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Theory of Raman scattering for a short ultrastrong laser pulse in a rarefied plasma
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Direct forward and backward Raman scattering in an underdense plasma are considered for relativis-
tically strong laser pulses. Dispersion analysis and analytical solutions, taking account of the pulse
shape, are presented. It is shown that the Raman instability has an absolute maximum of the growth
rate for the laser field amplitude (eEO/m cooc ) = 1, which corresponds approximately to the power density
of 10' W/cm for 1 pm wavelength laser radiation. Analytical solutions are obtained for both
backward- and forward-scattered light that show the quite different way that the forward and backward
scattering affect the global pulse evolution. The forward scattering develops in the whole body of the
pulse and affects most considerably the trailing part of the pulse. In contrast with it, the backward
scattering can be expected to become saturated aleady in the leading part of the pulse and affects mainly
the evolution of the leading pulse edge. The relation of the obtained results and recent three-
dimensional studies of the short-pulse evolution are discussed.

PACS number(s): 52.35.Mw, 52.40.Nk, 52.40.Db

I. INTRODUCTION

Stimulated Raman scattering (SRS) [1] is of particular
interest to laser-plasma interaction since it is believed to
strongly affect a powerful laser pulse in plasmas. SRS
suggests that an electromagnetic pump wave is scattered
by ripples of electron plasma density. The latter, in their
turn, are enhanced by a ponderomotive force which
arises due to the beats of the pump and scattered light.
There is a feedback loop and therefore an instability can
occur. Not every electron plasma wave is likely to be a
seed for the instability —only the waves with the wave
numbers and frequencies that satisfy the matching condi-
tions:

ko ke~ co& coo toe .

The subscripts 1,0,e correspond to scattered, pump, and
electron plasma waves, respectively.

The theory of SRS has been developed and copiously
studied for electromagnetic radiation of a moderate
power [1—8]. Now there is quite a clear understanding of
the conditions under which SRS at various angles dom-
inates and of the parameters upon which its growth rate
depends. These parameters are, namely, the pump ampli-
tude, the ratio of the electron plasma frequency to the
electromagnetic wave carrier frequency, and the angle of
scattering. It is believed that the growth rate of the SRS
(in a plasma with cold electrons) increases with a devia-
tion of the scattering from the forward direction and is
maximum for the backward scattering (see, for exatnple,
Refs. [1,6]). Side or backward SRS, in addition, can be
strongly affected by the thermal plasma electron motion
[5,6], since the Landau damping can be expected to
suppress the excitation of a daughter Langmuir wave.

As to the relativistically strong electromagnetic pulses
(yak =1), the first attempts to understand in detail the
instabilities that can affect relativistically strong elec-
tromagnetic radiation were undertaken quite a long time

too))co, :—(4tre n/om, )' (1.2)

Here no is an unperturbed electron density. We consider,
in addition, laser pulses that are initially smooth and
have a duration 7 p fairly above the electron plasma period

7 0 ))COp~ (1.3)

ago (see, for example, Ref. [9]). The recent breakthrough
in the laser technology [10,11]made possible laser-plasma
interaction experiments with extremely high laser field in-
tensities in subpicosecond pulses [12,13]. Both a strong
nonlinear character of laser-plasma interaction and, espe-
cially, a fairly fast scale of changes in laser intensity re-
quire at present an adequate theoretical description of
these instabilities.

The recent experimental observations of backward
stimulated Raman scattering (BSRS) produced by a sub-
picosecond laser [13] demonstrated that a considerable
revision of the weakly nonlinear theory was required to
explain at least some of the obtained results. Computer
simulations presented in Refs. [14,15] indicate that the
backward SRS can play a fairly extraordinary role in an
ultrashort pulse evolution: being itself of minor impor-
tance for the pulse energy losses, BSRS could trigger off
an ultrafast pulse depletion due to wake-field excitation.

This paper discusses mainly the direct forward stimu-
lated Raman scattering (FSRS) and BSRS for relativisti-
cally strong pulses. First, we consider brieQy the results
that follow from the exact fully relativistic dispersion re-
lation. Then, in contrast with the estimations based on
simple models (see, for example, Ref. [5]) and numerous
speculations based on the dispersion equation analysis
(see, for example, Ref. [13]), we present a theory that
takes account of the shape of the pulse envelope.

In a focus of our study, there are mainly analytical
solutions that describe the SRS instability in rarefied plas-
mas where a laser carrier frequency coo is much higher
than the electron plasma frequency
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In the opposite case, a perturbation approach to the

description of the pulse evolution fails because of a strong
plasma-wave generation [16—19].

by

(8 /Bt —c 8 /Bx +co (1+2 /2) ' )A =0. (2.8)

II. BASIC EQUATIONS

—c + Ai=0,
2 CO Pl

at' Bx' y, no
(2.1)

E„= 4me—( n, .
np )—, (2.2)

We start from the conventional, fully relativistic one-
dimensional (1D) set of equations for an electromagnetic
field and cold plasma electrons, which can be readily ob-
tained, for example, from the equations presented in
Refs. [20,21]:

This equation leads to the usual nonlinear dispersion rela-
tion for cop and kp,

=Q +kcNp —
p pC (2.9)

The Raman scattering is produced by the electron-
density ripples with a wavelength A,, =2nk, '&2nE
that in our case is much shorter than the pulse length
(k, '&K '«~pc). To study SRS we consider here
small-scale perturbations of A~ and n, ( A, = A~ —Ap,

N, =(n, np—)/np) at the background of a slow large-
scale pulse evolution described by Eq. (2.8}. Then, linear-
izing Eqs. (2.1)—(2.4) in A, and N„we obtain

(a'/at' —c'a'/ax'+ Q') A,
Pex

—eE„—2meC

n,—+ (n,p,„/y, )=0 .
t Bx

Ve (2.3)

(2.4)

QN i
—Ap+ Qq ( Ap/yp)( Ap A& ),

(a'/at'+Q, '}N, =("/yp')a'/ax'( A, A, ),
(2.10)

(2.11)

Here A~ is a vector potential of the electromagnetic field

normalized to m, c /e, which in the case of a one-
dimensional approximation is proportional to the trans-
verse component of electron momentum ( A~=p, jm, c);
E„ is a longitudinal component of the electric field;

y, =(1+p,„/m, c + A~)'~ is a relativistic factor; n, is

an electron density. Ions are treated as a homogeneous
neutralizing background.

Let us first neglect short-wavelength instabilities. This
approximation is often useful to study large-scale pulse
evolution and stability. Let us also consider a circularly
polarized pulse for which the vector potential can be in-
troduced in the form

Ap= —,
' Ap(x, t) [epexp[iPp(x, t)]+c.c. ] . (2.5)

Here e p(e~+ie, )/~2 is a unit vector of polarization,
Ap(x, t) is a slow varying real amplitude, and Pp(x, t) is a
phase of the pulse. The time and space derivatives of gp
determine the local values of the pulse carrier frequency
and wave number

where Ap is to be substituted as a solution of Eq. (2.8).
In the present paper we consider the instabilities that

develop fast enough, so that the large-scale pulse evolu-
tion [with a characteristic time of order (tp /top)rp, as it
follows from Eq. (2.8)] can still be neglected during the
typical time of the instability development. Consequent-
ly, we shall not focus on evolution of the pump pulse it-
self and treat Ap as a given function of x and t.

III. DISPERSION EQUATION ANALYSIS

As an early approach to the problem of SRS in a rela-
tivistically strong pulse, it is instructive to study the gen-
eral features of instability for the case of a homogeneous
pump amplitude (Ap =const). As usual, in this case, we
take all low-frequency dependencies to be proportional to
exp( imp, t+ik—,x), where cp, and k, are, respectively, a
frequency and a wave number of electron-density pertur-
bations N, . The hybrid dispersion relation for co, and k„
which can be obtained from the set of equations (2.10}
and (2.11), is the same as that obtained in Ref. [9]. Using
the notations

~,= —ay, /a~ » ~, '(ax, /ar ), -

k, =ay, /ax» ~,-'(a~, /ax) .
(2.6) D+ —=Q +(k, +kp) c —(a), happ), D, —=Q~

—co, ,

(3.1)

Considering the circular polarization, we avoid fast oscil-
lations of Ap= Ap/2 and the effects of high-frequency
harmonic generation [22].

We impose limitations on the space variations of the
pulse parameters

co, '(Bco,/Bx), A, '(BA, /Bx) «K, —=Q, /c . (2.7)

Here Q~(Ap)—=co~/yp is a relativistically corrected
electron plasma frequency, and yp—:(1+Ap/2)' . The
requirements (2.7) can be interpreted as the condition un-
der which the plasma electron-density perturbations pro-
duced by the pulse (or, in other words, strictional non-
linearities) can be ignored.

The evolution of such a smooth pulse can be described

we write the dispersion relation in the conventional form

Q(A /y) kcp 0 0 e

4 D,
1 1

D+ D
= 1 . (3.2)

Here the pump frequency cop and the wave number kp are
related by the nonlinear dispersion relation (2.9).

For a weakly nonlinear case (Ap«1) this equation
can be reduced to those discussed and well studied in a
number of papers [1—4, 7,8]. However, there is no conse-
quent and complete linear analysis of SRS instability for a
relativistically strong pump pulse. In this section, based
on relations (3.1) and (3.2), we shall discuss the main
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I'~:—Imago, =Re[ [I 02
—

—,'(k, E)2—c2]'~2] &&0 (3.3)

peculiarities of the forward and backward SRS instabili-
ties for an arbitrary pump amplitude.

Equation (3.2) contains as parameters only a relativisti-
cally corrected plasma frequency 0 and a normalized
amplitude of electron quiver velocity uz/c =—Ao/yo. It is
worth mentioning that the relativistic effects here are re-
duced just to the relativistic electron mass growth (or to
the decrease in 0 ) caused by transverse electron oscilla-
tions in the electromagnetic field.

As follows from the dispersion relation (3.2), the for-
ward SRS instability is always periodical Reer, =0, and
has the growth rate

0

0
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0
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0

0
0

o oo
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FIG. 1. Growth rate of FSRS is plotted as a function of a
normalized wave number of low-frequency perturbations
(k,c/co~, ) for cop/co~ =10. Each curve corresponds to a certain
value of the decimal logarithm of the laser field amplitude

loglp( A p )= log lp( eEp /m cope ).

where I 0—= —,'(Qz/coo)( A 0/yo). For wave numbers close
to the resonant value (~k, —K

~
&&I o/c), the growth

rate I'~ reaches its maximum 1~ =co, /4~o for the
pump amplitude Ao =&2 and falls as A o with Ao~ ~.

In Fig. 1, which shows the growth rate of the
FSRS instability as a function of k, c/co, for several
values of light field amplitude, we can see a narrow
resonant peak associated with the FSRS for the wave
numbers which are close to the resonant value

K~ =(co~, /c)(1+ Ao/2) '~ . The dependence of a reso-
nant wave number K on the pump amplitude results in
the shift of this peak towards the smaller wave numbers
for the greater pump amplitudes. This picture also
demonstrates the rise and fall of the instability growth
rate with an enlarging of the pump-field amplitude.

For the nonresonant wave numbers (k, &E: ), as can
also be seen in Fig. 1, an instability can develop as well.
Sometimes it is referred to as the relativistic modulation
instability (RMI) [7]. But since RMI has a fairly lower
growth rate, it can be ignored in our further analysis.

The periodical backward SRS instability always corre-
sponds to a weak pump [1] and needs no relativistic
corrections. In the case of a large pump amplitude

[Ao »(co~, /coo)'~ ], the growth rate of the instability I s
is comparable with Redo, . For a fixed pump amplitude
the peak value of I's corresponds to k, =2ko —co /c and

equals

FIG. 2. Growth rate of BSRS is plotted as a function of a
normalized wave number of low-frequency perturbations
k, c/co~, for the same parameters of plasma and pump field as in

Fig. 1.

=(&3/2)( II'/2)' '(A /y ) (3.4)

With the enlargement of the field amplitude, the growth
rate reaches its absolute maximum at AD=2 [14] and
slowly decreases (as Ao

'~
) for Ao —+~. In Fig. 2, the

value of I z is plotted as a function of the wave number
for several values of the pump amplitude.

The result that follows from our linear dispersion
analysis is that the SRS instability has the maximum
growth rate for the value of Ao that is slightly above 1.
For this value, the instability range also has a maximum
width in a wave-number space. This contradicts the con-
clusion of the authors of the paper [9] where it was stated
that growth rates of instabilities always tend to grow with
increasing pump amplitude.

It is worth noting that the BSRS is a three-wave pro-
cess. Concerning the direct forward SRS and RMI, we
have here a four-wave process because both the down-
shifted ("red") and up-shifted ("blue" ) scattered waves
are resonant and should be taken into consideration.
This deserves mention because in the early papers, when
discussing electromagnetic instabilities in a plasma (see,
for example, Refs. [2,4,8]), the term "Raman scattering"
was associated with a three-wave process. However, the
other authors [1,7] also used this term for a four-wave
scattering process. Here we keep to the definition used in
the book [1].

IV. FORWARD SRS FOR A PULSE
OF A FINITE DURATION

For FSRS the scattered waves propagate in the same
direction as the pulse itself. In a rarefied plasma
(co&, «coo), their frequencies and wave numbers only
differ slightly from those of the pulse. Consequently, the
same is true for the phase and group velocities of the
pump and scattered light. Hence, we shall look for the
field of scattered waves in the form
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A, =
—,
'

[ep A, (x, t}exP[i1((p(x,t)]+c.c.], (4.1)

where the phase fp(x, t) is the same as for the pump wave
and A&(x, t) is a slow varying complex amplitude of the
scattered light.

Assuming that the time changes of A, in the pulse
frame of reference are fairly fast,

(a/at+ V„a/ax ) A, »(n,'/cp,')ca A, /ax (4.2)

(where V, =c kp/(vp is a group velocity of the pulse), we
can neglect the linear dispersion effects. On getting a
final solution, it is easy to find that this inequality holds
true for the not too small pulse amplitude

a/at(a/at —ca/ag )g =r,'(g )g, (4.9)

where I p(g)= —,'(n /(vp)(Ap/yp). The general solution
of Eq. (2.1) has the form

Q(g, t ) =Qp((+et)+ f— Qp(g') —Ip(Z)

+Qp(g')Ip(Z) dg',

From the set of equations (4.6)—(4.8), the equation that
describes the linear stage of the FSRS instability for the
quantity Q =n—'~ N readily follows:

Ap »co~ /top . (4.3) (4.10)

N, = ,' [N(g, t)e—xp[ig(g)]+c.c.], (4.4)

A, = A+(g, t}exp[i'(g)]+ A (g, t)exp[ ivy(g)] . —(4 5)'

Here we separate the phase of the "fast" (with v h =c )

Langmuir wave g(g)= f~E (g')dg'. We denote as A+
and A the amplitudes of blue and red satellites forming
the amplitude of the scattered wave A &.

Using the inequality (4.2), and assuming the envelopes
N and A + to vary slowly in time and space [compared to
the period of Langmuir oscillations a/at, ca/ag« n~(g) ], we reduce Eqs. (2.10) and (2.11) to the form

a A+ /at = ——(n~/top) A pN,
l

(4.6)

(a/at —ca/ag)(n, '"N}=——'(n,'"A /yp)(A++A' ),

Note that this condition on the pulse amplitude is oppo-
site that obtained in Ref. [23], where the main focus was
on the linear spreading. In other words, while the in-
equality (4.2) [or (4.3}] holds true, the growth of short-
wavelength perturbations (with the wave number about
K ) is not suppressed or strongly affected by their linear
spreading.

Neglecting the linear dispersion, we can also ignore the
small deviations of group velocities of the main and scat-
tered radiation from the speed of light in a vacuum
(c —

Vs, ——c(n /top}/2«c). Within this approximation
the carrier frequency and wave number are related just as

happ = k pc, and the pump amplitude A p and phase Pp de-

pend only on g=x ct F—urth. er on, we use the variables

g and t and rewrite the derivatives in the laboratory
frame a/at and a/ax in the form a/at —ca/ag and a/ag,
respectively.

The results of the homogeneous case analysis of the
previous section indicate that the FSRS instability can
develop only from a seed, with the perturbation wave
numbers close to the resonant value E . Consequently,
we look for the electron-density perturbations and the
scattered em wave amplitude in the form

where the following notations are used:

Qp =n~ N I ( =p,

g, —=(a/at —ca/ag)g[, ,
(—n—,"'Ap/y p2)( A++ A '

) l(=p, (4.11)

r

N=Npexp (2/c) (/+et) f I p(g')dg'

Z(g, g', t)=(2/ )c[(g+ tcg') —f 'r2(g")dg" ]'",
and Ip(Z) is the modified Bessel function.

From the form of the obtained solution it follows that
the initial values of N, A+, A determine completely the
instability development. Either the initial pulse ampli-
tude modulation or the electron-density perturbations
met by the pulse can act as a seed for the instability. An
electron-density perturbation (with v, =0) met by the
pulse can grow, but it leaves the pulse in the end. As for
the scattered em wave produced by these density pertur-
bations, it remains traveling with the pulse and can grow.

The typical features of the obtained solution (4.10}can
be demonstrated by taking as an example the simplest
case of the initial perturbations of the form
N~, p=Npexp(i(tg) and A+ ~( p A ~( —p 0, where
(t=k, I(:z is the —suggested detuning between the
electron-density perturbation with a wave number k, and
the resonant value of the wave number Kz.

In the initial stage (for t «~p, while the change in Ap
in every fixed point x due to pulse displacement can be ig-
nored) the instability develops just like in the homogene-
ous case (see Sec. III), but now the growth rate starts to
depend on the local value of the pulse amplitude Ap(().

In the stage of a developed FSRS instability (for t »rp
and tripl p&&1) the resonant initial perturbation with
((=0 (which has a phase velocity equal to c) leads to the
growth of electron-density perturbations that depend on
time t and position g as

(4.7) ~ exp[a(g)t '~ ] . (4.12)

where A+ and A* are connected by a relation

(~,+n, }aA, /at = —(~,—n, )aA' /at . (4.8)

This already differs considerably from the usual exponen-
tial growth predicted by a homogeneous case analysis.

The nonresonant initial perturbations [with (( & 2I p/c,
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(roc) '] can also act as a seed to produce growing reso-
nant perturbations because of the pulse amplitude inho-
mogeneity [i.e., the inhomogeneity in the driving term in

Eq. (4.9)]. But in this case, the time required to produce
considerable changes grows exponentially with an in-
crease of the detuning ~.

The scattered em daughter wave and the beats of the
pulse amplitude grow also according to the law (4.12).
Behind the pulse (where AD~0) the solution (4.12)
describes the plasma wake field produced in the
course of the FSRS instability development. The
amplitude of this wake field grows in time as
exp[[(4t/c) f" I'o(g')dg']' ].

V. BACKWARD SRS FOR A PULSE
OF A FINITE DURATION

BSRS is an essentially convective process with respect
to the pulse, as both the enhanced electron-density per-
turbations and the scattered light are left behind the
pulse. New portions of electron-density perturbations
should enter through the leading edge of the moving

pulse to provide permanent scattering. For harmonic
perturbations ahead of the pulse and in the pulse frame of
reference, the problem of the BSRS can be treated as a
boundary [5] and, at least for time greater than ro, it is

natural to look for a steady-state (in the pulse frame)
solution to Eqs. (2.10) and (2.11). Consequently, we take

X, and A
&

in the form

The boundary conditions for this set are

+„=0, N(g)l& +„=Noexp(iso, g/c) . (5.7)

The general analysis of Eqs. (5.5) and (5.6) shows that
the perturbation amplitude tends to grow from the lead-
ing front into the interior of the pulse. It is convenient to
write the amplitude of perturbations in the form

intensity

(5.9)

Here b, (g) stands for the
&(g)—:(k, —2ko(g)+~~, /c )/2.

And for the "strong"
[A o ))(co~, /coo)

'
] we obtain

v'3
q= qo))K~ for lb, l ~qo,

2

local

intensity

detuning:

region

INI =Noexp f "q(g')dg' (5.8)

Here we put into consideration a new quantity q (g) that
is a spatial growth rate, which depends on the local value
of the pulse amplitude Ao(g).

The most interesting case corresponds to the spatial
growth that is much higher than the space variations of
the pulse amplitude. In this case the simplified expres-
sions for q can be obtained for pulse regions with certain
ranges of intensity.

For the "weak" pulse region

[Ao ((a), /C00)' ] we have

q =Re[[—,'(cooQ /c )(Ao/yo) —
—,'6 (g)]'~ ] .

N, = ,' [N(g)exp—[ig,(x, t)]+c.c.], (5.1) q =(qo/b )'~ for qo (b, ~
—,'ko A o/yo, (5.10)

1(r, =(k, —
co~, /c)x =a.x . (5.4)

Neglecting the linear dispersion effects (ruo=cko) and

substituting Ni and Ai in the forms (5.1) and (5.2) into

Eqs. (2.10) and (2.11) yields

A, =-,' Ieo A (g)exp[i(go(x, t) —g, (x, t))]+c.c.], (5.2)

where the amplitude of perturbation depends only on g,
and Po(x, t) is a pulse field phase [see formula (2.5)].

Ahead of the pulse (where A=0) we join a solution for

X, with a seed plasma wave that has a wave number k, :

N, =
—,'[Noexp( ice~, t+—ik, x)+c c ]. . .

In contrast with the case of the previous section, a wave

number of the perturbation is not too small here:

ke ))co&e /c.
Note that the problem can be easily generalized for the

case of a multimode seed,

N, =
—,
' g No(k„)exp( ice~, t +ik„—x )+c.c. . (5.3a')

E

Linear approximation in the amplitude of perturbation
results in independent amplification of each mode from
the sum.

Let us take g, in the form

3
q =0 for 5& —

q2z/3

where

qo(g)—= —,'(co oQp /c)(AO/yo)= —,'K (coo/Q )(Ao/yo) .

The thresholds for the BSRS instability can be defined
as

J:—Jq dg) 1, (5.11)

where J is an integral amplification factor. It follows
from Eq. (5.10) that for a sufficiently long pulse
(ro))co, ') with Ao)1 and coo=const, the threshold
condition (5.11) is always satisfied.

In this section we do not suggest initially that the local
value of the pulse carrier frequency and corresponding
wave number [see definitions (2.6}]are constant over the
whole pulse. Let us find out whether a frequency modu-
lation can suppress the instability. Variations in the local
value of the pulse carrier frequency coo and corresponding
wave number ko((} cause the change in the local detun-

ing b, (g). Since that is the case, q turns out to be not
equal to zero only in limited parts of the pulse. Suppos-
ing, for example, that, for Bko/Op=const in the vicinity
of a single point with 5=0, we can obtain an estimation
for the integral ampli6cation factor

(a'/ag'+Sr, ')N = —
—,'( A, /y,')(~—is/ag)'A *, (5.5) J=-,' 1~k, /apl '(~,Q, /c')( A', /y', ) . (5.12)

[8/@i(k —a/2)]' A—'= (&'/s) A N . —
Then the threshold condition J) 1 can be rewritten as
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(5.13)
20

As can be seen from the inequality (5.13), even a
moderate gradient of coo can suppress the instability for a
pulse of small amplitude ( Ao « 1). As for relativistic in-

tensities, Ao 1, the phase variation allowed by the con-
ditions (2.7) (i.e., when our theory is still valid) fails to
suppress BSRS.

If there are several points in a frequency modulated
pulse with 5=0, the estimations of the amplification fac-
tor are more complicated and should similarly include
the correlation of the phase of the amplificated Langmuir
wave in different points, which, in its turn, can strongly
depend on the pulse amplitude.

From Eq. (5.6) we can obtain the matching condition
that determines the frequency of the scattered wave to,
behind the pulse (where Ao =0, A, ~ exp[ iso,t-
+ik, x]} as a function of the wave number of a seed
Langmuir wave ahead of the pulse:

(5.14)

If I ~ I ~ I ~ 11 I 1 I I I I I ~ tl I I I I II ~ 1 Il ~ I I I ~ I ~ f I

0.8 0.9 1.0 1.1 1.2

FIG. 3. Logarithm of the spectral density of backward-
scattered light (normalized to Nt,'/c) is shown as a function of
the normalized frequency of the scattered light (co&/coo). Pulse
duration is ~O=10'coo '. Pulse envelope is taken in the form
Ao(g}=A [1 cos(nf—/~oc}]/2 for 2roc&—/&0, and Ao2=0

for g) 0 and g& 2roc. —Uniform spectral density of seed per-
turbations is suggested. The ratio of carrier and electron plas-
ma frequencies is 100. Different curves correspond to the fol-

lowing values of parameter A: A =0.01 (curve 1), A =0. 1

(curve 2), A =0.25 (curve 3), A =0.5 (curve 4), and A =1
(curve 5).

The last relation also can be easily obtained with the help
of simple considerations. In the pulse frame of reference,
the Doppler-shifted frequencies of the plasma seed wave
and those of the scattered em wave are equal:
to&

—k, c=lco, —k, cl. Substituting here the wave num-

ber of the scattered light k, = —ro, /c yields again the re-
lation (5.14). Note that the formula (5.14) determines the
frequency but not the intensity of the scattered light. For
small pulse amplitudes [Ao &(co~/coo)'~ ] from the ex-

pression (5.9} it follows that only the perturbations with
the wave numbers fairly close to the resonant
(k, =2ko —

co~, /c) could produce a scattered light with
considerable efficiency. Consequently, according to
(5.14), the backward-scattered light is down shifted:
N

~
—cop co~ . In contrast with this, for relativistically

strong pulses there is also enhancement of the perturba-
tions with k, & 2ko [see the formula (5.10)]. As a result,
the up-shifted light can exist in the scattered radiation
[13].

We studied the solution of the set of equations (5.5) and
(5.6) numerically for a laser pulse with a duration
'ro = 10 coo

' in a plasma with coo/co&, = 100. These pa-
rameters are fairly close to those of the experiment [13].
The seed waves were suggested to have a uniform spec-
tral density NI, =const in k, space for both k, )0 and

k, (0. In Fig. 3, the decimal logarithm of the spectral
density of the scattered radiation (normalized to NI, /c } is
depicted as a function of a normalized scattered wave fre-
quency (co, /coo). Every curve corresponds to a certain
peak pulse intensity A

At a low intensity ( A =0.01; curve 1},the initial seed
plasma waves with k, =+2ko —co e/c (which correspond
to the oppositely directed phase velocities} produce two
peaks displaced to a value +co, from the pulse frequency
cop. There is no enhancement of the seed wave of
electron-density perturbations. So it is just a backscatter-
ing by a given moving grating.

With the rise of the intensity ( A =0.1; curve 2), the

Et=80 '(co /0 ) (5.15)

For t & ht our theory is no longer valid, as the inequali-
ties (2.7) are broken. The jump formed on the pulse am-
plitude profile due to erosion begins to generate a plasma

enhancement of a forward-moving seed wave appears. It
gives rise to a growth and broadening of the left peak
while there is a no serious enhancement in amplitude for
the nonresonant seed wave with a negative phase velocity
(right peak).

With the further rise of the pulse intensity ( A =0.25;
curve 3), the growth and broadening of the left peak are
in progress. For A =0.5 and 1 the peak becomes much
broader than even co, (curves 4 and 5}. The similar
broad spectra of backscattered radiation, with both the
down-shifted and up-shifted frequencies, were observed
in the recent experiment with ultrastrong laser pulses
[13].

Since the scattered em wave takes the energy from the

pump pulse, BSRS should result in pump erosion with
the rate proportional to —Bl A f l /Bg. The scattered wave

amplitude A, grows inside the pulse from the leading

edge together with N until the validity of our solution
fails at some point (further on we stand as g') due to plas-
ma electron trapping in the field of the Langmuir wave.
Even in a plasma with a fairly small electron temperature
it certainly appears when the electron-density perturba-
tions grow up to N =1. Note that the corresponding am-
plitude of the scattered wave A, (g') is still small com-
pared to Ao(g'). As N cannot grow anymore for g& g',
the further enhancing of A t is also suppressed behind g',
so that the quickest erosion of the pulse may be expected
to appear in the vicinity of g'.

Using the local energy balance near the point g'
(where N = 1), the characteristic time of the pulse profile
steepening (up to a value 8 1n Ao/Bg=K } can be estimat-
ed as
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wake. More details of the 1D evolution of the relativisti-
cally strong pulse that excites a plasma wave can be
found in Refs. [14,15].

The position of the point g* with respect to the pulse

edge is definitely determined by the pulse parameters and
amplitude of the seed wave. For real plasmas, a seed per-
turbation for BSRS can be provided by thermal electron-
density fluctuations. Since these fluctuations are essen-

tially 3D in nature, we should make some speculations
which are, in fact, already beyond the limits of the one-
dimensional treatment of the present paper. However, all
we need do in order to obtain the equation that approxi-
mately determines the position g' is just accept (extrapo-
lating the well-known result for a weak pump) that the
spatial growth rate of backscattering is gradually decreas-

ing with the deviation from the direct backward scatter-
ing. Under this natural assumption we obtain the equa-
tion for g':

2 f q(g')dg'=in(X~/(2korn) (q(g")rL, )), (5.16)

where rn=(T, /m, co~, )' is the electron Debye length

and Nz =npp'g.3

For relativistically strong (Ao —-1) and fairly long

pulses with roco, »10 (for example, for the laser and

plasma parameters corresponding to the experimental
conditions of Ref. [13]), it follows from (5.16) that the

steepening discussed above of the pulse profile can devel-

op on the leading edge of the pulse during a time interval
determined by Eq. (5.15).

VI. CONCLUSIONS

Our analysis demonstrates that the Rarnan instability
has a maximum growth rate for the pulse field intensity

corresponding to A =1. The same value of the pulse am-

plitude gives the maximum width of the instability in k

space. It means that, already, available laser radiation
with a peak power density of 10' W/cm and a wave-

length of 1 pm (see, for example, Refs. [12,13]) corre-
sponds to the maximum growth rate of the Raman insta-

bility and should be most severely affected by it.
The results of the present paper also assure us that,

though both BSRS and FSRS instabilities play an impor-
tant role in the laser-plasma interactions, they can be ex-

pected to affect very differently the evolution of a rela-

tivistically strong laser pulse in an underdense plasma.
The BSRS has a greater growth rate; but for a pulse of

a limited duration the intensity of backscattered light

stops growing in time due to the convective nature of the
instability already up to the rnornent when the pulse has
covered its own length. In fact, it means that our theory
for BSRS is valid also for a sufficiently short laser pulse
which does not change the shape significantly while cov-
ering its own length. Consideration of kinetic effects (see
the above particle-trapping arguments) for a compara-
tively long pulse shows that BSRS can be expected to be-
come saturated already in the leading part of such a pulse
(see the example at the end of the previous section),
where the scattered wave amplitude is still small. As a
result, for ultrahigh pulse intensities, BSRS does not
affect the body of the high-intensity pulse so badly as can

be estimated by just basing it on the linear theory. In this
case, it can be expected to mainly affect the evolution of
the leading portion of the pulse radiation where it can
produce an erosion of the pulse amplitude profile, as was
demonstrated by PIC simulations [14,15]. Comparison
between the times predicted by formula (5.15) and that of
the formation of a jurnp on the amplitude profile in simu-

lations [14,15] shows a good agreement of our theoretical
predictions with the results of PIC simulations.

In contrast with BSRS, the FSRS in an underdense

plasma [(co, /coo) « 1] has a moderate growth rate [com-

pare (3.3) and (3.4)], but for every pulse intensity, it can
develop in the whole body of the pulse and produce a
considerable modulation of the whole pulse. The rear
portions of the pulse radiation should be affected more
strongly by the instability development than the pulse's

leading part. As soon as the pulse modulation on an elec-
tron plasma frequency has developed, there should be an

ultrastrong wake-field excitation resulting in the ultrafast
pulse depletion [14].

Our theory does not include some important effects
that are now under discussion related to short-pulse evo-

lution in underdense plasmas. Recently, a number of pa-

pers have appeared [21,24 —30] which put an accent—
discussing the pulse evolution —on the essentially three-
dimensional nature of the short-pulse evolution. Howev-

er, these papers demonstrate that for pulses with a fairly
large transverse spot size R »(coo/co& )roc, the trans-
verse evolution can be slow enough to provide the validi-

ty of 1D theory during the typical time of the longitudi-

nal large-scale evolution of a relativistically strong pulse

t„,=(ruo/co, ) ro [14] (certainly, the validity of the condi-

tion 8 )&c/co&„ for which the 1D approach can still be

used, is required). In fact, the restrictions on our theory
are not so rigorous since such comparatively short-

wavelength instabilities as FSRS and BSRS can develop

during a time fairly less than t„&. If the condition

R &)c/~, is fulfilled, the direct forward SRS instability

of a relativistically strong pulse (A =1) can dominate in

the initial stage of the pulse evolution over the transverse

effects. Since BSRS already develops during the time of
order ro, which for R &)(~, /coo)roc is less than that of
the transverse pulse evolution, we again can expect the

1D approximation of a given pulse to be valid for BSRS
description.

Analysis of the present paper adds some important de-

tails to a possible scenario of evolution of a relativistically
intense pulse in an underdense plasma and indicates a

possible important role of BSRS. The modulational ver-

sion of FSRS considered in this paper can be, depending
on the radiation power and plasma density, either
enhanced or suppressed by the transverse pulse evolution

[24—26,29,30] but once triggered off, it always tends to
dominate at the later stages of the instability develop-

ment. Let us consider the conditions under which the
BSRS acts as a triggering process.

Probably the most interesting case with which to apply
our theory corresponds to the initial parameters of the

3D pulse, which provides the balance between linear

diffraction and relativistic self-focusing [24,30]. This case
often is referred to as the optical guiding case [17]. It is
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also interesting since the BSRS instability considered in

the present paper was mainly ignored in the equations
that were studied in the papers on 3D dynamics. The au-

thors of the papers [21,24—26,29,30] agreed that by a
proper matching of the pulse parameters, the regime of
optical guiding can be provided at a distance comparable
with a Rayleigh length. For this case, we can find the
conditions under which not self-focusing, but rather
BSRS dominates in triggering off the pulse modulation.
Comparison of the Rayleigh time tR =8 too/(2c ) with

that given by the formula (5.15) leads to the condition
providing a dominant role to BSRS in triggering off the
pulse modulation process:

' 1/2

(E R)&4
COp

(6.1)

Let us now find out the condition for which the
triggering action of BSRS also dominates over the growth
of initial (resonant for FSRS) perturbation with ampli-
tude. Relations (4.12) and (5.15) give a simple limitation
on the level of the initial seed resonant perturbation of
density

ln & 2(to~, ro)'~ (6 2)

Under these limitations, neither self-focusing nor the
growth of initial perturbations leads to the generation of
a resonant seed Langmuir wave, but, rather, the action of
BSRS. This wave, being enhanced through the action of
succeeding FSRS, gives a start to pulse modulation.

Since our theory incorporates only fairly long and
smooth laser pulses, it does not concern LWFA (laser
wake-field accelerator) [31,16,17] and PBWA (plasma
beat wave accelerator) [31] concepts. Probably the most

promising laser accelerating scheme is presently the self-
resonant version of the laser wake-field accelerator sug-

gested in [24,30]. The domination of BSRS for this
scheme at the early stage of the pulse evolution is un-

desirable, as it can lead to early pulse modulation and
thus stops accumulation of pulse energy on the axis. It
may result in a reduction of the accelerating field. Hence,
the parameters providing the condition inverse to (6.1)
should be taken to avoid BSRS action for this advance
accelerator scheme. For parameters suggested in the pa-
per [24] (where the relativistic focusing time was less than

ttt ), according to the estimation (6.1), BSRS can still be
ignored. For the parameters of numerical calculation in
Ref. [30] [where the initial relativistic self-focusing stage
corresponds to a period of time already equal to 2tti, and
thus a factor 4 should be added in the left-hand side of
(6.1)], BSRS action should already be taken into account
as its action can dominate over self-focusing in triggering
the pulse modulation.

Deviation from the direct forward scattering can cer-
tainly result in a rise in the instability growth rate (see,
for example, [6]). We have not considered side scattering
here. However, the simple considerations for a moderate
intensity pulse [29] (taking into account both the growth
rate of scattered light and its convection out of the limit-
ed interaction region associated with the pulse) indicate
that in underdense plasmas the most intense amplification
can be expected for forward or near forward scattering,
which can be studied within 1D theory.

In this paper, we do not include the thermal effects
when considering the SRS development. For the forward
SRS, the thermal motion is of minor importance since the
phase velocity of the resonant daughter Langmuir wave

is about the speed of light c. The thermal limiting of
BSRS can be ignored while the following condition [5] is

satisfied: (2vTE/c) & (coy, /2too) (vz/c) .
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