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Structure factor of Cantor sets
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We write down an infinite-product expression for the structure factor.S(k) of a one-parameter
family of Cantor sets. From this expression, we find the positions of the zeros and approximate
expressions for the positions of the maxima of S(k). Mellin transforms and two averaging methods
are used to determine aspects of the asymptotic behavior of S(k) for large k. Two distinct power
laws are obtained, depending on the averaging method utilized.

PACS number(s): 61.43.Hv, 02.30.Nw

I. INTRODUCTION

Small-angle scattering is a valuable experimental
tool for estimating the dimension of fractal structures
(Ref. [1], and references therein), based on the mathe-
matical properties of Fourier transforms, which preserve
scale invariance and self-similarity to some degree. In
particular, it is shown heuristically in Ref. [1] that a dis-
tribution for which the mass within a radius scales as

M~ R¢ (1)

where d is a dimension, results in a structure factor which
scales as

S(k) ~ k™% . 2)

More complicated relations arise when the distribution
is bounded by a fractal of a differing dimension (2], or
when the distribution is multifractal [3]. An experimental
determination of the multifractal distribution requires a
more complicated setup, to perform an analog optical-
wavelet transform.

For exactly self-similar distributions and distributions
with self-similar boundaries it is possible to find analytic
expressions for the Fourier transform in terms of products
of sums of exponentials or cosines [4-7]. One result of
these investigations is that, for various subclasses of the
self-similar mass and surface fractals, the structure factor
S(k) does not tend to zero in the limit of large k. That is,
there are peaks of a fixed nonzero intensity for arbitrarily
large k.

This paper addresses the question of how to interpret
Eq. (2) in the light of these results, and discusses different
approaches to the problem of elucidating the asymptotic
structure of S(k), viewed as an analytic function, for a
uniform distribution on a Cantor set.

In Sec. II we derive the analytic expression for the
Fourier transform, and use it to find the positions and
orders of the zeros, and approximate positions and mag-
nitudes of the maxima. In Sec. III we use a geometric
mean and a Mellin transform technique to arrive at the
estimate

S(k) ~ k72, ®3)
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and use a more direct integral technique which gives the
same result as Eq. (2).

II. EXACT RESULTS, ZEROS, AND MAXIMA
A. Evaluation of the Fourier transform

Consider the Cantor sets C, for a > 2 defined as the
bounded closed nonempty sets of real numbers satisfying

Ca = 8{(Ca) USP)(Ca) (4)
where
1 _2z—(a-1)
Sg )(1:) = — 2% ) (5)
_2z+(a-1)
sPE) =22l (6)

are similarity transformations. Each of these sets is de-
picted as a horizontal slice of Fig. 1. C, is simply the
interval [—1/2,1/2], while C consists of two points at
—1/2 and 1/2. Cj is the “middle third” Cantor set, ob-
tained by taking the interval C, and successively remov-
ing the middle third of any intervals remaining. Cj is
often used as a prototype fractal — it is easy to visualize
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FIG. 1. The Cantor sets C, given as a function of a™!. See
Egs. (4)-(6).
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and define, and has many of the properties of fractals
with more elaborate definitions.
The Hausdorff dimension of C,, is [8]

_ In2
" lna

dH(Ca) (7)

A uniform mass distribution on C,, u, is defined as
dyg- dimensional Hausdorff measure restricted to C,, and
normalized to unity:

/dpa=1 . (8)

The self-similarity of C, leads to the relation

[ 1@t = 5 | [ 15 @)iuata
+ [ 15 @)dua(o) (9)

for any function f, which, together with Eq. (8), is suf-
ficient to determine all the properties of p, that we will
need.

The Fourier transform of the distribution is defined as

Ca(k) = /eik‘”dua(m) : (10)

Substituting this into Egs. (8) and (9) gives
C.(0)=1, (11)
Co(k) = coslk(a — 1)/(2a)]Cq(k/a) , (12)

from which it follows that
Ca(k) = [] coslk(a — 1)/(207)] . (13)
=1

The structure factor S,(k) is given by
Sa(k) = Ca(k)® . (14)

The infinite product converges uniformly over any
bounded set of complex k, thus C,(k) and S, (k) are en-
tire functions. The invariance of the distribution under
the transformation z — —x ensures that C,(k) is a real
function, as shown in Eq. (13). We have evaluated the
infinite product numerically, leading to Fig. 2, which il-
lustrates many of the results of this section.

If a is an integer, there is another exact relation involv-
ing Co(k), derivable from Eq. (13), which is particularly
useful in describing its behavior for large k:

Ca(k + 2a'mm/(a — 1)) = (—=1)™@ D/ (e=D (k)
y Co(2mn/(a — 1) + a"'k)
Ca(a~ k) ’
(15)

where m is any integer, and ! is any positive integer. This
result often takes a simple form for particular values of
the variables, for example, ifa =3,k =0,and m =1 it
reduces to

FIG. 2. A plot of S.(k). White corresponds to a value of
1, while dark corresponds to small values. The intensity is
approximately linear in the logarithm of S,(k). Note the ex-
treme values ¢ = 2 and @ = oo for which there are explicit
expressions for S, (k), given in Egs. (17) and (18). The mul-
tiple zeros occurring at odd integral a are clearly visible.

C3(3!m) = (=1)'Cs(m) . (16)

At the extreme values a = 2 and a = oo the Fourier
transform of the uniform distribution on C, is well known
to be

Cal) = T2 a7)
Coo(k) = cos(k/2) . (18)

These expressions are also easily obtained from Eq. (13)
using Eq. 1.439.1 of Ref. [9].

B. Zeros and connections with number theoretic
functions

Substituting the infinite-product expression for the
cosine function, found in Eq. 1.431.3 of Ref. [9], into
Eq. (13) we obtain

. = _ k%(a — 1)2
e®=1111 - Gt | - 09

This representation makes the positions of the zeros ex-
plicit. If a is irrational, or is rational with an even numer-
ator, the positions of the zeros corresponding to different
j and m never coincide; all the zeros are simple. On the
other hand, if a is rational with an odd numerator, there
exist zeros of arbitrarily large order. In the particular
case of a equal to an odd prime p, the product over j in
Eq. (19) may be regrouped to obtain
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o _1\2 ap(2m+1)
Gk =] [1— (kz(”—l)—] ,  (20)

fogiert 2m + 1)%x72
where a,(n) is the exponent of p in the prime decompo-
sition of n. In this case, and also when a = 2, the zeros
are evenly spaced. C,(k) is also related to the Riemann
¢ function, as demonstrated in the section dealing with
Mellin transforms.

C. Maxima

It is quite easy to show by differentiating Eq. (13) that
the points at which S, (k) = 0 are either zeros of S, (k)
or points for which S, (k) < 0. This implies that there is
exactly one maximum of S,(k) between each of its zeros,
because it is bounded and differentiable for all values of
k. We assume here that k is real.

Apart from the trivial case at k = 0 the first few max-
ima must be determined numerically. If a is an integer,
Eq. (15) may be used to find the position of many max-
ima in terms of those for small k£ to a high degree of
accuracy. Differentiating Eq. (15) we find the condition
under which S,(k + a'2rm/(a — 1)) is a maximum:

Falh) = fu(k) +a 1o (2 ¢ a-'k) - fula™)|

=0, (21)

where

L _gofa@Tm/(a=1))
7.0

£2(0)

In these expressions the derivatives of f,(k) evaluated at
k = 0 may be calculated explicitly using Eq. (22), giving

/ a—1)32

£.0) = 4o (26)
fa(@) =0, (27)
fa (0) = 8%{—_1)7) : (28)

Thus the positions of the maxima for large k are deter-
mined by f, and its derivatives, evaluated at small values
of k, provided that a is an integer.

The values of S, (k) at these maxima, which give the in-
tensities of diffraction spots, do not follow Eq. (2), except
for a = oco. In the other trivial case, a = 2, the values of
Sa(k) follow Eq. (3), while in all other cases the values
of Sy(k) at its maxima vary widely (see Figs. 3-7), with
regularities which depend on the number theoretic prop-
erties of a. A natural question that arises is how rapidly
do the values of S, (k) at the largest maxima decrease as

Cik) s=~a-—1 k(a—1)
= —-—2 = — £ - . 22
10 =g =L Gt (*52) - e
If [ is large and f is well behaved near 2rm/(a — 1),
which is true unless one or more of the terms in the sum
is close to a singularity of the tan function, a reasonable

approximate solution to the equation is k = ko, where ko
is the position of a maximum, so that

fa(ko) =0 . (23)

A closer approximation is found using Newton’s method,
using ko as the initial value. f, and its derivatives are
calculated using Taylor series. The result after two iter-
ations is

— gt fa(2rm/(a — 1))
fa(ko)

_g-uf fa@mm/(a = 1)*fo (ko)
YACHE

k=ko

fa(ko)

+0(a™¥) . (24)

+_k2-—{f;(21rm/(a -1)) - f;(O)]}

If ko = 0, that is, we are looking for the maximum near
a'2wm/(a—1), the term of order a2 is exactly zero, and

the result is

3'4 {fa(@rm/(a = 1))*f. (0) + £o(0)% fa(27m/(a — 1)) [fu(27m/(a — 1)) — £, (0)]} + O(@™) .  (25)

k — 0o? There are two distinct types of behavior.
If a is an integer, for example, in Fig. 3, it follows from
Eq. (15) that

S.(2a'mn/(a - 1)) = S,(2mn/(a — 1)) , (29)

thus the peaks at large k never approach zero, but remain
at least as large as the maximum of S,(2mn/(a — 1)).

This is also the case if a is an irrational Pisot-
Vijaraghavan (PV) number, as in Fig. 4. A PV num-
ber [10] > 1 is a real number which satisfies the equa-
tion Vn

|lz™ — [z™]]| < ™, (30)

for some ¢ < 1. [z"] is the nearest integer to z™. The
PV numbers include all integers, no irreducible rational
numbers, and all the remaining algebraic numbers for
which all the conjugates are of magnitude less than 1.
Each algebraic number has a unique polynomial of min-
imal degree of which it is a root; its conjugates are the
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FIG. 3. The maxima of S,(k) for
a = 3. The periodicity in In k is clear.

FIG. 4. The maxima of Sa(k) for
a=(v5+3)/2=2618....

FIG. 5. The maxima of S.(k) for a = 5/2.
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FIG. 6. The maxima of Sa(k) for a = 8/3.
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remaining roots of that polynomial. PV numbers are
discussed in relation to fractals in Refs. [4,7].

Although Eq. (15) does not apply to PV numbers, the
large powers of a are sufficiently close to integers that the
cosines in Eq. (13) in the evaluation of S, (2a!mn/(a—1))
are almost 1, and this expression approaches a nonzero
constant as [ — oco. Hence this case is analogous to that
of integral a.

For all other a, for example, rational numbers with
even (Fig. 5) or odd (Fig. 6) denominators, or transcen-
dental numbers (Fig. 7), S,(k) approaches zero for large
k. Numerically, it appears that the largest maxima de-
crease with a power law of the form

Sa(k)max ~ k@) (31)

with a(a) = 0.1 for the values of a chosen. An analytic
evaluation of a(a) would require a detailed number the-
ory calculation, which is beyond the scope of this paper.
Note that this exponent is much smaller than the expo-
nent in either Eq. (2) or (3). It is interesting to note
at this point that a similar situation arises in connection
with the Fourier transform of non-PV self-similar qua-
sicrystals [11], for which the spectrum has a complicated
structure, but is describable in terms of “mean local ex-
ponents.”

We now turn to methods of estimating the behavior of
Sa(k) as a whole.

III. ASYMPTOTIC POWER LAWS
A. The geometric mean

A simple method of estimating the average decrease of
S(k) in the limit of large k is to replace all the terms in
the infinite product Eq. (13) for which the argument of
the cosine is greater than one by the geometric mean of
the cos?, and all other terms by one.

The geometric mean of the cos? function is given by

1 2w 5 1
exp [E/o Incos (:c)d:c] =7 (32)
which leads directly to the estimate
Sa(k) ~ k—2ln2/lna . (33)

This method is somewhat heuristic, however, it indi-
cates that the exponent 21n2/1Ina has some place in the
mathematical structure of S,(k) as k — oo, a fact which
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is reinforced by its appearance in the Mellin transform of
In S,(k), to which we now turn.

B. The Mellin transform

The Mellin representation of a function [12] is a con-
tour integral in the complex plane, which may often
be evaluated using Cauchy’s theorem to obtain expan-
sions for the function in terms of powers and logarithms.
Mellin transform techniques have proved useful in many
areas of physics, where only a sum or integral represen-
tation of a function is known [13]. The expansions gener-
ated using Mellin transforms are not restricted to integer
powers, unlike Taylor series and similar constructions,
thus they are ideally suited to problems which involve
fractals. Mellin transforms have been successfully ap-
plied to the electrostatic potential of charge distributions
on Julia sets [14].

The Mellin transform of In cos? z,

1-s

et 2
/ z* Ylncos’ zdz = —
0

s
27 —-1 —
( ) cos 7

xT(s+1)¢(s+1) ,  (34)

is not given in Ref. [12] or other common books of in-
tegrals and special functions; we obtained this result by
integrating by parts, substituting the Mittag-Lefler ex-
pansion for tanz (Eq. 1.421.1 of Ref. [9]), integrating
term by term, evaluating the sum to obtain the Riemann
zeta function, and using the Riemann relation for {(z)
(Eq. 9.535.2 of Ref. [9]).

The expression for In S, (k) [Egs. (13) and (14)] is a
sum over terms of the form Incos? k. When the Mellin
transform is performed this sum becomes a geometric
series, giving the Mellin representation of In S, (k) as

—1 [fetiee 227° -1
In S, (k) = —1/ k= (a—1)""= cos =

2me

x[(s+1){(s+1)ds, —2<c<0 . (35)

The integrand has simple poles at negative even integers,
a double pole at s = 0, and, if a # 2, simple poles at
s =2mij/Ina for j a nonzero integer.

Closing the contour to the left, we obtain the small-k
expansion of In S, (k), noting that the contribution from
the semicircular arc vanishes in the large radius limit, if
care is taken to avoid the poles on the real axis. It is
given by

(=1)'B,; 2% —1
32(2j — 1)1 a2 —1 °

In S, (k) = Z k¥ (a — 1)'*’1'2 (36)

where Bs; is a Bernoulli number, arising from the eval-
uation of the ( function at negative odd integers. Ex-
ponentiating this series gives the small-k expansion for
S.(k) which is given in Ref. [15] for the case a = 3. The
series has a radius of convergence given by the position
of the first zero of S, (k).

Closing the contour to the right, and ignoring the ex-
ponentially large contribution from the arc, which we are
unable to evaluate explicitly, we obtain a formal expan-
sion for In S, (k) in the limit ¥ — oo, given by

In Sa(k) = —tll—zln[zkz(a —1)%/a]
227% —1 TS

+ Zk“’j (a - 1)-—5,- gTa— COos T

J#0
xT(s; +1)¢(s; +1) + / , (37)
_ 2mij
%= Ina ’ (38)

where the sum is over all positive and negative integers.
The sum diverges for almost all values of k. This diver-
gence is canceled by the contribution from the arc, to give
In S, (k) for which Eq. (35) is an exact integral represen-
tation. We present this result to demonstrate the fractal
structure appearing in the first term which implies that,
in some sense,

Sa(k) ~ k—2ln2/lna . (39)

C. Gaussian averaging

Finally we use a method which approximates the be-
havior of the arithmetic mean of S, (k) over a large range
of k. The integral over S, (k) which is most amenable to
analytic results is

o= (k/0)?/2

Pa(O') = [oo Sa(k)'—a‘-\/—é;":‘—

which gives the power averaged over a domain of k of
order o, and has a smooth cutoff for £ > o. A straight-
forward application of Parseval’s formula and the convo-
lution theorem gives

dk (40)

P,(o) = —U@/_w Ga(Z,(0V2)")2dz | (41)
where

e~ l(z=2)/a]?/2
Ga(i,a) = /—_(;-7_2_7_—(1”“(:”) (42)

is the convolution of the fractal distribution and a
Gaussian distribution.

We now derive some of the properties of G4(Z,0). Sub-
stituting its definition, Eq. (42), into Eq. (9) we obtain
the equation

Ga(z,0) = %[Ga(ai +(a—1)/2,a0)

+Gq(az — (a—1)/2,a0)] , (43)

which relates G, to itself at two different values of z.
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However, if 0 < 1, the limit in which we are most inter-
ested, one of these is negligible compared to the other.
Replacing the exponential in Eq. (42) by its largest value
on the interval [—1/2,1/2] which contains the fractal, we
obtain the bound

Ga(aZ + (a — 1)/2,a0) + O(e~(a=D?/Be%)) i

_ exp[—(2|z] — 1)%/(80?)]
Ga(Z,0) < oy )

if |Z| > 1/2. This means that Eq. (43) may be written in
approximate form as

(44)

<0

Ga(z,0)={ 2 . 15
(,0) { G, (aZ — (a — 1)/2,a0) + O(e~@=D*/BeY) if z > 0. (45)
Thus
oo 0 oo
/ Ga(ﬁ,a)2d5=/ Ga(a':,a)zd;'c+/ G.(%,0)%dz
—o0 —o0 0
l12 0 2 0.2 o 2
- —/ Ga(az + (a — 1)/2,a0)?dz + —/ Ga(az — (a — 1)/2,a0)dz
4 J 1 J
+0(e—(a—2)’/(80’))
-2 / Ga(Z,a0)2dz + O(e~(@=0/6")y (46)

In the last step above, a change of variable was made in
each integral, and Eq. (44) was used to extend the range
of integration. We may ignore the exponentially small
corrections in the limit ¢ — 0, and obtain

[ <}
/ Ga(3,0)%dE ~ ga(0)om¥/ B~ | (47)
where g, is periodic in Ino,

9a(ac) = ga(0) - (48)

Now 0G,(Z,0), with Z fixed, is a monotonically in-
creasing function of o; this may be seen from Eq. (42).
It implies that g,(c) is bounded by two values whose
ratio is at most 2a.

Finally, from Egs. (41) and (47) we get

P,(0) ~ ho(0)g™?/1Ina | (49)
as 0 — 0, where
ha(O') — \/2_‘”2(1—-1112/lna)/2ga((o.\/§)—1) (50)

is bounded in exactly the same way as g,(o), above. It
is in this sense that Eq. (2) is valid for these Cantor sets.

IV. CONCLUSION

We have seen that the asymptotic scaling law for S(k)
depends on the averaging method. By analogy with mul-

tifractal theory we might expect a general power law of
the form

(Sa(k)?) ~ k792, (51)

averaging over regions Ak =~ k. The geometric and arith-
metic means of the preceeding section are particular cases
of this relation, leading to a(0) = 2d, a(1) = d, respec-
tively. It may be possible to extend this work to general
q for particular values of a. For general a the situation
is more complicated, since in the limit ¢ — oo only the
maxima contribute, requiring the number theoretic prop-
erties of a to be included, as discussed in Sec. II.

This work has important ramifications for the experi-
mental determination of fractal dimensions using diffrac-
tion techniques. For the distribution considered here, at
least, the appropriate estimator of the dimension is the
exponent calculated from the arithmetic mean of S(k).
This is not, in general, equivalent to a power law fit
to S(k) itself. Finally we note again that some studies
of this kind have already been presented in the litera-
ture [1,7).
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FIG. 2. A plot of S,(k). White corresponds to a value of
1, while dark corresponds to small values. The intensity is
approximately linear in the logarithm of S, (k). Note the ex-
treme values @ = 2 and a = oo for which there are explicit
expressions for S.(k), given in Eqgs. (17) and (18). The mul-
tiple zeros occurring at odd integral a are clearly visible.



