the tokamak
edge regions was demonstrated numerically by Scott [3,4]
in the framework of a nonlinear, collisional two-fiuid
model. His study also showed that parallel particle dy-
namics plays an essential role in turbulence. A related re-
sult was recently obtained by Pfirsch and Correa-
Restrepo [5]. From the general energy expression for
linear, quasineutral, electrostatic drift modes, obtained
within the framework of dissipationless multiAuid theory
and applied to plain configurations, they found that
negative-energy modes localized at a node-resonant sur-
face exist only if electron parallel dynamics is included.
It is therefore very likely that the results obtained by
Scott are understandable in terms of nonlinearly coupled
positive- and negative-energy modes. In addition, the
same physical mechanism was invoked by Nordman,
Pavlenko, and Weiland [6] to explain the existence of
self-sustained toroidal g, -mode turbulence below the
linear instability threshold. This result was obtained nu-

merically within the framework of nonlinear, dissipation-
less two-Quid theory.

The present paper discusses such problems within the
framework of collisionless Maxwell-drift kinetic theory.
For collisionless Maxwell-Vlasov and Maxwell-drift
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kinetic theories, general expressions for the second-order
perturbation energy were derived by Pfirsch and Mor-
rison [7,8]. Assuming strongly localized electrostatic ini-
tial perturbations (kurt »1, with k~ the perpendicular
component of the wave vector and rt the Larmor radius),
Morrison and Pfirsch [7] also showed, in the context of
the Maxwell-Vlasov theory, that all inhomogeneous
equilibria of interest allow negative-energy modes. The
degree of localization actually required along with the
conditions for the existence of negative-energy modes
were investigated by Correa-Restrepo and Pfirsch in the
context of the same theory for the cases of a magnetized
homogeneous plasma [9] and an inhomogeneous force-
free plasma with sheared magnetic field [10]. It turned
out that negative-energy modes exist even without any
strong localization of the associated wavelengths, a
feature which enhances the relevance of these modes.
Negative-energy modes with not strongly localized wave-
lengths (k j rr ( 1) can be investigated more conveniently
with the use of drift kinetic theories which have automat-
ically eliminated from the outset all perturbations with
wavelengths smaller than the gyroradii. In this context,
Pfirsch and Morrison [8] examined a magnetized homo-
geneous plasma and found that parallel and oblique
negative-energy modes (k1%0) exist for arbitrary wave

vector k whenever

(0)fs.
vl &0

BUg

given by Littlejohn [ll] and later regularized by Correa-
Restrepo and Wimmel [12]. We preferred to include this
introductory section because, otherwise, repeated refer-
ence to the original analysis [8] would make for tedious
reading. The equilibrium properties of the magnetically
confined plasma under consideration are discussed in Sec.
III. The second-order perturbation energy with vanish-
ing initial field perturbations is obtained in Sec. IV. Part
of the relevant lengthy calculation is presented in Appen-
dix A. The conditions for the existence of negative-
energy modes are derived in Sec. V. First the cases of a
magnetized homogeneous plasma and an inhomogeneous
force-free plasma with sheared magnetic field are exam-
ined; then the conditions for parallel, oblique, and per-
pendicular propagation of negative-energy modes in a
magnetically confined plasma are obtained separately.
The consequences of the condition for the existence of
perpendicular negative-energy modes in tokamaklike
equilibria, described by using a slightly shifted Maxwelli-
an distribution function, are examined in Sec. VI A. For
various analytic cold-ion equilibria of the drift kinetic
equilibrium equation with non-negative g, values, as well
as with negative g, values, for which the criterion con-
cerning the rt, threshold value does not hold, the fraction
of the electrons connected with negative-energy modes is
also obtained. The same issues are addressed for stellara-
torlike equilibria, derived on the basis of a Maxwellian
distribution function, in Sec. VIB. The main results are
summarized in Sec. VII.

holds for some particle species v and parallel guiding
center velocity v~~. The investigation is extended in the
present paper to the more interesting equilibria of a mag-
netically confined plasma with sheared magnetic field for
which the equilibrium quantities depend spatially on just
one Cartesian coordinate. The equilibria of a homogene-
ous magnetized plasma and an inhomogeneous force-free
plasma with sheared magnetic field are also examined as
specific examples. The most important conclusions are
the following.

(1) Condition (1) for the existence of parallel and ob-
lique negative-energy modes remains valid for all the
equilibria considered, without any essential restriction on
k.

(2) In the case of a magnetically confined plasma, the
existence of perpendicular negative-energy modes, which
are found to be the most important modes, is related to
the threshold value —', of 1,=7BlnT„/BlnN„, where T„ is

the temperature and N, is the density of some particle
species v. This is lower than the critical q value for the
onset of linear, temperature-gradient-driven modes.

The derivation of the general expression for the
second-order perturbation energy within the framework
of Maxwell-drift kinetic theory by Pfirsch and Morrison
[8], slightly adapted to the needs of the present paper, is
first reviewed in Sec. II. This consists of two subsections.
The first concerns the energy-momentum tensor for gen-
eral nonlinear and linearized kinetic theories. In the
second the linearized energy-momentum tensor is derived
in the case of Maxwell-drift kinetic theory based on the
Lagrangian formulation of the guiding center theory

II. REVIEW OF THE MAXWELL-DRIFT
KINETIC THEORY

A. The energy-momentum tensor

The second-order energy of perturbations around an
equilibrium state is given by

p"'= d'x r"~
0 (2)

where To ' is the energy component of the second-order
energy-momentum tensor T' '". To derive the tensor

Tp '~ in the context of kinetic theories, Pfirsch and Mor-
rison [8] used a modified Hamilton-Jacobi approach. The
main steps of the derivation are as follows.

(1) Let H„(p, ,q;, t) be the Hamiltonian for particles of
species v for the perturbed state in a phase space
q„.. . , q4, p&, . . . ,p4, where (q&, q2, q3) (x] x2 x3) x
is the position in normal space and, correspondingly,
(p&,p2,p3)=p; q4,p4 is an additional pair of canonical
variables which is needed to describe guiding center
motion. Let H'„'(P;, Q;) be the equilibrium Hamiltonian
in the phase space P„.. . , P4, Q„.. . , Q4, and let
S„(P;,q;, t) be a mixed-variable generating function for a
canonical transformation between p;, q, and P, , Q;. The
theory is more generally valid for a reference Hamiltoni-
an H'„'(P, , Q, , t) which possesses an explicit time depen-
dence [8]. The x, t dependence of H„ is given via the
dependence of H„on the electromagnetic potentials
$(x, t) and A(x, t) and, for the drift kinetic theory, also on
the electric and magnetic fields E(x, t) and B(x, t) and
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derivatives of them. The derivatives occur only when
Dirac's constraint theory formalism is used for construct-
ing an appropriate Hamiltonian because the starting La-
grangian, Eq. (15) in Sec. II B, is of the nonstandard type.
But even with Dirac's formalism the variation of these
quantities makes vanishing contributions to the Euler-
Lagrange equations and the energy-momentum tensor
[see remark after Eq. (33) in Sec. II 8]. The general for-
malism is therefore equivalent to that for Hamiltonians
not depending on the derivatives of E and S. The quanti-
ties P, and Q; are obtained from S„as

as„
P;=a r

q;

as„
ap;

(3)

The time-independent, zeroth-order solution S', ' of Eq.
(4), needed to obtain T' '", is then simply given by the
identity transformation S'„' =gg, q;.

(2) With the notation defined on page 273 of Ref. [8],
the Lagrangian for the whole theory (Maxwell-Vlasov
and drift kinetic), irrespective of the special choice of
0',",is

as, „,
'

as.
L = —g f dq dP(((}„&„",q,

—%( ' P, ,
aq,

''
x F„qF"

16m
(5)

Using the Euler-Lagrange equations resulting from the
variational principle

5f Ldh=0, (6)

and S„must be the solution of the modified Hamilton-
Jacobi equation

as„ as. „,
'

as,"+H„',q, , t =H'," P, ,

with q, S, and 3„ the quantities to be varied, and
Noether's theorem, one obtains the following expression
for the energy-momentum tensor of nonlinear theory:

as eT"=g Idq dP — A
ax~ ~ ' 5(aS,sax')

+2F„—5+

where X is the Lagrangian density in x space correspond-
ing to L.

(3) To obtain the linearized theory, one first considers
perturbations of an equilibrium represented by

H'„'(P;, Q;), q'„)'(P;, q; ),
S'„"(P,, q, ), A„"'(x),

which still include all orders of the perturbations:

5q}„(P,, q, , t), 5S,(P, , q, , t), 5A„(x,t) .

Expansion in these quantities leads to first-, second-, and
higher-order expressions for the perturbed Hamiltonian
H„(aS,laq, , q, , t), the equilibrium Hamiltonian
H', }(P,, as, /aP, ), and the Lagrangian. The variations of
the variational principle (6) can then be done in terms of
the quantities 5q)„, 5S„and 5A„. Variation of the first-
order Lagrangian yields zero because the unperturbed
quantities are solutions to the variational principle and
thus variations around them vanish. The lowest-order
expression of the Lagrangian that is relevant is therefore
of second order. Replacement of the quantities
5(P„(P,, q, , t), 5S„(P;,q;, t), and 5A„(x, t) in this expression
by their first-order approximations q}(,"(P,, q;, t ),
S(')(P, , q, , t), and A("(x, t) therefore yields the Lagrang-
ian of linearized theory:

g(2) ( I yi6 )F(1)F(1)P} g d dP[ (0)(~(2} gf(0)(2) )++(1)((1) ~(0)(1)
) ]

where

e ' aP " aF'" " 'aF"'
I pk pA. , r

as"'as e

2 ag. c

(&) 2 (0)
' (1) 2 (0) 2 (0)aS, e, „, a&, aS, e, „, „, a&, „, „, a&„

+ F +'F Fa- c ' ' aI aI a- c ' "'a~aF") ' "' "aF"'aF"'
1 pA, )M~ &p

as(1)
+

aq,

a2~(0) a2~(0) a2~(0}
~ g (1) F(1) ~ + l F(1) F(1) +F(1)F(1)

c "~r apaF() 2 p~, r -p'aF(0) aF(0) p~ -p, r aF(0)aF(0)
pk, , r pA, , r ap, w pA, «Tp, r

(10)

and

Jy.
as'„" aa(."
as'; aq;

as'„" as'," a2&(0)

aP, aP„aq,.aq„
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2 (0)e„a%„
c c)p imp

The tensor Tz '" for the linearized theory is derived by replacing in Eq. (7) the quantities X, S„, A, and F„by the
quantities X' ', S'„", A '", and F„'z'..

as'„" e„, , 'as'„"
T' ' = —g dqdP — A"' f', '

L

2F"—'g Jd dP f' '

'
as'„"

V 9K

a2 (0) as(1)
'

a (0)
(0) ()) (p)

aP aF,".' aq, aP, aP,
a2 (0) a2 (0)

()) " (0) ())
ap aF' ' " ' aF' 'aF' '

K pA, pX

p(1)p(1)pA.

+Qx Q dPf (0) (~(2) ~(0)(2))+ F' "F())TP1

P q 16~
V

(13)

(0)„,aH„
F)) aF(0)

pA.

(14)

where the mixed variable Poisson bracket has been
defined as

aa ab

aq,. aP,

aa ab

aP, aq,

with f'„' =q)(„) the equilibrium distribution functions. In
this expression the time derivatives aS'„"/at are given by

—e A'"= —[S"' H' ')+ A"'e, aH',"
ev 0 v ~ v

and

E'+ —v XB' ——g'q~b =0
C e

(21)

I

Eq. (22) below]. Thus, g(z) must have the property
g(z)=z, g'=dg/dz=1 for small z(~z~ &&1). For large z,
however, g (z) must stay finite, g( ao ) =1, so that with
uo ))u,h„„one has uog( 0() ) « u, . A possible choice for
g(z) is g (z) = tanhz.

Since L is linear in x and does not contain q4, it is not
of the standard type and therefore does not allow the
standard way of obtaining a Hamiltonian from it. The
corresponding equations of motion are

B. Hamiltonian for the guiding center motion

b x=v~(=q4/g',

where v=x and

(22)

In this section the index for the particle species is
suppressed. The Hamiltonian for the guiding center
motion is obtained in Ref. [8] from the Lagrangian given
by Littlejohn [11]in regularized form [12]. The Lagrang-
ian is defined in terms of the variables

t, x=(q), q2, q3) and q4,

E'= —— —,B'=VX A' .
1 aA' ap'
c at ax

(23)

From these equations one obtains the guiding center ve-
locity v=v and the "velocity" q4= V4 as functions of x,
q4, and t:

where q4 is an additional velocity variable needed to de-
scribe the motion. It is given by

v=vs=(q4/g'B~~ )B'+(c/B~~ )E'Xb,

q4= V~=(e/mg')(1/8~( )E'.B',
(24)

(25)
L =(e/c) A' x —eP',

where

(15)
where 8~~

=B*b. The momenta canonically conjugated
to x and q„ follow from Eq. (15) as

A* = A+ (mc /e )[vog(z)b+ vs ],
e(t)*=eQ+IJB+(m /2)(q4+uE),

vE =c(EX8)/8

b=B/8,
z=q4/vo .

(17)

(18)

(19)

(20)

Here p is the magnetic moment of the gyrating particle,
and uo is a constant velocity. The function g(z) has been
introduced to regularize a singularity which occurs in the
context of nonregularized theory when the guiding center
velocity v

~~

=b-x approaches the critical value
u, = [(eB) /( mc ) ]/(b. 7Xb). The nonregularized theory
is obtained for g(z)=z, in which case qz=u~( holds [see

aLp=
Bx

e, BL=—A' p = =0
C

'
pq4

(26)

H~ =x. +q4 L=eg* . —BL . BL

aX
'

aq4

Dirac's Hamiltonian is then given by

(27)

Since these relations do not contain x and j4, they are
constraints between the momenta and the coordinates. A
consequence therefore is that Hamilton's equations based
on the usual Hamiltonian corresponding to the above
nonstandard Lagrangian are not the equations of motion.
To overcome this diSculty, Dirac's constrained theory
[14] is applied. It starts with the usual or "primary"
Hamiltonian
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H=eg*+v~ [p —(e/c) A]+ V4p4,

from which the guiding center motion follows:

BH . BH=v, q = =V
Bp

' "
Bp4

S"'=S"'(x,q ) —g.mV g—P„

+ (higher-order terms),

(29) so that

(35)

But in general there are more solutions of the momentum
equations p= —()H/Bx and P4= —aH/aq~ than those
given by Eq. (26). These equations can be transformed to

e
p ——A*

t c
av,

ax g c ax
v p A p4

P4=
clv

p
——A*

cBq4

8V4
p4.

q4

(30)

(31)

Special solutions of Eqs. (30) and (31) are obviously con-
straints (26). It is, however, important to note that

p
—(e/c)A'=0 and p4=0 do not represent special

values of some constants of motion. Therefore 5 func-
tions of the constraints are not constants of motion ei-
ther The. distribution function f must, however, guaran-
tee that the constraints are satisfied. Hence it must be
proportional to such 5 functions, but must also be a con-
stant of motion. Both conditions are satisfied by

gS(&)

QP v=a4 ——o

OS")
(36)

QP4 v=t, =o

w(1)
1 B,(o) ()S e A„())

mg'g" ' ()x c
ll

Ie=g)" +A(x, q4)B" ',
with

(37)

(38)

W(] )

b, (o) S Ae()) Be(o) Xb(o)
eg'(og ()x c

As is shown in the Appendix, for the equilibria con-
sidered in the present work the higher-order terms in ex-
pansion (35) after imposing the constraints do not con-
tribute to To '. In general, since the highest-order q,
derivatives of S"' appearing in To ' are eventually of
second order, e.g. , in Eqs. (71) and (72) of Sec. IV, terms
up to second order in expansion (35) have nonvanishing
contributions. This fact was overlooked in Ref. [8].

The constraints yield the following expressions for the
displacement vector:

f =5(p~)5 p
——A' gQ)) f g( x, v

),))L,tt), (32) (1)
&&

BS
Bx c

(39)

'+,, '+V„" =0.
Bt Bx "Bq (33)

where the guiding center distribution function f is a
solution of the drift kinetic differential equation

W( ] )
1 BS (0).+mg'b

g ~II

With these relations T' '" is a functional of
P

A'" A"' P"' S'(x )

(40)

(41)
In f a dependence on the magnetic moment )M has been

added which is a constant and which has therefore the
character of a parameter distinguishing between different
"kinds" of particles. Later [see transformation (74) in

Sec. IV], one must sum over all these kinds of particles in

order to obtain the total-energy-momentum tensor, i.e.,
one integrates over (M. Note that the form (32) of f has
the consequence that in the Lagrangian (5), any variation
of v and V~ [see Eq. (28)] is multiplied by zero. Thus,
although v and V4 depend on the derivatives of E and

B, these dependences are unimportant for both the varia-
tional principle and the energy-momentum tensor.

Whereas Eq. (32) for f' is sufficient in the nonlinear
theory to pick out the correct solutions, this is not the
case with the linearized theory. In this case, since con-
straints are imposed along the perturbed orbits, a dis-
placement vector (g, g4) in x, q4 space, similar to the dis-

placement vector in macroscopic theory, is introduced
[8]. That is, since the zeroth-order distribution function
always selects V=O and P4=0 with

Except for P(", which is constrained to

V E")=4~ '" (42)

III. EQUILIBRIUM

In this paper we investigate plasmas whose equilibrium
quantities depend spatially on just y in a Cartesian coor-
dinate system x,y, z, with unit basis vectors e,e, e, . It
is assumed that there is no equilibrium electric field E' ',

and the equilibrium vector potential and magnetic field

are given by

these quantities can be freely chosen in the sense of initial
conditions. The p dependence of 0"' has been added for
the reason given after Eq. (33).

The tensor T' '" for the Maxwell-drift kinetic theory
based on the Hamiltonian (28) can now be evaluated for
each specific equilibrium, to which only terms up to first
order in the expansion (35) contribute, and for any initial
conditions.

V:—(1/m )[P—(e/c) A*' '(x, q4)],

reasonable to expand S'"in powers of V and P4.

(34) A' '= A' '(y)e„+ A' '(y)e, ,

B' '=8„' '(y)e„+B,' '(y)e, ,

(43)

(44)
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with

( g (0) )r —B(0)
( g (0) )r — B(0)

z x ~ x z (45)

m c
(0)—g(0)+ g V Xb(0)

V Upg
V

(51)

Here the prime (') denotes difFerentiation with respect to
y. Macroscopically, the mean Lorentz force j' 'XB' '.
which is in the y direction, balances the pressure gradient
VP' '. Equation (44) implies that the drift velocity has no

y component, and therefore y is a constant of motion.
Since there is also no force parallel to B' ', another con-
stant of motion is q4. The guiding center distribution
function is therefore a function of y, q4, and the adiabatic
invariant magnetic moment p. To calculate the current
density j' ' from f ' ', we need the guiding center velocity
v' „', Eq. (24). The following quantities are prerequisites:

and

m cB' =B" 'b' '=B' '+ v g Y (y),vii v 0 xz
V

with

Y ( )—:b' '(VXb' ')

—g (0)(g (0) )r (g (O) )ry (O)
X Z X Z

Moreover, it can be readily shown that

b(0).(b(&) )r —0

(52)

(53)

(54)

g(0) g(0)
(p) X Z (p) (Q)

, , e„+, , „= x x+.B 8 (46)
and

B+(0)—g +(0)$(0)
v viJ

(55)

A" '= A' '+ U gb' ',mvc
V Vp

V

y«(0) B(0) + ( /2) 2 (48)

b' ' — (B' ')'(e Xb' '),
gV & g 4(P) ey

V V V

The guiding center velocity then takes the form
(47)

(56)

UE =0,
gy«(0)

E«(0) " P' (g(0))re
()x e„

(49)

(50)

and therefore it consists of a component parallel to 8' '

and a component perpendicular to 8' ' due to the grad-8
drift. To calculate the current density j' ', we apply the
general formula (8.15) of Ref. [13],which was derived in
the context of Maxwell-drift kinetic theory. The result is

j' '=(c/4m)VXB' '

r

=g e„fdq4dpgg, ' 'fs„'v~,' cg VX—fdq4dp gQ„'' 'f'„' )Mb' '+ . . . )
(B' ')'(e Xb' ')

m UpcPg

V V V V

The components j„' 'and j,' 'read

j (c /41T)(B )

y fd d B (0)q g(0)f(0) g cp (B(0))g(0)f(0)+(B (o)g(o)f(0)) m, c (B(o))'
q4 p v q4 „g„R,cp Z gV V Z gV 0 V g(Q) X gV

V V

and

j,' '= —(c/4m)(B„' ')'

y fd d, B«(0) $ (0)f(0) +g r (B(0) )~g (0)f (0) +(B«(0)$ (0)f(0) )r + "
v g $ (0)f(0)m„c (B(0)}r

q4 p q4, g„g/p X gV V X gV 0 v +(p) z gv
V V

(57)

(58)

(59)

[P' '+(B' ') /8n. ]=0
dy

(60)

with

Multiplying Eqs. (58) and (59) by the integrating factors
8,' ' and 8„' ', respectively, subtracting the first from the
second of the resulting equations, and doing some
straightforward algebraic manipulations leads to the
pressure balance relation

P (» —y f dq dp g
' pB (0)B«(0)f (o) (61)

Relation (60) can also be derived by the momentum-
conservation equation (d/Bx")T" =0 [)((,,p=1,2, 3,x"
~x,y, z] for p=2, with the tensor T" given in explicit
form by Eq. (76}of Ref. [15]. Evidently, only two of Eqs.
(58}, (59), and (60) are independent in the sense that by
treating any two of them one can derive the third one.

For distribution functions symmetric with respect to
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q4, Eqs. (58) and (59) take the simpler forms and Eq. (14) to

~ (0) (g (0) )i as'."
[S()) ~(0) ]at

(66)

= g f dq4dI4[ [m„cq4v0g„I',„b( '

The Dirac Hamiltonian Eq. (28), with the help of relation
V4 =0 [following from Eq. (25)], takes the form

+g & cp(g (0) )~b (0)]f(0)

+cI g', [~"'f"']'] (62)
H(0) e ge(0}+ {0) P

" Ac{0)
v VYv gv v (67)

Because of

(0) c (g (0))i

= g fdq4dI4[[m, cq4u0g, Y„,b( '

(g (0) )tb (0)]f(0)

+egg'„[8„' 'f(t„']'] . (63)

B2%(0'
=0,

BP,BP.

Eq. (10) yields

m")=o.

(68)

(69)

Equations (62} and (63) impose a constraint on the y
dependence on f'„', namely f '„' and Bfs(„) /By must be in-
variant under the transformation B„' ' B,' ',

(B„( ')' (8,( ')'. This condition is fulfilled if f '„' belongs
to a specific class of functions, Maxwellians included,
such that its potential dependence on the magnetic field
involves the magnetic-field modulus B' ' only. The func-
tions f', ', however, remain free to depend on y either ex-

plicitly or implicitly through any other quantity not relat-
ed to B{ '.

Integration by parts of the term which contains deriva-
tives of f'„' in Eq. (65),

—y„ f dq dP f', '
as'„" B as(„"

'

Bt Bq. BP.

, as'„" B as'„"= g f dq dPf'„', (70)
BP, aq, at

IV. SECOND-ORDER PERTURBATION ENERGY
and use of Eqs. (66), (69), and (12) for %(„" ' leads to

r{"=—o a")=—0pA,
(64)

The second-order perturbation energy [see Eqs. (2) and
(13)] will be calculated in the case of equilibria defined in
Sec. III for initial perturbations A'" = A"'=0. It is also
shown a posteriori that one can choose initial perturba-
tions without changing the particle contribution to the
energy, so that the corresponding charge density p' "van-
ishes. Therefore, choosing initial perturbations of this
kind, we set from the outset

with

T"" '= y f dq dPf' 'A,

a's{" aa") as'"
V V V

aq ap aq,

(71)

a's(" aa"' as"'
V V V

aq;aq„ap„ap;

Equation (13) then reduces to

as{& ) as(1)T'n= —gfd dP f''
at aq. ap,

+ y fd-dPf (0)(~(2) ~(0)(2)) (65)

a'a{o) aS"' aS"' l a'0"' aS'" aS"'
V V V V V V

aq, ap. aq. ap, - +2 aq, aq. ap. ap, -

(72}

After a lengthy calculation, which is presented in the Ap-
pendix, one obtains
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(0) ~

A d q4.2 lcq4B(0)Y 2 B{0) (B }'
P2

vgv d )4 2 v zz)p 2P v (0) )g
q4 g„e g V

g4

gv

(&)
1 ~Sv (p) (}

b
m„g„' (}q4 Bx

gS(1)
b(0) x

g «(0) (}X
V V

, ,
(}S„

Bx (}X

g2$(1) g2S(1)
b(0) " +b(0)

aXay '
ayaZ

gS(1)
b(') X

(}X
ey

e

(p)
~ gf ( 1 )

b(0)
B«(0)

(p)
~ gS())

b(0)
B+(0) x 8 ~y

V

c((4 (B' '}'
(g b(0)} b(0) (}

g «(0) Bx
I

b,„,aS'„" „,aS'„"b-
iz (}x

&( ] ) ~())(}S„,, g M„
8 ' (}x " (}x

V V

(1)M„
(}X (}X

„,a'S'„"

Bx(}p
„,a'S'„"

aye, ~

gS)(1)
+ q4 8 b(p) v

g Bq4 (}X

A.(/)(}S„
a. aq, ~

~B(0)}~

g «(0)
V

~S)(1)
e„.

Bq4
" Bx

'
gg(1)—e„~" ax aq4

gS( )

Bq4 (}X
(0)

ez
~ ~

b„ f4
X q4

(73}

We note here that the last two terms in this expression,
(q4/g„'}[ ] and —(,cI4le„}[(,B' '}'/B" '][ j, vanish after
the ansatz {76}is used for f'„"below. By substituting the
integral over the momentum space according to the rule
(a proof is given in Ref. [13]}

propriate ansatz for the functions f(„"is

S(1) G(1)(y q }e' xz'*

The wave vector k„, introduced here is defined by

(76}

p (0) . . . p g
«(0) (0) (74} k„,=~„e„+~,e, , (77}

and by means of Eq. (55} the second-order perturbation
energy can be written in the form

and therefore it lies in magnetic surfaces. By introducing
real quantities by the rule

y (2) Id 3x T(2)0 — d 3& dq d+ g n e(0)J'(0)~ (75}
AB~—'Red 'B, (78}

Since the equilibrium is independent of x and z, an ap-
the second-order energy, after some algebra, can be put
in the form
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' g+(0)

C

e
'k' IG"'I' +2Pgv l g ~g(0) v g e(0)

V V

2

((4g',k, I
G'."I'

dp

=Sg f dq4dpdy,

(B' ')'k k IG',"I
e I, Bq4

g g(0) g P(0) k2 B z (0)
(1) 2 (0)

k)) I G„ I

—
I 6, fg„

dk
+q

'
k k IG"'I' ' +q

'
k IG'"I'f"''q4

)) ). v
g

q4
)) d v gv

V V

() ', '
c B( ) dk

+ (B' ')'k k IG'"I +2 g' k IG"'I f' ' .
e m aqV V 4 V

where

k()=(k„, b' '), k) =(b( 'Xk„, ) e

and S is a normalization surface. It can readily be shown that

(79)

(80)

k) = Y„,k (81)

on the basis of which the second term cancels the fourth term on the right-hand side of Eq. (79). F' ' can then be cast
in the neat form

F'2'= —Sy f dq4dpdy
g e(0) (0) ~

g (0)

IG") I2(k v"') kv xz gv )) g ). z, (0)
V q4 N

(82)

with This simple case is first examined; then some more
complicated equilibria are considered.

g e(0)
4, (0) v v

COy
m„c

(83)

V. CONDITIONS FOR THE EXISTENCE
OF NEGATIVE-ENERGY MODES

and v', ' as given by Eq. (56). We note that F' ' depends
on G'„' only via I

G'„"
I

.
Since the first-order charge density p"' is a q4, p in-

tegral over an expression that is linear in S'" and there-
fore also in G'„", one can satisfy the relation p")=0 (in-
voked at the beginning of this section) by a proper distri-
bution of positive and negative values of 6"', on which
I' ' does not depend.

g(1) G(1)(q )ek x (84)

where k=k, e +k e„+k,e, . I. " ' then takes the simpler
form

g(Q)F' '= —Vg f dq4d(M IG'„"I (b' 'k)
V V

A. Homogeneous magnetized plasma

For B' '=const the guiding center velocity vg,
' is

parallel to B'0', and f'0' is independent of y. Since the
plasma is homogeneous, the perturbations can be chosen
as

The conditions for the existence of negative-energy
modes are obtained if the chosen frame of reference is
that of minimum energy. For the equilibria of a homo-
geneous magnetized plasma, this is the frame in which
the center-of-mass velocity parallel to B' ' vanishes.

fg.(0)

g' Bq

V being a normalization volume. Thus I' ' ' & 0 if

(85)
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q4 f,.(o)

&0
g„' Bq4

(86)
ishes. The functions 6&" for the other particle species
are set equal to zero.

holds for some q4 (we recall that q4/g'„ is the velocity
parallel to B' ') and (M for any particle species v. Condi-
tion (86), which was first derived by Pfirsch and Morrison
[8], guarantees the existence of negative-energy modes
without any restrictions on the magnitude or orientation
of the wave vector other than k

~~

%0: it suffices to localize
G'„" to the region in q4, p where (q4/g'„)(Bfs„'/Bq4) & 0.
Outside this region 6'" vanishes. All the other 6&", i.e.,
with AAv, are set equal to zero. The sign of F' ' is then
determined only by the sign of the integrand in the region
of localization. For f'„' symmetric with respect to q4,
condition (86} is satisfied if a minimum with respect to q4
exists in f '„'.

B. Inhomogeneous force-free plasma
with sheared magnetic field

The equilibrium magnetic field now has a constant
twist as one proceeds along the y axis. It is given by

2. Oblique modes (k
((
%0 and k) +0)

With the definitions

C =k„, vs„and 2)=k~~ —kL
(0)

Eq. (82) yields F' ' & 0 if

(u&0 and $&0
or

8&0 and 2)&0 .

The following cases are now considered separately.
(a) Let us first assume that

q4 fs.(0)

&0
g' ()q4

(90}

(91)

B' '=8' )(sinaye„+cosaye, ), (87)

3")= —(c/4~)aB"), (88)

with 8' '= const and a ' the twist length. The electric
current associated with this sheared magnetic field is

again holds locally in y, q4, and p for any particles
species v. It then follows from inequalities (91), with the
help of the equilibrium condition (60), that negative-
energy modes exist, provided that

and therefore the mean Lorentz force vanishes. In order
to guarantee a uniform plasma pressure, fs, ' (as in the
case of a homogeneous magnetized plasma) must not de-
pend on y. Since 8' '=const, the perpendicular com-
ponent of vs„' due to grad-8 drift vanishes, and the
second-order wave energy [Eq. (82)] reduces to

B+(0)
F' '= —S g J dy dq4dp, ~G(„"~ k

V V

with

& min(A„, M„) or
k)i

L

" & max(A„, M„),

4ng„'((4(P") ) g„'(()f,"„)/ay )

m, q48' 'co," ' '
co„" '(Bfs,/Bq4)

(92)

(93)

„q4 fs.(0)

g „()q4
(89)

C. Magnetically confined plasma

1. Parallel modes (kz =0)

In this case Eq. (82) again reduces to Eq. (89), and
therefore negative-energy modes exist if condition (86)
holds for some y, q4, and p. Since fs'„' is now y depen-
dent, the perturbations G',"(y,q4, p} are localized around
the values of y, q4, and p at which
(q4/g' )(Bf'„)/Bq4)&0. Outside this region g'„" van-

This form again implies that if condition (86) is satisfied
locally in q4 and p for any particle species v, with the lo-
calization of G(,"(y,q4, )M) in q4 and p as in Sec. VA,
negative-energy modes exist without restriction on the
magnitude or orientation of k„, (other than a(~%0). This
result agrees with that obtained by Correa-Restrepo and
Pfirsch [10], condition (67}, in the context of Maxwell-
Vlasov theory. m„c U~~R„(y,v~(}= (o) u~(Y„,(y)=

(()) Y„,(y),
e B N

(94)

and with the help of Eq. (53) for Y „one has

(vv th 1 (FL„)th
R„(y,(u ),h)= (0)

—= «1 . (95)

From Eqs. (51), (52), and (55) it then follows that
8„' '=8' '[1+R„(y,(u„),h)]=B' ', and from Eq. (83)
that cu„*' '=co'„'. Therefore,

The perturbations 6'„" are localized as in the previous
case of parallel propagation. The orders of magnitude of
A„and M, depend on the particle energy. For particles
with velocities of the order of the thermal velocities (u„),h
(thermal particles), these being the most representative
particles, one can use the unregularized theory [g(z) =z,
g'„=1, q4 =

v~) ] because (v, ),h is far lower than the critical
velocity at which the singularity discussed in Sec. II B ap-
pears in this theory. With
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and

(Uv)th P' '(0) 1

(0) L (B(0) )2/8

(r „),„
P, (0) «1I.

(96)

pB' '
1 max[(P' ')'I

A, =—
m (U ), ~(o) (B(o))'/8~

perpendicular negative-energy modes is not possible [for
k)) =0, Eqs. (85) and (89) yield F' '=0].

The consequences of condition (102) for tokamaklike
and stellaratorlike equilibria are examined in Sec. VI.

VI. PERPENDICULAR
NEGATIVE-ENERGY MODES

IN EQUILIBRIA RELATED
TO MAGNETIC CONFINEMENT SYSTEMS

1 (U )( (rL„)
(97) A. Tokamaklike equilibria

Here (rL „},„ is the Larmor radius at a thermal velocity, L
is the macroscopic scale length, and P' '(0) and P&(0) are
the pressure and local beta, respectively, at y =0. Conse-
quently, condition (92) imposes no essential restriction on
the magnitude or orientation of the k„, connected with
negative-energy modes.

(b) If

q4 fs,(o)

&0,
g Bq4

(98)

at some y, q4, and p for any v, a condition which is more
frequently satisfied, e.g., in the case of a Maxwellian dis-
tribution function, it follows from inequalities (91) that
negative-energy modes exist if, in addition to (98),

min(A„, M, }« max(A„, M„)
k(i

(99)

holds. For particles with thermal velocities, the latter
condition, in conjunction with (96) and (97), implies that

(rL )h «1.
ki I. (100)

Therefore, the most important negative-energy perturba-
tions, in the sense that the less restrictive condition (98) is
involved, concern nearly perpendicular modes.

To describe equilibria of this kind, we use a shifted
Maxwellian distribution function. Since it is thermal par-
ticles that we are interested in, the unregularized theory
is again employed, in the context of which the shifted
Maxwellian distribution function reads [to simplify the
notation, the superscript (0) is suppressed in the rest of
this section on the understanding that all the quantities
pertain to equilibrium]

1/2
N„(y)

1+R„(y,V, (y)) T',~'(y)

m,
2'

pB(y)+ 1/2m„[q4 —V„(y)]
Xexp . —

T„(y)
(103)

Here, V, (y) is a parallel shift velocity so small that

V

(U. )(h

(rc )(

L
«1 . (104)

1V, and T„respectively, are the number density and tem-
perature (in energy units) for particles of species v, and
R „(y, V„(y ) )= ( 1/co, ) V,(y ) Y„,(y )[ Y„, as defined by Eq.
(53)]. It will be shown later that V„produces a net
"toroidal" current (the coordinates x and z correspond to
the poloidal and toroidal directions, respectively}. The
distribution function has been normalized so that

f dq4 f dp, B„))f„=N„. (105)

to

3. Perpendicular modes (k(( =0)

Using the equilibrium condition (60), Eq. (82) reduces

I

F' '=4mS g f dy dq&d)M (o)
",

(o) (c/e ) ~G'„"~ k)

dp(o) (}f(o'
X gV

dy By
(101)

The condition for the existence of negative-energy modes
without any restriction on k~, and irrespective of the sign
of the quantity (q4/g' )((}f'„' /Bq4), is therefore that

(o) g (o)

&0 (102)
dy By

is satisfied locally in y, q4, and p for any v. We note that
in the cases of a homogeneous magnetized plasma and an
inhomogeneous force-free plasma with sheared magnetic
field, in which gradients are not present, propagation of

In addition, performing the integrations in Eq. (61) one
obtains, as expected,

P= g fdq4dppBB,"fs„=gN, T„. (106)

Insertion of the distribution function (103) into condi-
tion (102) yields

dp (3f N'„3 T'„pB T,'

dy By X 2 T, T T 8
m, (q4 —V„) T'„

+
2 T T.
R', q4

—V

1+R T
+m„V' f &0 .

(107)

The terms R' /(1+R„) and m„[(q~ —V„)/T, ]V' in Eq.
(107) can be neglected because
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and

I~.(y, V.(y })I
« I~.(y (v.}«»I «1

(rLv)th «1
L L

Condition (107) can then be written in the form

P Bfs, N'„

a V

Here, it holds that

N„'P'= g N„T„" (I+iiq),

with

I„=8 ln T„/8 lnN„

and
—1 2

q46,—:1 ——,'q„+ q„+pB 4m N„'

T, " B' N„

1.Singly peaked density and temperature profiles

(108}

(109)

(110)

(1 12)

domains of collisionality, wavelength, and shear. For
singly peaked density profiles they also calculated a
threshold value I,

'& 1 (see Eqs. (21) and (23) of Ref. [18]).
Accordingly, the value g =—', appears to be subcritical in

the sense that it is lower than the linear threshold g'
value, and therefore the possible existence of negative-
energy modes below the instability threshold implies that
self-sustained turbulence may be present in a linearly
stable tokamak regime. This result agrees with numerical
results on drift-wave turbulence obtained by Nordman,
Pavlenko, and Weiland [6] within the framework of a
nonlinear dissipationless fiuid model. Specifically, in this
paper self-sustained q;-mode turbulence substantially
below the linear stability threshold was demonstrated and
the driving mechanism is attributed to the interaction be-
tween negative- and positive-energy modes. The subcriti-
cal value I' (depending, according to the authors, on the
finite Larmor radius parameter k rt ), however, is not
uniquely specified. We also note that self-sustained drift-
wave turbulence in a linearly stable plasma slab resem-
bling the edge region of tokamaks was demonstrated nu-
merically by Scott [3,4] in the context of a nonlinear col-
lisional Quid model.

We now calculate the phase space occupied by the par-
ticles associated with negative-energy modes on the basis
of analytic solutions. Henceforth, particles of this kind
will be called active particles.

When inserting the distribution function (103) into the
equilibrium equations (58) and (59) after carrying out the
integrations with respect to q 4 and p, one obtains

It is now assumed that both the density and tempera-
ture profiles have only one maximum for all particle
species v, which is the most common case in tokamak
equilibria, and therefore I, 0 for all v. [Equilibria
which exhibit singly peaked density and hollow tempera-
ture profiles, or vice versa (1„&0) will be examined later. ]
This implies that P'(N„'/N„) & 0 and consequently condi-
tion (110}is satisfied if 6„&0. Since the last two terms of
6„,which involve the perpendicular and parallel particle
energies, are non-negative, by taking the limit p =0 and

q4 =-0 the inequality 6„&0 is satisfied if

cB,'
Jx=

4

b, B,'=c P' b„g e„N,V—, Cg N„—T„V,

and

cB„' b„
j,= — =c P'+b, g e,N, V,

4m

(1 14)

rl, & 2/3 =rp'— (113)

holds for some particle species v. g" means "subcritical"
The existence of perpendicular negative-energy

modes for any wave number k ~ is therefore related to the
threshold value —', of the quantity g, a quantity which
usually governs the onset of temperature-gradient-driven
modes. The linear stability properties of these modes
have been extensively investigated. To be specific, per-
forming a kinetic stability analysis of the ion
temperature-gradient-driven mode, Hahm and Tang [16]
obtained a critical value for instability, g',. ) 1. Hassam
et al. [17] examined the same instability for short and
long wavelengths in a wide range of collisionality. For
collisionless modes of arbitrary wavelength, a domain
which corresponds to that of the present analysis, they
calculated q; =2 In addition, Gu. o and Romanelli [18]
recently studied the linear g'; threshold in various

B'
+c g N„T,V„

N„

The last term in each of these two equations,

B 1 cN„T„V„(rt,,) h' B2 to„LB (v, ) h L

(115)

cN„T„(rt, ),h
LB L

' 2

(116)

with i =x and z, is much smaller than the other terms,
namely c(b, /B )P' and

e B cm„ T
b, e„N„V„= N V„cm„B m (v )h

cN„T„V„L cN T„
(1 17)

(v„)th (rl.„)th
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They can therefore be neglected. For simplicity, we now
restrict discussion to T; =0. For cold ions and a constant
"toroidal" magnetic field B,=BO, Eqs. (114) and (115),
respectively, yield

one obtains a hollow B profile

B =(B +B tanh }

an antisymmetric "poloidal" magnetic field

(127)

b,
c P'+eb N, V, =0

B (118) B„=B,tanhp,

and a peaked "toroidal" current density

(128)

and

b, cB,'
c P' —eb, N, V„=—

4~
(119)

jz=

with

cB,—' j,(0)

cosh p
(129)

with e, = —e and

P=N, T, . (120)
cB,

j,(0)=-
4mL

(130)

Let us briefly discuss here the meaning of V, : For V, =0
one obtains from Eq. (115) the "toroidal" current density

cb,
j,= P'. (121)

On the other hand, Eq. (118) for this case yields P'=0.
Hence there is neither a pressure gradient nor a
"toroidal" current.

For a y-dependent "toroidal" magnetic-field corn-
ponent, B,(y), and V, =0, Eqs. (114) and (115) become

We note that Eq. (119) is then satisfied identically.
Phase space occupied by actiue particles. In the follow-

ing we find the phase space occupied by the active parti-
cles for the three cases of Table I, which are character-
ized by three constant values of g, . We note here that
only four of the constants Bo, B„B„,N, (0), T, (0),
j,(0), V, (0}, and L appearing in the various expressions,
e.g. , Bo, N, (0), T, (0), and L, can be treated as free pa-
rameters. The others can be expressed in terms of the
free parameters via relations (126) and (130);

B,' b, pl
4' B

(122)
cB,

N, (0)V, (0)= (131)

B'

4m

b
pt

B
(123)

and their solutions satisfy the relation B,=cB with
c =const. The magnetic field is therefore shearless and
the only possible equilibrium which can be described by
any of Eqs. (122) and (123) is a stellaratorlike
configuration with vanishing "toroidal" current, a case
which will be examined in Sec. VI A 2.

To obtain analytic tokamaklike equilibria with V, AO,
it is convenient to use, instead of Eqs. (118) and (119),Eq.
(118)and the equilibrium condition

B2
P+ =, B„=const .

8~ 8a
(124)

Two of the quantities B, P, V„N„and T, appearing in

Eqs. (118), (120), and (124) can be arbitrary functions of y.
Accordingly, assigning the y dependence of P and V„one
can obtain from Eq. (124) the magnetic-field modulus B
and, since the toroidal magnetic field B, is given
(B,=Bo=const), the "poloidal" component B„(strictly
speaking, the absolute value of B„). N, can then be deter-
mined from Eq. (118) and, subsequently, T, from Eq.
(120).

Choosing the singly peaked pressure profile

N, (0)T,(0)= B, .
1

(132)

The last two relations follow, respectively, from Eqs.
(119)and (125}evaluated at p=0.

(i) i), =1
Condition (110) then yields

[I+I (p) j + (—,Wi WII

T, T, 2
'

with WL=I B, WII=2m Ull and

8mN, (0)T, (0)
1(p)=

cosh p

(133)

(134)

TABLE I. Equilibrium quantities for non-negative g, . The
shift velocity V, (y) is an assigned function of y. B is given by
Eq. (126).

V, (y) N, (y) T, (y)

The fraction of active particles is represented by the
dotted area of Fig. l. Invoking the spherical symmetry of
the distribution function, and since the maximum value
of I (p), maxI (p) = I (0)=P&(0), is an order of magnitude

P= B2
S 1

8~ cosh p
(125)

B +B =Bs 0 {126)

with B,=const, p=y/L, L corresponding to the plasma
radius, and

BO
V, (0) B coshp

Bo
V, (0) B cosh2p

Bo
V,, (0) B

X,(0)
coshp

const

X„(0)
cosh2p

T, (0)
coshp
T, (0)

cosh p

const
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Wg
TQ

It follows froin inequalities (133), (135), and (136) and
from I (p) being a decreasing function of p that for all the
equilibria considered the dotted areas in Figs. 1 and 2,
and therefore the fraction of active electrons, slightly in-
creases as one proceeds from the center (p=O) to the edge
(p= 1). This indicates that self-sustained turbulence ex-
ists to a higher degree in the edge region.

(0,0)

.5
2. Hollow temperature or hollow density projfle

FIG. 1. The phase space occupied by the active electrons for

g, =1.

lower than unity, relation (133) implies that nearly one-
third of the thermal electrons are active. Thus, since the
value g, =1 is close to the critical value for linear stabili-

ty, negative-energy modes involving a considerable num-

ber of thermal electrons exist in a linearly marginally
stable (or stable) regime.

(ii) ri, ~ co

This case means a flat density profile. It is given by the
second line of Table I. Since N,'=0, condition (107), in-

stead of (110},is now evaluated and leads to

1 3 2B=—'+ 1+ cosh pB2
(137)

For equilibria with negative values of ri, criterion (113)
does not obtain. Equilibria of this kind have been experi-
mentally observed in H-mode confinement in tokamaks
[19],as well as in discharges with electron cyclotron reso-
nance heating in stellarators [20]. For this reason two
equilibria with pressure, magnetic field, and current den-

sity profiles identical to those previously considered, Eqs.
(125)—(130},but with negative values of rl„are examined
below.

a. Singly peaked density and hollow temperature
pro/Ties. This situation is realized by the first line of Table
II.

Condition (110)yields

[2+I (p)] + &3 .
e e

(135}

2+ I (p) &0,pB
T

(136)

and therefore no negative-energy modes exist, as again
expected, because g, takes its lowest non-negative value
well below the subcritical one.

Wg
Te

3
2+I'

The phase space occupied by the active electrons, follow-

ing from inequality (135}, is represented by the dotted
area in Fig. 2. All thermal electrons are now active, as
expected, because g, approaches an extremely large
value.

(iii) rt, =0
This equilibrium exhibits a Aat temperature and a

peaked density profile (see the third line of Table I). In
this case condition (110)yields

We note that the perpendicular particle energy W~ does
not appear in inequality (137), because the factor by
which pB is multiplied in Eq. (112) vanishes. Inequality
(137) imposes no restriction on the active thermal elec-
trons.

b Hollow . density and singly peaked temperature
pro+les. This situation is realized by the second line of
Table II. Condition (110) leads to

2[1+1'(p)] + [2+1'(p)] & I (p}+—,'[2+ I'(p)],
8'()

T. T.

(138)

and the phase space of active electrons is depicted in Fig.
3. Nearly all thermal electrons are active.

For the considered equilibria with negative values of g,
the phase space of active electrons slightly increases as
one proceeds from the center to the edge, as can be seen
from inequalities (137) and (138). This is similar to the
cases of equilibria with non-negative values of g, .

B. Shearless stellaratorlike equilibria

The distinguishing feature of these equilibria in com-
parison with the tokamaklike type is that the net plasma
current vanishes. To derive equilibria of this kind, an ap-
propriate distribution function is a y-dependent Maxwel-
lian

(0,0}
Wj(
Te

m

2'
N„(y)

T3/2 (y }
exp

tJ,B(y)+ ,'m „q4—
T„(y)

FIG. 2. The phase space occupied by the active electrons for

g, ~ 00. All thermal electrons are now active, as expected, be-
cause g, approaches an extremely large value.

(139)

which is a special case of Eq. (103) for V =R „=0. Con-
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TABLE II. Equilibrium quantities for negative g, . B is given by Eq. (126), and I (p) by Eq. (133).

V, (y) N, (y) g, (y)

const

B2
V, (0)

cosh'

Bo
N, (0) B cosh 2p

N (0)
B

Bo

T, (0)
Bo

Bo
r, (0) B cosh 2p

r(p)
2+r(p)
2+ I (p)

r(p)

sequently, if one performs an analysis similar to that in
Sec. VI A 2, first-order terms in (rL„)t„/L do not appear,
and only those in Eqs. (105)—(124) which contain V„and
R, must be modified by replacing V, =R,=O. Thus, the
condition (dP/dy)(Bf „/By) &0 yields, through (110),
the same subcritical value g'„' 3.

To obtain the fraction of active particles in the case of
cold ions, we first consider the equilibrium equation

Jx
cB,' b,
4m' B

(140)

8, =8 =(8 +8 tanh p)' (141)

It should be noted that, to prevent B, from vanishing at

y =0, the constant magnetic field Bo must not be zero;
otherwise a singularity would appear because the Larmor
radius would approach infinity at y=0 and the drift
kinetic theory would become invalid. The "poloidal"
current density corresponding to B„

c 1 tanhpJx=
4~L B cosh p

(142)

is an odd function of y and therefore no net current flows
through the plasma. The electron density profile N, (y )

can be freely chosen; the temperature T, (y) can then be
determined from the relation P=N, Te. The same N, (y)

Wg
TjD %+

4 4(&+r(p))

(0,0)

3+ r(
2 2+I'(p)

FIG. 3. The phase space of active electrons for hollow densi-

ty and peaked temperature profiles (negative g, ).

which contains the single "toroidal" magnetic-field com-
ponent 8, The .equilibrium condition (124) is not an in-

dependent equation and therefore the pressure P(y) can
be an arbitrary function of y, as it is in the case of
tokamaklike equilibria. If one chooses the same singly
peaked pressure profile given by Eq. (125), the solution of
Eq. (140) is

and therefore the same g, profiles examined for tokamak-
like equilibria are adopted. It should be noted that the
scale length L and three of the constants B„BO B„,
N, (0), and T, (0), e.g., 8o, N, (0), and T, (0), can be used
as free parameters. The other two can be expressed in
terms of the free parameters via relations (126) and (132).
The phase space occupied by active electrons can be ob-
tained from relation (110) for N,'%0 and (107) for N,'=0.
In these relations the only macroscopic functions in-

volved are P, E„T„B,and their derivatives. Thus,
since these functions are identical in form to the corre-
sponding functions considered in the case of tokamaklike
equilibria, the results of Sec. VIA2 that concern the
phase space of active particles are also valid in the stel-
laratorlike regime. It therefore turns out that, as far as
the existence of negative-energy modes is concerned, the
two confinement systems are equivalent.

VII. CONCLUSIONS

The conditions for the existence of negative-energy
modes with vanishing initial field perturbations were in-

vestigated for the cases of homogeneous magnetized, in-

homogeneous force-free, and magnetically confined plas-
mas with plane equilibria. To this end, the second-order
perturbation energy was obtained [Eq. (82)] by evaluating
the general expression derived by Pfirsch and Morrison in

the framework of collisionless Maxwell-drift kinetic
theory. The conditions need only be satisfied for some
particle species v, locally in q4 and p for a homogeneous
magnetized and an inhomogeneous force-free plasma, and
locally in y, q4, and p for a magnetically confined plasma.
They obtain if the reference frame is that of minimum en-

ergy. The conditions are as follows.
(i) Homogeneous magnetized plasma and inhomogene-

ous force-free plasma with sheared magnetic field.
If (q4/g'„)(Bf', '/Bq4) )0, parallel and oblique modes

(k i
@0) exist with no restriction on either the orientation

or magnitude of the wave vector k.
(ii) Magnetically confined plasma.
(1) For parallel and oblique modes the above condition

is also valid with no essential restriction on k.
(2) If (q4/g'„)(Bfg' '/Bq4) &0, a condition which is

more frequently satisfied, the possible oblique negative-

energy modes are nearly perpendicular.
(3) Purely perpendicular negative-energy modes (k

~~

=0)
also exist for any ki if (dP/dy )(Bf'„)/By) &0, irrespec-
tive of the sign of the quantity (q4/g', )(Bf', '/Bq4) [P(y)
is the equilibrium plasma pressure].

The consequences of the last condition were examined
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for tokamaklike and stellaratorlike equilibria, described,
respectively, on the basis of a slightly modified Maxwelli-
an distribution and a Maxwellian distribution function.
It turned out that the existence of perpendicular
negative-energy modes is related to the threshold value

3

for g„, which is lower than the critical value of g„ for the
onset of linear temperature-gradient-driven modes.

For various analytic tokamaklike and stellaratorlike
cold-ion equilibria with non-negative as well as negative

g, for which the criterion g, & —,
' is not necessary, a con-

siderable fraction of thermal electrons is associated with
negative-energy modes (active particles). In particular,
for linearly (marginally) stable equilibria (ri, = l} nearly
one-third of the thermal electrons are active. For all
equilibria considered the phase space occupied by active
electrons increases as one proceeds from the center to the
plasma edge. It is shown that the above results are exact-
ly the same for stellaratorlike and tokamaklike equilibria
if their density and temperature profiles are identical. It
therefore turns out that negative-energy modes relating
to nonlinear instabilities which could cause anomalous
transport in a linearly stable regime exist equally well in
both confinement systems.

APPENDIX: CALCULATION
OF THE EXPRESSION A

INVOLVED IN THE SECOND-ORDER
PERTURBATION ENERGY

From Eq. (67), one obtains

aH'„"
=0

q4 v=o

aH'," =0.
ax v=o

(A2}

We note that the constraint P4=0 is not involved here,
because P4 does not appear in H' '. If one recalls that
P), = ( P, P4) and q)„=(x,q4), these relations imply that

a2S(1) aK(0) asV V V

aq;aP„aq„aP, (A3)

that is, the first term in A, Eq. (72), vanishes. The other
three terms are calculated separately as follows.

a's&„" aa'„" as'„"
The term

Q Q Qp gp

It is convenient to write this term in the form

a2S(1) aK(0) aS(l)
V V V

aq, aq„aP„aP,
aS(1)

ax ax

aK(0) aS(1) aS(1)
V V + V

aP aP aq4 ax

aK(0) aS(1)

aI ap,

as'" aH"' as'" a's'" aH"' as"'
V V V V V V

aq4 aP4 ax aq 24 aP4 aP4
(A4)

By virtue of aH'„'/aP4 =0, the last two terms on the right-hand side of Eq. (A4) vanish.
To calculate the first term, use of the relation aK', '/aP =v' „' and Eq. (56) for v' „' yields

aS'„" aH'," q, a aS'„"

ax ax p p aP g ax ax p
r

ab(0) aS(1)

ax ax p

c(M (8(0))' „, a aS'„"

e g "0' ' ax " ax p p

as( )

ax ax p p
(A5}

Equation (34) implies that

aS(1)

aX p

as(1)apaS(1)
V

ax v ax v aP

as" '
a A* as'„"
ax a

(A6)

Since A„" ' depends only on y for any vector r„, perpendicular to the y axis (such as the vectors b' ', e„,and e, ), the re-
lation

a~'"& as"~
V V

ax ap

holds and therefore

=0 (A7}
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XZ

as'." Bs"'
V=r

ZZ
(A8)

Applying the operator B/Bx ~p to the last equation yields

as"' as'" as'"
r„, ~ r„,~ r„, ~

Bx Bx v v B" v BP "' Bx v

BS'„" e„aA.„'"'
r

Bx "' Bx v v e Bx
~ ' r e

XZ

as„"'
BP

(A9)

Relation (A7) has the consetIuence that higher-order
terms in expansion (35) for S'„', after imposing the con-
straint V=O, do not contribute to Eq. (A9). Using this
expansion, Eqs. (A6) and (A9), respectively, yield

(b(0))~ " +(b(0))~
Bx Bx p Bx z ey

are helpful. The second term on the right-hand side of
Eq. (A5) can then be calculated on the basis of

BS(1)
V

Bx p v=o

as"' e a A""'
V + V V

Bx c Bx

BS(1) e BS(()

Bx c By
(A10)

(A15)

following from (A10). The other three terms in Eq. (A5)
can be calculated by applying relation (Al 1) to r„,=b' ',

e, and e~:

and

BS())

r„, ~

Bx Bx p p v=o

BS())

r
Bx Bx

where

e BA'"'
V V

c Bx

B

(A 1 1)

a „, as'„"
b

Bx Bx p p

W(] )„, as„
Bx Bx

2 (&) 2 (1)
b(0) +b(0)b„+b, e (A16)

c (0)
as

b X
e a*(0) Bx

V V

w(])
1 Bs. (0)b

mvg v Bq4

(A j2)

B aS(, B BS(.')
e ~ e ~

Bx ax , , Bx Bx

B2s( & )
V

B~By
3'

We note that, in order to calculate the right-hand side of
Eq. (A10) and Eqs. (A16), (A17), and (A18) below, rela-
tions (55), B BS(-') —B aS( )

e, ~

Bx ' Bx , , Bx ' Bx

B2s(&)
V

e
By Bz

(A17)

and

BA ()
Bx

(0)Bb .b' '=0
Bx

(A13)

(A14)

(Ais)

Inserting Eqs. (A15) and (A16)—(A18) into Eq. (A5), and
taking the inner product of the resulting equation with
BS'"/BP= —g, one obtains, for the first term in expres-
sion (A4),
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as(1) BH«) aS(1)

ax ax aP

(g.b(0) ) b(0).
g BX

(0)
BS

b

as'"c b(0) V

e B'(') ax
V V

A(])
b(.). 'S.

ax
'

ax

a's"' a'0"'
b(0) " +b(0)

a ay
* aya

Bs(1) as'„"
+ (b' ')' +(b' ')'

ax ' az

cP, (B' '}'
(g'b(0)} b' '

g e(0) Bx

A(]) (1)

b„, , BS. . . BS„
b, —

Bz Bx

BS(1)
b(0) b(0) X

g e(0) Bx
V V L

BS(,')
~ e ~

Bx Bx

BS)(1)
b(0) b(0) X

++(0) r Bx
V V

BS(1) B2S())
B v + b(0) v

ax ' ax ' axay

2 (1)„,as„
By Bz

(A19)

as(„"

aa,

BS'"q4 ( (()) B v

g Bx Bq4

BH"'

p BP p

g() )

b(0).
Bx

q4 a
, 04B

g q4

with gy =(ey'x) ~

A similar but simpler procedure is used, because q4 is a scalar variable and b' ' does not depend on q4, to calculate

the second term of Eq. (A4}:

as'„" aa") as'„" as',"
Bq4 Bx p BP BP4 Bq4 Bx

A( ] ).„(B"') „, a as'," BS(„"
'~ "a. aq,

L

b(0)
a..

as"' as'"
V V

'* a. +& "a. a, (A20)

with

as'„"
b'"-

~g Bx
(A21)

The expression (A4) is then the sum of Eqs. (A19) and (A20).

a'a&„" as'„'& as'„'&
The term

a
Bq4

This expression requires calculation of

Since BH( ) /BP4 =0, this term can be written in the form

a'0(0) es(" as'" aa(" as"' as"'
V V V V V V

Bq;BP„Bq BP; BP Bx BP4

a aa(„"
ax ap

as") as")
V V'

ax ap
(A22)
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a
clq4

aa("
V

ap
v(0) b(0) I b(0)(B(0))i (e Xb(0))

&*(o)

B(0) i

(A23)

and, with Eq. (A10) for aS(„"rax ~p, of

q aa(„" aS'„" q, qb(0) aS'„"

Bx ()P ax p v=p g „Bx ()x

c () (B )
( (())) v

es("
e Bx

P V=p

q4
I

(1) s(l)

X Z

(B(0))~ Qg (B(0))~
'

Qs
b (0) g (0)

B4(0) z (}X B4(0) x
()Z

V V

(A24)

On the basis of Eqs. (A23) and (A24}, one then obtains

a'I") as(" as" )
V V V

dq; BP„(3q„dP;
as(„" as'„"

(b(0))~ " +b(0)
Bx ' Bz y e,

(B(0)}~

()x
V

(B(0))i

V

r

d q4

dg g

w( 1 )b„+b,, , Bs„,,
()S

X (}Z

(B( )) Qg
v Pgv xz, (0) 2 z b. , —

C4
„,aS'„"

(A25)

After some algebra one calculates

a2e(„0) d 'q, '

= —m„g'
()q4 v=p dq4

O'I"' e ()v(0) a A""
V V gV V

()x()q4 v 0 c Bx Bq4

and

a'a(') as(„') as&„')
The term

Q Q Qp Qp

c, (B"')'
=m v g V~ ~(0)

V V

(A26)

(A27)

aa(0)

Bx

gs (1)

V=p

aa(„"
Bx ()g V=O

B+(0) v q4
& + (B )'

C
~ n e(0)C g V

gyey . (A28)

a aH(„"
+2

Bq4 Bx

Inserting Eqs. (A26) —(A28) into the expression

()2~( ) (jg(" gg(" () ~'0' gg'"
V V V V V

Bq,.Bq„BP, BP; Qq 24 ~P4

BS(1) aS(1)
V V

ap aP,

aa") aS"' as" '

ax ax aP ap
(A29)

yields

d H' ' ()S"' Bs"' d q4 c (B(o))

gp g
vgv d, k4 v P'gv xz 4(0) kyk4

q,. q, „P,. q4 g' e

e q (0) ~

B4(0)y $2 Bz(0) ( ) p2
v xz~y P v ~~(p) ~y .

C g V

On the basis of Eqs. (A3), (A4), (A19), (A20), (A25), and (A30), A is written in the form given by Eq. (73).

(A30)
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