
PHYSICAL REVIEW E VOLUME 49, NUMBER 4 APRIL 1994

Stochastic envelope equations for nonequilibrium transitions
and application to thermal fluctuations

in electroconvection in nematic liquid crystals
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Near the threshold of continuous nonequilibrium transitions in spatially extended pattern-forming
systems thermal Buctuations are enhanced in analogy to equilibrium phase transitions. These Buc-
tuations anticipate the deterministic pattern above threshold. A Langevin-equation approach based
on Landau's method to determine the stochastic terms in hydrodynamic systems is presented and
applied to Buctuations in electrohydrodynamic convection in nematic liquid crystals. The resulting
set of equations is then transformed into a universal stochastic envelope (or amplitude) equation
of the Ginzburg-Landau type, valid near threshold. The resulting Buctuations are compared with
recent experiments and with an estimate based on equilibrium theory. The methods are formulated
in a general way so that application to other pattern-forming systems is readily possible.

PACS number(s): 47.20.—k, 05.40.+j, 05.70.Ln, 61.30.Gd

I. INTRODUCTION

The in6uence of thermal Quctuations on pattern-
forming instabilities in extended nonequilibrium systems
near the primary bifurcation has recently received re-
newed attention, both experimentally and theoretically.

Fluctuations were studied experimentally in the con-
text of Rayleigh-Benard convection (RBC) in simple liq-
uids [1], in binary mixtures [2], and in gases [3]. Fur-
thermore, Huctuations in Taylor-Couette How (TCF) [4,
5] and director Huctuations in electrohydrodynamic con-
vection (EHC) [6—8] were measured. Theoretical esti-
mates show that EHC and RBC in gases are particularly
suited to measure thermal Quctuations directly. In fact,
in the other experiments some kind of noise amplifica-
tion mechanism was used [9]: In RBC the response to
a time-dependent temperature difference, changing &om
a subcritical to a supercritical value, was measured; in
TCF throughfiow was added in order to allow for con-
vective amplification of fluctuations in the convectively
unstable region [4, 10]; in RBC in binary mixtures near
the Hopf bifurcation one naturally has a convectively un-

stable region [2].
Theoretical predictions for the effect of thermal fIuc-

tuations in pattern-forming systems were first given for
RBC in simple liquids [ll—14]. There is a large and as
yet unexplained discrepancy with the experiments of Ref.
[1]. More recently Huctuations in RBC in binary mix-

tures [15], in TCF with throughflow [4, 16—18], in RBC
with throughfiow [19],and in EHC [8, 20] have been con-
sidered.

In the most general theoretical approach the macro-
scopic dynamic equations are supplemented with noise
terms which account for the microscopic degrees of
&eedom and whose stochastic properties are given by
the Huctuation-dissipation theorem (FDT) [21]. This
method, which was introduced by Landau and Lifshitz
[22, 23] to calculate Huctuations in bulk samples of sim-

pie liquid, was used for RBC and also for the description
of transient patterns in the magnetic Freedericksz tran-
sition in nematic liquid crystals [20]. Near threshold, the
resulting system can then often be reduced to a stochas-
tic generalization of the usual envelope (or amplitude)
equations, and one obtains the macroscopic (or meso-

scopic) Huctuations by solving these equations. Some-
times the stochastic forces are replaced by stochastic ini-
tial conditions determined &om the equilibrium Huctua-
tions without driving force. This method, which is use-
ful in systems with an intrinsic amplification mechanism
for fIuctuations, was applied to the TCF system with
throughfiow [4, 10]. In addition, reasonable (but ad hoc)
assumptions were used for estimates. Thus an estimate
for director fluctuations in EHC was given by Rehberg
et al. [8] by extrapolating the equilibrium fluctuations
(without electric field), which are given by the equipar-
tition theorem, to nonzero external electrical fields. For
TCF the fIuctuation strength of the stochastic envelope
equation was assumed to be similar to that for RBC [4].

In the general method the main assumption is that the
stochastic forces have the same intensity outside of equi-
librium as in equilibrium and therefore can be calculated
using the Langevin formulation of the FDT [21, 24, 25].
This generalization should be valid as long as the exter-
nal forces (shear, temperature gradient, electrical fields,
etc.), which drive the system out of equilibrium, are small
compared to the internal fields effective on a molecular
scale, i.e., the system is everywhere near local equilib-
rium. The method consists of two steps: derivation of
the stochastic terms of the macroscopic equations and re-
duction to stochastic envelope equations near threshold.
Solutions of the latter equations giving the 8uctuations of
the amplitudes have been presented numerically or ana-
lytically for the most relevant cases [26], so the derivation
of the Huctuating forces of the envelope equations can be
considered as the crucial step.

In this paper we give a general description of the
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scheme leading fram macroscopic stochastic equations
to stochastic amplitude equations and we derive the
stochastic equations for EHC as important example. In
Sec. II the derivation of stochastic envelope equations
&om given dynamical equations and boundary condi-
tions is presented for a large class of systems including
all the above examples: Starting &om the autonomous
case (time-independent external driving) with only one
critical mode at threshold [27, 28] the derivation is gener-
alized to systems with a rapid periodic time dependence
such as the usual ac-driven EHC [29] and also to systems
with more than one degenerated mode at threshold such
as left- and right-traveling waves, oblique roQs, or two-
dimensional isotropic systems. Finally we discuss briefiy
fluctuations above threshold. In Sec. III we derive the
stochastic terms of the standard set of EHC equations
for a planarly aligned nematic slab, [29] and specialize
the resulting expressions to planar boundary conditions
and normal rolls in the conductive (low external ac fre-
quency) regime. In Sec. IV the Huctuating forces of the
amplitude equation in the normal-roll regime are calcu-
lated and the resulting equal-time director Huctuations
are compared with recent measurements of the Huctua-
tion intensity and with the estimate of Ref. [8]. We also
investigate the continuous transition from normal rolls to
oblique rolls, occurring in EHC at the Lif'shitz point [29],
and predict an interesting crossover of the exponents of
the Huctuation intensity and correlation length near the
Lifshitz &equency. Section V gives a summary and a
dose usszon.

II. GENERAL REDUCTION SCHEME
TO DETERMINE THE NOISE TERM

OF THE STOCHASTIC ENVELOPE EQUATIONS

A. Starting point

The dynamics of large classes of one- and two-
dimensionally extended pattern-forming systems, includ-

ing all systems mentioned in the introduction, can be cast
into the following set of symbolic equations for the rel-
evant macroscopic variables u(v, t), defined for real z, y
and z e [-d/2, d/2]:

[S(V,R, t)8, + L(V, R, t)]~(~, t)

= N(u, V, R, t)+g(~, t), (1)

(( ( t)) = o

g.( , t)( ( ', t')) = O.,(V, )6( — ')6(t —t'). (2)

The components u of m represent, e.g., velocities, tem-
perature, director components, etc. They are formu-
lated as deviations from the basic unstructured state,
i.e., N(u = 0) = 0, so that u = 0 is always a solu-
tion of the deterministic part of the system. The matrix-
differential operators 8 and L contain the linear and 1V
the non&i+ear parts of the dynamics. They depend on
external control parameters R. The coinponents of g

represent stochastic forces. Since they arise from cou-
pling to the microscopic degrees of freedom, their second
moments can be assumed to be 6 correlated in space and
time [31], and by virtue of the central limit theorem the
distribution function itself is Gaussian. In the case of
thermal noise, the Hermitian correlation matrix Q is de-
termined by the Buctuation-dissipation theorem and can
be written as 0 = D(V)K'(u)D (—V) where K de-
notes a symmetric matrix and D is a matrix-difFerential
operator (see Sec. III). The system is considered to be
translational invariant in the (z, y) plane (large aspect
ratio limit), i.e, S, L, N, and 0 do not depend explicitly
on z = (z, y). In the z direction appropriate bound-
ary conditions at z = +d/2 are assumed. In general S,
L, and N are allowed to depend periodically on time.
Adaptation of our treatment to a quasi-one-dimensional
situation is straightforward and will be used freely. The
system is assumed to depend on control parameters R so
that there are regions in parameter space where the un-
structured state m=0 is stable and other regions where
the system is linearly unstable with respect to certain
classes m of modes with wave numbers le~ in the (z, y)
plane. The index m characterizes the z dependence.
For each class the condition of neutral stability, where
the mode becomes unstable for the first time, defines a
threshold surface in parameter space and a critical wave

number Ief, not necessarily unique. The nonlinearities
are supposed to act in a stabilizing way (forward bifurca-
tion). This allows the description of the near-threshold
dynamics by envelope equations involving only the am-
plitudes of the critical modes [32]. In the following we
present general expressions for the noise strength of the
stochastic envelope equations for several relevant equiv-
alence classes of critical solutions of (1). The derivation
proceeds from the simplest case to the more complicated
ones: (i) autonomous systems below threshold, with no
degeneracy at the absolute threshold, except for transla-
tional invariance (in Fourier space this case was treated
previously [27,28]); (ii) generalization to nonautonomous
systems ("rapid" time-periodic driving); (iii) inclusion of
degeneracies of the critical modes, e.g. , systems exhibit-
ing right- and left-traveling waves or isotropic systems
with k, g 0; and (iv) Huctuations above threshold.

B. Autonomous nondegenerate systems
below threshold

This case excludes isotropic systems that are extended
in both x and y as well as Hopf bifurcations in cases with
refiexion symmetry. Nevertheless one may have sponta-
neous periodic motion at threshold as a result of through-
How applied externally, see, e.g. , [4, 5, 19]. Because of
translational invariance, a Fourier transform

m(r, t) = fd*ke " aa(zt), '',
1

us(z, t) = d ae *"*m(v, t),
'

(2z)2

with z = (z, y) and k = (k, k„), diagonalizes the linear
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part of the problem with respect to the m dependence

[S(ik, B„R)B,+ L(ik, B„R)]uq(z, t) = g„(z, t). (4)

(I,„'.(, t)g„, ( ', t')) =,', [o(k,B„=0)]
x b(k —k') b(z —z') b'(t —t').

(5)

With the ansatz Us(z, t) = e 'f&(z), the determinis-
tic part of (4) represents an eigenvalue problem for the
(in general complex) growth rate cr. The correspond-

ing eigenfunctions f(& )(z, R) depend on the wave vector
k, the branch index m which characterizes the z depen-
dence, and the control parameters. Since the system is
supposed to have no degeneracies, only modes &om one
branch become critical [Re(o) ~ 0] at threshold. Then
the solution of the linear stochastic problem near thresh-
old can be cast into the form

( t)=~(t)~(). (6)

No bicritical or tricritical points are considered here (see
Sec. IID), so we suppress the R dependence apart from
one control parameter, say Rq, and define the distance
from threshold e:= (Rq —Rq, )/Rq, .

By projecting (4) onto the respective eigenvector f~&

of the adjoint linear problem, one obtains with (6) a
Langevin equation for the mode amplitudes

Byes = 0(k, e)gl, + I'1, (t, e),

(ft, L(ik—, B„e)f„)
(fa, S(ik, B„e)fI )

o(k, e) =

(7)

(8)

with the scalar product (P, Q):= f &&2dzg'(z)g (z),
where summation over dummy indices is implied. The
second moments of the projected stochastic forces can
be calculated using (5)

The expectation values of the Fourier-transformed fluc-
tuation strengths are given by

(~ ( t)) = (~ ( t)~ ( ' ))
= K.( t)~ ( t)) =o

(P„(t)F„(t'))= Qqb(k —k')b(t —t'),
(2m)2

(fthm, O(ik, B„u= 0)ft„)

(ft, S(ik, B„~)f„)
Direct solution of Eq. (7) then leads to

(ye (t)y (tI)) @le
( )

Re(cr) ~t —t'
~

—iIm(o )(t—t')
2(2vr)2 Re

[Note that Re(o ) & 0 below threshold. ] In nondegenerate
systems, modes f'rom a vicinity G~ of only one pair of
wave vectors kk, become critical. Therefore the solution
in real space is approximately

u(v, t) = d'kgb(t) f„(z)e*"'+c.c.
G'k,

~, = Im(o, ), (12)

(h.o.t. denotes higher-order terms) one obtains with Eq.
(7) in Fourier space for wave numbers near the critical
one (/qi (( /k, [)

B(Aq ——[a (k, + q, e) —i(u, ]A~ + I'(t),

where the approximations I'),.~~(t, e) —I'), (t, e = 0):=
I'(t) and f),.+~(z, e) —f& (z, e = 0):= f(z), valid near
threshold, are invoked. In real space one obtains

BgA(a, t) = [a(k, —iV2, e)

-i~.]A(~, t) + r(~, t),
(I) =(lr) =(l*r ) =0,

(r (~, t)r(~', t')) = qb(+ —~')b(t - t'),

Q = Qs. (c = 0)

(14)

(15)
(16)

with V2 .——(B,B„). The integration in Eq. (11) was
extended over all space, which is usually justified near
threshold.

Fluctuations of the physical quantities are related to
the fluctuations of A by virtue of the definition (12)
(b,~ = ~ —~', b,t = t —t')

Comparing this with the usual definition for the envelope

A

u(v, t) = A(x, t)f (z)e'(" '*+ ' + c.c. + h.o.t.

(u (r, t)up(v', t')) = 2Re((A'(b m, ht) A(0, 0))f*(z)fp(z') j cos(k, b m + ~,At)

+21m{(A (A~, At)A(0, 0))f'(z) fp(z') }sin(k, . D~ + ~,Dt)

Correlations of A are obtained by solving Eqs. (14) with
(15); see, e.g. , [15]. For the equal-time correlations one
has

(AA) = (A'A*) = 0,

eiq. b.a q(A'(b, m, t)A(0, t)) = —
)

jd q

(18)

l

Near threshold, analytical expressions can be obtained by
substituting for 0'(k, e) its Taylor expansion around the
critical point to lowest nontrivial order O(e) = O[(k-
k, )z],

0'(k~ —7V2, e) ~ old~ + O~E —'E(o's B~ + 0's By)

——
GATI..a. —&a.v„~~ ——oa„a„„~

(19)
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with the (complex) coefficients o', = s . , O'I,

Bcr Bcr 8 cr)0|c k =
gals y&k Ic„

crit crit crit

and oI, I, = s&, , where crit denotes
crit crit

(ls = k„c= 0). Note that the physical Buctuations (17),
calculated with (18) and (16), are invariant with respect
to the normalization chosen for f and ft

(4). Together with the representation

u (t) = u(")(t)e'" ", (2S)

D. Systems with degenerate critical modes

the problem is reduced to the autonomous case of Sec.
IIB.

C. Generalisation to periodically driven systems

We start again from an equation of the form (4), but
S and L are now allowed to be periodic in time through
the control parameters. Suppressing the index ls and the
dependence on z and R, it reads

[S(t)&~+L(t)]u(t) = &(t) (2o)

where S(t+ 2n/ups) = S(t), L(t+ 2z/are) = L(t), and
g'(t)(cp(t')) = 0 pb(t —t'). (Here we assume the noise
strength to be independent of t.) From Floquet theory
one knows that the mode solutions of the deterministic
part of (20) can be written as u(t) = e 'uI(t), where to
is 2z/uo periodic. Expanding S, L, and m in the form
z = z(")e*""with z = S, L, or m (summation over
doubly occurring indices is implied), and projecting (20)
onto e' ' yields

( + )S(I rn) + -L(t—na) (m) ((i) (21)

with g = 22I fo 'dt's(t)e ( +' ~') To determine the

strength g' (p ) of the Buctuating forces, we write o
as s+ i&a (s, ~ real) and assume ~s~ && uo, which be-
comes exact at the critical point. In addition, our re-
striction to the linear part imposes the condition that
u must always remain small. (See Ref. [33].) (c can
then be identified with the Fourier component at fre-
quency w + lao of the white noise (c(t), which yields

((~ (p ) = 0 phIp. To see the explicit structure of(&) (t )

(21), we write the dynamical variables m( ) as a vector
to:= (..., ur( I), to(0), uI(I), ...) and the stochastic vari-

ables g as (t:= (...,((,(,Ic, ...), leading to

In many pattern-forming systems more than one linear
solution become simultaneously unstable at threshold.
Some examples are (i) traveling or standing waves in sys-
tems with refiection symmetry (i.e, no drift or through-
Bow)

u (+)(r t) f (Z)e'l(~ca R+4tc I)

(ii) stationary oblique rolls or rectangles in systems with
axial anisotropy

(30)

(iii) two-dimensional isotropic systems with a transition
to stationary periodic patterns, and (iv) various types
of codimension-two bifurcations. The above degenera-
cies follow either directly from the spontaneously broken
symmetries [examples (i)—(iii)] or result from "acciden-
tal" coincidence of the real parts of the two most un-
stable eigenvalues for special points in parameter space
[example (iv)]. The number of degenerated modes is ei-
ther finite, breaking a discrete symmetry [examples (i)
and (ii)] or infinite, breaking a continuous symmetry [ex-
ample (iii)]. One can often make a continuous transi-
tion from the degenerate to the nondegenerate case, e.g. ,
u, =Im(n, ) + 0 in example (i), k~ ~ 0 in example
(ii), by varying a second control parameter. Such points
also have special properties and will be considered below.
The above examples can be combined, resulting, e.g., in
oblique traveling waves [34] or the codimension-two bi-
furcation in binary mixtures where a stationary solution
and a pair of waves become simultaneously critical [15].
In the rest of this subsection we treat the most important
cases.

X. Discrete synametrg breokiag of critical raodes:
Oblique rolls and treeeliny maees

(To+A)to =f

+(n, rn) ~(n —~)
ap ap

(n,m) - (n —fn) (n —~)A
&

=~~~OS
& +

(I! &p )=0 p~
«(n) (rn)

(22)

(23)

(24)

(25)

We denote the amplitude of the mth critical mode by
A( ) so that the physical quantities are related to the
amplitudes by a generalization of (12)

u=) ~(-)(~ t)f(-)(z)c'("' '*+-' "&

+c.c. + h.o.t. , (31)

a,w( ) = ~(l.( & —iW„c) —'~. X( )+r( ). (32)
With the ansatz ic(t):= e ~ur this is equivalent to

[TB, + A.] u(t) =g(t), (26)

(27)

This autonomous Langevin equation has the form of Eq.

The deterministic parts of the envelope equations are
clesely related to each ether and we may assume that the
eigenfunctions are identical for all critical modes, which
yields identical Buctuating forces and Huctuation corre-
lations for all A( ). We here ass»me that the difFer-
ent modes are sufficiently well separated such as, e.g. ,



3188 MARTIN TREIBER AND I.ORENZ KRAMER

left- and right-traveling waves with su8iciently high fre-
quency or oblique rolls with sufhcient angle of oblique-
ness, so that the Fourier-transformed wave packets asso-
ciated with these modes do not overlap in (ur, k) space

(this restriction will be relaxed below). The fiuctuating
forces are then uncoupled and determined by (16) with
the respective eigenfunctions f ~ l(z) and critical wave
vectors [35]. Equation (17) then becomes

(uastructured traasition)

(u (r t)uP(r' t')) = (+'(+ t)~(' t'))f ( )fP( ') x ~ 4 k *g k ~ ( bl II )
(33)

Note that the sine terms of (17) vanish due to sym-
metry and that in contrast to each separate mode the
correlations exhibit the full symmetry of the system.

g. Coutinuous symmetry brcakiug of critical modes:
Isotopic systems

In this case it is preferable to extract &om the criti-
cal solutions only the z dependence and to define (for a
stationary bifurcatioa) a real amplitude g as

u = g(x, t)f(z). (34)

This ansatz leads with the same approximations as in
Sec. IIB to

Ogg(a, t) = (r(V z, e) Q + I'(a, t),

o (k, e) = o,e+ —oI, I, (~k~
—k.)2 + O(~k~ —k.)s,

(35)

(36)

3. Continuous tnansition between symmetry ice
by va~ng a second contm/ parameter:
Tmusitiou from uormal to oblique rolls

in systems with axial anisotropy

According to Eq. (33) inteasity and correlation of the
physical Quctuations depend on symmetry and degener-
acy of the critical solutions. Now the question arises in
which way the fluctuations behave in systems where the
symmetry of the critical solutions can be changed con-
tinuously by varying a second control parameter. This
scenario occurs for instances in EHC at the Lifshitz point
[36, 29], the frequency ufo of the driving voltage usually
being the second control parameter. Equations (14) and
(12) remain valid in the vicinity of the Lifshitz point

with the fiuctuating force given by (16), calculated at
ski = k. .

Since the eigenfunctions f and ft are taken at the
critical wave number, Eqs. (34)—(36) are valid only near
threshold. Therefore it is consistent to replace the ac-
tual growth rate by a generic expression which has the
same lowest-order Fourier expansion as (36). The choice
o' =o', [e —(o (V2 + k ) ] with o', (o —— 'Ol /l(8 k)zleads to
a stochastic Swift-Hohenberg model for isotropic systems
with an instability at k, g 0. For Rayleigh-Benard con-
vection in simple fluids the strength of the fluctuations
was first calculated by Swift and Hoheaberg by a difFerent
scheme [13]; for arbitrary isotropic systems the strength
is given by (16).

(cu„e = 0) if one relates the amplitude to normal rolls
and includes in the Taylor expansion (19) lowest-order
terms in Bus .——~0 —~, assuming O(e) = O(q)
O(p4) = O(p2b, (uo) with k = (k„0) + (q, p)

1 2 1 2 1 2 1 40:0 6c + 0 qqQ + cTpp~P A(AJP + cTqppPP + 0'ppppP
2 2 2 4l

(37)

where all coefficients are real [36]. The equal-time fluctu-
atioas of the amplitude (18), calculated with this growth
rate, show an interesting scaling behavior; see Sec. IV B.

E. Fluctuations at and above threshold

The essential new effects which enter into the descrip-
tion of fluctuations above threshold are phase fluctua-
tions and deterministic nonlinear selection. The first ef-
fect is connected with the spontaneously broken trans-
lation symmetry above threshold in systems with large
aspect ratio. The nonlinear selection determines the sta-
ble pattern configurations and thus the linearization of
the stochastic envelope equations around this configu-
ration. The nonlinear envelope equations are obtained
from (14), (35), or (32) by simply addiag the nonlinear
deterministic terms. This is justified for the following
reasons.

(i) As will be shown explicitly for EHC in Sec. III
the nonlinear (multiplicative) part of the correlation ma-
trix Q(V, u) is small within the range of applicability
of the envelope equation. The stochastic term therefore
remains the same.

(ii) Nonlinear envelope equation are usually obtained
by systematic expansion [37, 32]. This method can be
extended to include the stochastic terms as has been done
by Graham [12] in the case of RBC. It can be showa
that the linear deterministic and stochastic terms of both
the projection procedure described in t;his paper and the
systematic expansion method are identical.

Note that the stochastic Newell-Whitehead equation
[37] for isotropic systems, derived by Graham, can only
be applied locally and only above threshold, because it
is not rotationallly invariant. In the frame of our for-
mulation, its fluctuating force follows from the stochas-
tic Swift-Hohenberg equation by applying Eqs. (12)—
(16) where u stands for the variable Q of the Swift-
Hohenberg equation and A for the amplitude of the
Newell-Whitehead equation.
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III. FLUCTUATIONS
IN ELECTROHYDRODYNAMIC CONVECTION

=cTE /7j = oig~j+0 n n
~ (cond) mv

(46)

A. Basic equations

The starting point are dynamical equations for the in-
dependent macroscopic variables of EHC in nexnatic liq-
uid crystals, the potential P of the electrical field dis-
tortion (see below), the director 1V with N = 1, and
the Quid velocity e. One has to combine hydrodynamic
equations for the velocity Geld with a quasistatic balance
equation for the angular momentum of the director and
quasistatic Maxwell equations (for the deterministic part
see, e.g. , [29])

d p( 1) + V ~ (cond) f(P) (38)

(bF, 'I ( )e,~l, n~
l

+ S~
(Snr,

(39)

e;~aB~ p 4vw, , +A l B n, a —tie
l

—fs(na) ( ~) (.)
(Bn )

' )

V ~ v=0. (41)

p = cpV ' 6E& 6~j = cgozj + E'&nznj
&

(el) ~
~

me (42)

F( -")= -(K„(V n)'+ K [N (V x n)]'
2

+Kss[N x (V x n)]'), (43)

F(")= --«..(N. E)',
2

f ' = p( )E+h.o.t.,

(44)

(45)

Here d, = Bq + v V denotes the material derivative,
p(") the electric charge density, j"" the current due
to conductivity, F = F(') +F( "")the director free en-
ergy density, and

&
——

&
—B~ & the electric and

l2

elastics forces on the director (n; z
——B~n;). S' denotes

the viscous coupling with Quid motion, p( ) the mass
density, t the dissipative part of the stress tensor, and
f(') the electric volume force acting on the Huid. e;zs is
the totally antisymmetric nuit tensor. The specific mate-
rial properties are contained in constitutive relations for
p('), F,f ', j(' ), S' and t (for simplicity we neglect
Hexoelectric polarizations),

S' = py 1V + p2dN,

tzj nz n;n jnan&dat + a2n;Nj + a3nj N,.

+n4dij + 5nnpdA, j + a6njnItdIt~

(48)

N = (1 —gn~ + n~, n„, n, ), (49)

v 2Vp
E(t) = cos(dp ~s~t —VP, (50)

with the applied ac voltage v 2Vp cosup &,t. Only two
components of the director equation (39) and of the curl
of the momentum equation (40) are independent. Se-
lecting the y and the z component of either of these
equations yields, together with charge conservation and
the incompressibility condition, six equations for the six
fields u:= (P, n&, n„v). Apart from the external con-
trol parameters Vp and ~p, b„ the equations depend only
on material parameters. Taking into consideration the
planar boundary conditions N[b „& ——(1,0, 0), the
unstructured state is given by m = 0 and the determin-
istic part of the EHC equations takes the symbolic form
(1) with 2n/up b, -periodic operators S,L, and 1V.

To make the relative magnitudes of the Quctuating
forces and the relevant internal time scales explicit we
write the resulting equations in terms of dimensionless
quantities given in the table below:

The material parameters ~ = E)(
—6~ and o = 0(( —cT~

are the dielectric and conductive anisotropies of a uniax-
ial medium; Kqq, Kz2, and Kss pertain to splay, twist
and bend deformations of the director, respectively;
aq, ..., o.s with n2 + o;s ——o.s —as are viscosity coeffi-
cients, a4/2 corresponding to the usual isotropic viscos-
ity, and p~

——a~ —o;2 and p2 ——n3+ o.2 are rotational
viscosities. N = dtN + 2N x (V x v) is the angular
velocity of the director relative to the moving Huid and
d,z

——2(B;v~ + B~v, ) the (symmetric) strain-rate tensor.

The higher-order terms of f(') are discussed, e.g. , in [39].
The constitutive relations (42)—(45) relate to purely con-
servative effects while (46)—(48) contain, in addition to
some conservative terms, all dissipative processes. The
latter are relevant for determining the Huctuating forces
of the EHC equations.

The quasistatic Maxwell equations V x E = 0 and
the condition 1V = 1 are automatically satisfied by the
representation

Length X=A'
Time

Electric potential

&=Tg&', Tg=
gx'. , p

Orientational elastic constants E;; = ÃqqE, '-;, z=2 3

Viscosities

Electrical constants I0'ij = 0z&;.)
I

6~j —EgE'--
U

I I ~

o', —pea, , p~ —pqp. , z —1, ...6, j=12
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After dropping the primes, the dimensionless EHC equa-
tions in standard form read

(el) + V .(cond) ((p)

approach" [20] employing a nonlinear formulation of the
FDT [41] is given in Appendix A.

In the Landau approach one compares the total en-
tropy production, expressed in terms of independent
thermodynamical forces F and Buxes J,

(bF, ')
(„)+S~

~

l,bn), ) d'~F ~ J ~, (57)

f BF
e;,aB, P2d, v) + c)l

I

&(C)&m, l

with the entropy production obtained from the GOF
(55),

bS . (dies) 3 bS - bS

f (el)

4='JJ ) Z

V ~ v=0,
where E;:= /2Rocosldotb';3 —c);P contains the two di-
mensionless control parameters

06LRo= Vo ~o=m Tz~o, b.
K11

and P1 and P2 are two ratios of time scales

P, = Tq/()r'Td), P2 = T„Mc/Td,

with the director relaxation time Td defined in (51), the
charge relaxation time Tq

——(cow~)/o'~, and the viscous
diffusion time T;„=(p( )d2)/(pi)r2). The new expres-
sions for the dimensionless quantities e, o, F, 8', and t
are again given by Eqs. (42)—(48) with the material pa-
rameters replaced by the dimensionless ones and ~o ~ 1.
Note that all these expressions are of order unity.

B. Determination of the stochastic forces

(58)

J =M pFp+ J, (60)

(J (r, t) Jl3()', t'))

= [M(u) + M (u)] )3b() —)')b(t —t'), (61)

where M contains no derivatives.
In EHC, the dimensionless entropy production can be

written as [42, 44]

One may identify u with J and «,..&
with F . One

(diss)
(diss)

then sees that the deterministic linear relations between
the Buxes and the forces,

J =M pFp,

represent a GOF of the form (55) where the coeflicient
matrix M is identical to the Onsager matrix M, and
the FDT requires that these relations be supplemented
by stochastic terms

u
"'

(~, t) = M z(V) „. , +q (~, t),
b ( )

(55)

with the coarse grained entropy functional 8[u(d"')]. The
FDT then states that for local thermal equilibrium the
Buctuating forces are given by

( -( t)) =o
(56)

The stochastic properties of the Buctuating forces of
Eqs. (52) are given by the fluctuation-dissipation theo-
rem [21]. We formulate it here for extended linear sys-

tems with the relevant dynamical variables u( '")()', t),
where the equations of motion are written in the gener-
alized Onsager form (GOF) [40]

(62)

g(1) g{s) J(3) (cond)

and the corresponding forces

with the (anti)symmetric part of the stress tensor t,
(t,) —t), )/2, t, = (t;) + t~;)/2, and the antisymmet-
ric tensor Q defined by N, = 0;~n~. The dimensionless
quantities of Sec. III A were used and the entropy is mea-
sured in units of k~. Neglecting the temperature gradient
as usual [28] one can identify three independent fluxes

(q ()., t)qp(~', t')) = (M+ M ) ~b(~ —~')b(t —t'),

with [M (V)] )3
= Mp ( V). The variable—s u( "')

need not be identical to the variables tc of the original
system as long as they express all dissipative efFects.

To get a linear GOF in terms of suitable variables for
EHC or any other extended system we follow the method
of Landau and Lifshitz [22], hereafter referred to as the
Landau approach. A brief comparison with the "global

F(1) K11d+
kgb T

F(2) K11d
k~T

(3) K11d
P1kg) T (64)
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(~),. (2)(, = —2e;~i,J.q,

= e'~a&~A(J + J )(a
( )

- (&) - (2)

The vector of the stochastic forces (r:= (((&'),

(("),$("),(i~&"), 0) has the general form g = DJ where
- (~) - (2) -.(3)J = (J,J,j ) and the matrix-difFerential opera-

tor D is defined by (65). To get the correlation functions

(g(q, t)g(q', t')) in the form O(V, u)h(q —q')h(t —t'),
quantities of the form ([D(V)J(r, t)][D(V')J(q', t')])
have to be calculated with (J(q, t)J(r', t')) = (M +
M )b(q —q')b(t —t'), known &om (61). This leads to
the general relation

O(Vu] = D(V) [M(u) + M (u)]D (—V) (66)

and for EHC to the following nonvanishing elements of
the correlation matrix:

(22)
Oz2 = 8Msi si&

(22)033 ——8M~2 ~2

023 — SM3y
(»)

0,.= —4D,', '(M(") + M("))„;,, o. =4, 5

The deterministic linear relations between the Huxes and
(m) (mn) (n) (m3) (3) (3)forces, J;. = M, .

i,& F&i + M,"i, Fi, and J;

m, n = 1, 2, are obtained by comparing the dissipa-
tive constitutive relations (46)—(48) with the definition

(60) of the Onsager matrix and (63) and (64). The ex-
plicit expressions (Bl) are given in Appendix B. Note

the Onsager relations M,-. &&

——M&&, . , which lead to
az + as —as + a5 ~ With the FDT (61) the Huctuations
of the Huxes are then known.

In order to get the stochastic forces of the basic equa-
tions (52), all dissipative terms of them have to be ex-
pressed in terms of these Huxes. For the charge conser-
vation and the momentum balance equations the expres-
sions are evident. For the director equations one uses con-
servation of angular momentum, which is separately ful-
filled for the conservative and dissipative parts [42]. With

the relation for the dissipative part, n;S' —n~ S,' = 2t; ',
the stochastic forces are

((~) 8,J(')

and

D( ):=(8,8„,8,)( 8-„,8,0)

D( ):=(8,8„,8,)(8„0,—8 )

The fiuctuating forces introduce via the Onsager coefB-
cients M a further dimensionless quantity

kgyT

Kiid
(68)

The length kpT/Kii [ 10 m for 1V-(p-methoxy-
benzylidene)-I&'-butylaniline (MBBA)] can be interpreted
as the range of the molecular correlations. Thus qe is the
ratio of this length and the cell thickness d.

Note that by means of the 1V dependence of the On-
sager coefficients the fluctuating forces have nonlinear
multiplicative parts if interpreted in terms of 1V rather
than in terms of the Huxes. We show now that for
our purposes the multiplicative parts of the fluctuat-
ing forces can be dropped. To this end we expand O
with respect to N around No, 0;z(1V) = 0;z(N'e) +
&„"(ni, —ni, o) + G(N —No) Since. the variational

derivative of the scaled correlation matrix (67) is of the
same order of magnitude as 0,~ itself, the approximation
0;~(N) 0,~(NO) holds as long as ~N —No~ && 1, a
condition which has to be fulfilled anyway when using
the envelope equations. Therefore we truncate all multi-
plicative parts of 0 in the following calculations setting
O(V, u) = O(V, u = 0) as in Sec. IIB.

C. I angevin equations for Fourier modes
and the stochastic envelope equation

in the normal-roll regime

The stochastic envelope equation for the nonau-
tonomous system (52) will be calculated according to
Sec. IIC. With the external field (50), the linear de-
terministic parts S(t)8q and L(t) of (52) contain terms
oc 1,cosuot, coszuet and therefore setting cosset
I/2(e' 0~ + e * &&'), the Fourier coefficients of the ex-

pansion S("),L" [Eq. (21) vanishes for ~n~ & 2. Be-
sides, only odd time Fourier expansion coefficients of
P couple with even coefficients of the other fields (con-
ductive mode) and vice versa (dielectric mode). In the
following we restrict ourselves to the conductive regime

with the cutofF frequency ~«t,pPi
b,Tq = 2 [29] (the suffix abs denotes unscaled

quantities). We also use the lowest-order time Fourier
expansion, applicable for ue » 1, i.e., uo s, » I/Tg,
see the discussion in [29]. The efFective autonomous
Langevin equations (26) and (27) then become a 7 x 7
system for the Gelds

Os ——02 (31-+ 12), o. =4, 5,

Op =0 p, a, P=1, ..., 6,

with the matrix difFerential operators

0 p = 2D" (M(") yM(")+M(")
u

+M(")),, „D„",', a, P = 4, 5

(67)

u —(y(i) y( —i) ~(o) ~(o) ~(o)) (69)

where the linear operators A, T and the fiuctuating forces
)q = ((i( ), (i( ), ..., (s()) are determined by Eqs. (23)—
(25), using Eqs. (52), (50), and (67). Note that according
to (25) the cross correlations ((i(~) = ((i g ), a P 1,
vanish due to d~R'erent time symmetries, even if the origi-
nal correlation matrix 0 p had nonvanishing components
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Oq . Now we specialize the above expressions to Fourier
modes of normal rolls by substituting 0 ~ iq, 8„~
0. For q g 0, n„and v„vanish and we are left(p) (p)

with a 5 x 5 system for the remaining variables. Af-
ter elimination of v by means of the continuity equation
v = —B,v, /(iq) [43] we finally obtain a 4 x 4 system
for uq:= (Pq, P, n, q, v,q), the Fourier components of

= O h(z —z')h(t —t')

with the matrix-differential operators

(70)

y~'l+y~-'l, y~'l —y~-'l, n',", and v,"' at I = (q, O),

(S a, +L )~,(., t) =g, (z, t), (g,'(., t)g, (

S
0
PiE
0
0

(PzE
0
0

(S
zPy E(dp

~Q QRpe

(P/RpE

i qPz /2R pe~
0

q
2

i PgEu) p

S
0

0
0
0
P,S„„)

zq/2Rpo.
—Pzq/2RpE' (dp

K —~ Rp

Rp

0
—zq

o„„j
iq

(71)

(72)

(2Pz S
O =2Qp

(0

0
2' S
0
0

0
0
1
q2

q2

o„„)
(73)

where

E =
e~~q

—8„
S= ~iq' —a

K = Kssq —cj„
S„„=(q —8, )/(iq),

0„„=—(2+ a4 + as)q —(1+az + a4 + as)q 8,

+—(a4+ as)B, .
1 4

(74)

To simplify the expressions we have set the quantity
as, which is for ordinary nematics very small, equal
to zero. The lowest branch of the dispersion relation
o (q, Rp):= o(k = (q, o), Rp), the respective modal eigen-

functions f (z), f (z), and the critical point (Je„R,) of
the deterministic eigenvalue problem

[S cr(q, Rp) + L ]f (z) = 0 (75)

2

(]8,~z)(,, P„P,) =
2(2zr)2 o(q, e, Pz, P2)

' (76)

where 8q(t) is the Fourier transform of 8(m, t)
n, (x, z = O, t) at the wave number Iq = (q, o) and
e = (Rp —R,)/R, . The amplitude equation (14) together
with (19) and the relation to the physical quantities (12)

are obtained using a Galerkin method described else-
where [29]. Now all quantities for calculating the Huctu-
ating forces Qg (9) of the Fourier modes and the Huctuat-
ing force (16) of the amplitude equation are determined
for normal rolls in the conductive regime. With Eqs. (6)
and (10) the Fourier components of the measurable Huc-
tuations of the z component of the director in the middle
of the slab are given by

reads in the usual notation (multiplication by Tp) includ-
ing the lowest-order nonlinearity

u = (P, P, n„v, ) = A(x, y, t) fq (z)e"'* + c.c.,

(77)

TpBzA(x, y, t) = (e+('8'+(„'cj„')A
—

g~A~ A+F~(x, y, t), (78)

= T Q (e = 0)h(x —x')b(y —y')b(t —t'), (79)

X/2

Qq
~

2 dzfq (z)Oq(8 )fq(z)
q —1/2
X/2

Nq —— dzf (z)S (8,)f (z).
—Z/2

(80)

(81)

With Eq. (33) the correlations of the director fluctua-
tions n, in the middle of the slab are

(8(x, t)8(x', t'))

= 2f (0) (A'(x, t)A(x', t')) cos q,b,x. (82)

Note that, for equal times and near threshold, the
spatial Fourier component Ie, of the correlations (82)
and the expression (76) both converge to (]8q ] )
f2 (0)Qq Tp/(8zr2e). Equation (76) together with the
growth rate &om (70)—(75) explicitly give, for normal

with the linear coefficients Tp —— 1/o„(
a.ot. /—(2&,), („=—oz, „&„/(2o,), and o given by Eq.

(75). With (9) and (16) the Huctuating force is given by

(F~(x, y, t)F~(x', y', t'))
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definition of B, see Appendix C. Although Q decreases
slightly with increasing time-scale ratios P~ and P2, the
noise strength ToQ of the amplitude equation and the
modal director Huctuations (le~I') = —1/(2~)'Q, /o. »-
crease, because 1/To2 and cr decrease more rapidly than
Q~. The Huctuations can be compared with the estimate
of Refs. [6—8], based on two assumptions: (i) the stochas-
tic forces are insensitive to the applied electric 6elds, so
their value at Bo ~ 0, where the equipartition theorem
holds, can be used; and (ii) the growth rate of the critic~, l

mode is proportional to e for —1 & e & 0. This yields in
scaled units for a slab of volume V (for a factor of 2 see

[47])

B. Scaling behavior of the director Suctuations
near the Lifshitz point

The evaluation of fluctuations at equal times with (76),
(18), (16), and (37), near the Lifshitz point uo ——ur, re-
veals interesting exponents. Some results for correlations
of the field 8~. (y, t):= 2 fdxe ''i' 8(x, y, t), i.e. , the di-
rector component n, Fourier transformed only in the x
direction, are (see Fig. 4.)the following.

(i) The Huctuation intensity shows a crossover from the
usual one-dimensional law

(ltl~. (y t)I') = Q/(»)I2«~~ I

'~'l&~o
el

'~'

to
2Qpd t' 1)

(l~~. l')..t = ~(~,+,)
(86)

(I~~.(»t)l') = Q/(4~)l&,'&p~~~/6I "Iel "
In Appendix D it is shown that in the limit e —+ —1,P2 —+
0 at arbitrary Pi (or Pi = P2 m 0 at arbitrary e)
our result (76) coincides with the estimate and with the
equipartition theorem, an important check of consistency.
In Fig. 3 the estimate is compared with our theory (76)
for nonzero driving forces by plotting the ratio

The crossover occurs at lel (6uo) /n, where a
2a„~„o.,/(3+2 ), and b,uo ——uo —ur, denotes the dis-
tance from the Lifshitz frequency ~, .

(ii) A similar crossover from lel ~ to lel
i~4 occurs for

the correlation length in the same region of parameter
space.

(l~.. ')
(l~.. ')...

= 1 + (0.179Pi + 2.81Pi )Rp + h.o.t.

(87)

In the normal-roll limit Euro» loll ~ the expressions
for normal rolls are obtained by identifying crpp 64pp

with o'~„. In the oblique-roll limit b,ufo && —lael ~,
an expansion of (37) around the new minima p

for P2 ——0. For realistic P~ corresponding, e.g. , to d = 13
pm in [6] or d = 23 pm in [8] our model yields at e = 0
Buctuations which are enhanced by a factor 1.1 or 1.03,
respectively. The fact that the corrections are so small
must be considered as fortuitous since Q and cr differ
separately considerably more from the simple estimates.

Measurements of director Huctuations in [6—8] were
performed by means of the shadowgraph method [45, 46];
For normal-roll fluctuations in Fourier space [47] the ratio
of the measured intensity and the value of the estimate
was 1.4 in Ref. [6] (d = 13 pm) and 1.18 in Ref. [8]
(d = 23 pm).

obl
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FIG. 3. Fluctuations of the Fourier-transformed direc-
tor component 8 = n, (z = 0) at the critical wave number
as function of e. Shown is the ratio of our result and the
equipartition-theorem estimate. The parameter is the slab
thickness d = 5, 10, and 20 p,m.

FIG. 4. (a) Regions in control-parameter space where
the intensity and correlation function exhibit normal-roll or
oblique-roll behavior, or the difFerent scaling near the Lif-
shitz point (see text). (b) Fluctuation intensity of the direc-
tor mode, Fourier transformed only in x direction at k „as
function of s for two values of the distance lb.usI from the
Lifshitz point (straight and dashed line) and at the Lifshitz
point (dash-dotted line).



49 STOCHASTIC ENVELOPE EQUATIONS FOR NONEQUILIBRIUM. . . 3195

+(—Kiddo~/o~~) ~ yields the results for oblique rolls
with pc pmin.

Preliminarily measurements appear to show the pre-
dicted behavior, at least qualitatively [30].

V. DISCUSSION

In this paper an eKcient scheme to calculate ther-
mal Buctuations of physical fields in extended pattern-
forming nonequilibriiim systems is presented. It contains
two main steps: the derivation of the stochastic forces of
the Langevin equation associated with the macroscopic
equations of motion and the calculation of the stochastic
terms of the amplitude equations describing the near-
threshold Buctuations. The scheme is then applied to
calculate the director Huctuations of nematic liquid crys-
tals in a thin slab near the threshold of EHC.

In Sec. II general expressions for the fluctuation
strength of the stochastic amplitude equations are given
for general classes of systems including RBC, TCF, and
the various electrically driven transitions in liquid crys-
tals. Important types of bifurcations such as those
in isotropic systems, codimension-two bifurcations to
oblique rolls in anisotropic systems, and traveling waves
were discussed. The case of time-periodic control pa-
rameters of the system is included (sufficiently rapid and
nonresonant). Below theshold, Huctuations of all critical
modes have to be considered and the resulting correla-
tions exhibit the full symmetry of the system. This is
confirmed by experiments for RBC [1, 3] and for EHC
in the oblique-roll regime [30]. We showed that above
threshold the Huctuating forces of the stochastic ampli-
tude equations are the same as below within the range of
applicability of these equations. Then phase Buctuations
become important.

In Sec. III the stochastic forces of the macroscopic
Langevin equations for electroconvection using the Lan-
dau approach are calculated. Thus we wrote all con-
stitutive relations containing dissipative effects in terms
of a generalized Onsager form and added Buctuating
forces determined by the fluctuation-dissipation theo-
rem. The matrix of the Huctuating forces takes the form
O(V, u) = D(M + M )Dt, where M is the Onsager
matrix and D the matrix-differential operator, which
acts on the Onsager Huxes in the macroscopic equations.
This form should be generic also for other systems as
long as one can write the entropy production in terms of
suitable Onsager forces and Buxes and the Buxes can be
identified in the macroscopic equations.

The crucial ass»mption in this approach is that, al-
though the systems considered are in general far &om
global equilibrium, the Buctuation-dissipation theorem,
derived near equilibrium, can be applied in terms of local
variables (local equilibrium). This in turn is essentially
equivalent to linear responses (Onsager Huxes) to local
gradients (Onsager forces) and is therefore fulfilled if the
Onsager matrix M does not depend on the forces. In
anisotropic systems, however, M depends on the macro-
scopic variables u itself, in our case on the local director
orientation. This leads to multiplicative contributions in
the noise terms of the macroscopic equations, reminis-

cent of the nonlinear generalization of the Huctuation-
dissipation theorem as discussed in Appendix A. The
multiplicative terms can be neglected at least for the case
of EHC within the range of applicability of the ampli-
tude equation, so that the subtleties inherent in nonlinear
Langevin equations with multiplicative stochastic forces
[38] do not arise. Since we made no specific assumptions,
this should be valid also generally.

In contrast to systems already investigated such as or-
dinary Huids at rest [22], Rayleigh-Benard convection
in simple Huids [12, 14], and binary mixtures [15], cal-
culations for EHC are much more complex due to the
anisotropy of the Huid leading to complicated constitu-
tive relations with many material parameters. Moreover
the identification of the local Onsager fiuxes in the macro-
scopic equations is not obvious for the director equations.
In the scaled units used here [see Eq. (51)], the result-
ing matrix 0 of the Huctuation strengths is proportional
to the small quantity Qo ——(kT)/(Kiid), the ratio of a
molecular interaction length and the slab thickness d.

In Sec. IIIC the general stochastic equations of elec-
troconvection derived in the Secs. IIIA and IIIB are
specialized to normal rolls in a periodically driven sys-
tem with planar boundary conditions. It is shown that
in the conduction regime cross correlations between the
stochastic forces of the charge conservation equation and
those of the other equations cancel out due to difFerent
time symmetries. This would hold even if there were
nonvanishing cross correlations in the original stochastic
forces.

In Sec. IV the resulting equal-time director Huctu-
ations are calculated and compared with experimental
results and a simple estimate based on the equipartition
theorem. In the limit of zero external field our method
yields the same Huctuations as the equipartition theorem,
an important check of consistency. For nonzero external
fields there are corrections proportional to the system
parameters Pi ——Tq/(x Tg) and P2 ——T„;„/Tg denot-
ing charge and velocity relaxation time, respectively, in
units of the director relaxation time. The corrections in
P2 can be neglected while the Pi terms explain at least
in part the difFerence between the measured Huctuations
and the equipartition-theorem estimate and they give the
right trend, because they increase with Pi oc 1/d . Since
the estimate is based on director Buctuations alone, cor-
rections can be attributed to charge and velocity Huctu-
ations. For Pq -+ 0 the Buctuations are equivalent to
an adiabatic elimination of the electric potential P via
V j ' = 0 &om the beginning on, so all terms con-
taining Pq or P2 can be attributed to the eHects of charge
and velocity Buctuations, respectively. This confirms the
assumption that in a composite system the relative in-
fluence of its constituents to Huctuations is proportional
to the respective time scales. The relative in8uence of
charge Huctuations oc Pi —0.285 (pm/d) cannot be ne-
glected for thin slabs and becomes of the order of the
director Buctuations for d 5 pm. For thinner slabs,
however, our calculations would have to be generalized
because the assumptions ~o ~b,Tp )) 1 and ~(}~bsTq & 1
can no longer be &~&6Ued simultaneously. In nematic ma-
terials the relative inBuence of the velocity Huctuations is
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of the order 10 and therefore can always be neglected,
in accordance with [28]. In fact, one could have elim-
inated the velocities adiabatically right from the begin-
ning. Note, however, that the velocity field inQuences the
physical fluctuations Eq. (76) by virtue of its backHow
effect on the growth rate o. To obtain simple expres-
sions, all the calculations in Sec. IV have been done in
the limit Mp (( ~ g g where B is independend of the ac
frequency ~o. The extension to larger external &equen-
cies in the conduction regime, starting Rom Eq. (70), is

straight forward.
We have presented the methods in some generality be-

fore applying them to EHC, so the work may serve as
a starting point for other complex Huids. To test the
method it was applied to RBC in simple fluids and in bi-
nary mixtures, yielding the same results as Graham [12],
Hohenberg and Swift [14], and Schopf and Zimmermann
[15]. Application to Taylor-Couette How is also straight-
forward.
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cal equilibrium, there are many systems, including EHC,
for which a transformation to a GOF in terms of the
original variables is not yet found or does not exist.

(ii) The additional condition (A2) restricts the range
of applicability of the global approach further. Note that
for a linear GOF, this condition is always ful6lled.

(iii) Since the constitutive relations are autonomous
in any case, the Landau approach can be extended to
nonautonomous systems such as EHC.

APPENDIX B:THE ONSAGER MATRIX
FOR THE EHC SYSTEM OF SEC. III C

(SCALED UNITS)

(11) A4M .
yt

—Qp o'ln'njnknl +
2

(h &hj& + h &h3")

O,5+ O.6+
4

(h, ~n, n, + h;)n, ng

+h, „n;n( + h, (n;ng),

(]2) A2 + A3
M, „, = Qp — (b,qn, n~ —h;~n, nq

+b, gn, n) —b, (n;ns)

APPENDIX A: COMPARISON
OF THE LANDAU APPROACH

WITH THE GLOBAL APPROACH

b8
a,u= S '[ L,~+a(-n)]-= M(u) —.

bu
(A1)

The GOF of the global approach is necessarily nonlinear,
so that the FDT has to be formulated for nonlinear sys-
tems. This has been done in Ref. [41]. The result is that
the FDT remains unchanged, if an additional condition

jdr ~M '(zc) p ~=0
h~. E

"
h~~)

(A2)

is fulfilled. This corresponds to a generalization of the Li-
ouville theorem for the conservative part of the dynamics.

The Landau approach has the following advantages.
(i) It has a broader range of applicability: While the

Landau approach requires the system only to be near 1o-

In this approach adopted by San Miguel and Sagues
to study magnetic Geld induced transient patterns in
planarly aligned nematic liquid crystals [20], the origi-
nal variables of the system itself are taken as the vari-
ables of the GOF, Eq. (55). This requires that one can
hand an appropriate entropy functional or alternatively, in
the isothermal case, a &ee-energy functional T = —TS,
which allows the representation of the deterministic part
of the original equations as

(22) A3 n2
M, q,

——Qp (h;gn, n( —b,)ning —b~gn;n)

+h, (n, ng),

M(33),, = QpPg [o.ih;, + o. n;n, ] . (B1)

APPENDIX C: ANALYTICAL EXPRESSIONS
FOR THE FLUCTUATING FORCE

OF THE STOCHASTIC AMPLITUDE EQUATION
AND FOR THE DIRECTOR FLUCTUATIONS

SKo.p
c SK 2E )

1
Tp ————(1 + Spy + S2P2),

~o
—K

1 —q4I~/0„„'
q2E$2

Eq ——

V'U

(C1)

(C2)

(C4)

In lowest-order Galerkin approximation and for 1 ((
~p (( 1/Pq the threshold R, and the time constant Tp of
the amplitude equation (78) are given in the normal-roll
regime by
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(E
Si = —(e.R. + ~p)

I

———
I )

q&pSvv & 2&a
S2 ——— K+e R, ~q

——1
KO . 'E S

(C5)

(c6)

The fluctuating force (f&f~) = Tp Qb(x —x')b(y —y')b(t
t')—, Eq. (79), is given by

(]8,I') 1+O,P, 1+147P
{]8 ]2) 1+SiPi 1+92.4Pi ' (C14)

where (]8s]z)„t = (~8s]2), (—I/e) and (]8s]2), is the
equilibrium result (D3).

Og ———

t' 1+OiPi
g(I+S,P, +S,P,)'& '

KS &0'p+ s R, )

opR, g qo'

OpB=——.K'

(C7)

(C8)

(c9)

APPENDIX D: COMPARISON
OF THE DIRECTOR FLUCTUATIONS

FOR ZERO EXTERNAL FIELD
WITH THE EQUIPARTITION THEOREM

The starting point is Eq. (76), which gives the fiuctu-
ations of a Fourier component of n, (z = 0) with normal-
roll wave number Is = (q, 0). Inserting (9) and (8) yields

The quantities E, S, K,S, and 0 are given by the
Galerkin integrals of Eq. (74)

E =
~~eq + s,

S=o((q +z,2 2

K = K33q + m. ,
2

S- = [q' —(~.')-I/(tq)

O = —(2+ o4+ os)q —(1+oi + &4+ o's)q'(&.')-
2

(C10)

+-( .+ .)(~.')-
2

with

I= dz~2cos s z Ci(z) 0.986,
-X/2

Z/2

(8,)„= d'zCi(z)B, Ci(z) = —12.3,
-z/z

X/2

(8,)„„= d'zCi(z)t9, Ci(z) = 501.
-Z/2

(c11)

(C12)

(C13)

All quantities are taken at q = q, .
Near threshold and for Pz ——0, the resulting director

fiuctuations, Eq. (76), are enhanced with respect to the
simple model by a factor

AV -t - -t
(]8~] )

f (f f )

(f, Ssfq)(fs L fs)
With the lowest-order Galerkin ansatz one gets

ft g(Gal) ft
(18sl') =

(2z.) ( t S(Gal)
) ( t~ L(Gaj)

)
'

(D1)

(D2)

where the eigenvectors c = (c4„c&,1,c„) and ft
(ct&, ct, 1,ct) and the Galerkin matrices depend on q and

e. For e -+ —1 the charge components and the other com-
ponents of L are uncoupled, so the charge component of
eigenvectors with a nonzero director component vanishes.
For the director-dominated mode one gets for Pz ——0 the
zero-field growth rate o (e = —1) = op and the eigenvec-
tors c = (0, 0, 1,c„)and ft = (0, 0, 1, q I/O„„). I—nsert-
ing all this into (D2) yields for arbitrary Pi

2Qp 2qp{]'~')'=-') —
(2.) K

—
(2.) (K„, +K„.)

= {18sl'&E, (D3)

This result is derived for a laterally infinite system. The
transformation to finite lateral dimensions L and L„of
the slab yields a factor (2m.)zdz/(LsL„) = (2s) ds/V,
which gives the equipartition result (86) of the estimate
for e = —l.
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