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Lour-frequency elastic response of a spherical particle
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(Received 14 October 1993)

A continuum approach is discussed to describe the low-frequency response of a small spherical
particle under laser irradiation. This response is interpreted in terms of essentially long-vravelength
normal vibrations of a perfectly elastic globe. The eigenfrequencies of spheroidal and torsional
oscillations are derived as functions of the particle radius B and multipole degree l. The frequencies
of spheroidal vibrations are found to be u, = ao [2{2l+ 1)(l —1)] ~; the eigenmodes of torsional
oscillatious are given by ui ——wo [(2l + 3)(l —1)] ~, with us = y, /(poR ), where ti and po are the
shear modulus and the bulk density, respectively. The obtained results may be tested on spherical
clusters with R 100—200 A, irradiated by infrared laser light with the wavelength A 5000 A.

PACS number(s): 78.30.Cp

I. INTRODUCTION

where po is the bulk density; s(r, t) is the field of dis-
placements; p is the shear modulus and A is the squeezing
modulus (parameter of isotropic dilatations). According
to Lamb, the eigenmodes of an absolutely elastic globe
are classified as the spheroidal and torsional ones. The
general solution of (1.1) for harmonic in time displace-
ments resulting in the spheroidal modes is represented as
a superposition of the potential field and the solenoidal,
poloidal field. The torsional vibrations are described by a
pure solenoidal, toroidal field of displacements. The full
analysis of solenoidal (poloidal and toroidal) vector fields
is given in [8]. The above mentioned displacements corre-
sponding to the spheroidal s, and torsional sq vibrations
are written as

s, = Agradg+Brotr torP, s&
——Crotrg, (1.2)

with the scalar function P of the form

P = ji(kr) Pi(cos 8) sin~t. (1.3)

Here A, B, and C are arbitrary constants which are fixed

The experimental methods of infrared spectroscopy
such as the photoabsorption and the low-frequency Ra-
man inelastic scattering afford a unique opportunity to
study the matter in the form of fine particles. In particu-
lar, these methods allow one to carry out direct measure-
ments of vibration &equencies of nanoparticles (see, for
instance, [1], and references therein). The latter prob-
lem has attracted much attention in the past [2—5], and
nowadays is a subject of renewed interest in the physics
of clusters.

Theoretical analysis of the particle response given in
Refs. [2—5] has been performed within the well known
model of Lamb [6]. This model presumes that (i) a fine

particle may be pictured by a perfectly elastic globe with
continuous distribution of atoms and (ii) the linear dy-
namics of oscillations is governed by the Lame equation
(analysis of this model can be found elsewhere [7]):

po s = (A + p)grad div s + pA s,

by boundary conditions; j~(kr) is the spherical Bessel
function of the multipole order l, and Pt(cos 8) is the
Legendre polynomial (hereafter the &arne with fixed po-
lar axis is used). The fundamental &equencies of normal
vibrations crucially depend on the vector nature of dis-
placements, i.e. , whether or not this field is longitudinal,
transverse, or their superposition. The second factor af-

fecting the absolute value of eigen&equencies is related to
the choice of boundary conditions (Neumann or Dirichlet,
to be exact) The. se two factors uniquely determine the
modes of eigenvibrations and are sources of uncertainties
in the predictions of &equencies computed in [2—5] on the
basis of the Lame equation.

In this paper, we formulate a continuum approach to
the problem of normal elastic vibrations of a macroscop-
ically small spherical particle. Instead of the Lame equa-
tion we use the closed chain of equations of the first
order for such variables as the density, mean velocity,
and strain tensor. In the modern theory of continuum
this approach is known as "13-moment approximation"
[9]. In Sec. II, it is shown that new equations for lin-

ear vibrations of an elastic solid may be reduced to the
Lame equation (1.1), and, thereby, all results of the Lamb
model are recovered. The method under consideration
turns out to be especially effective in the calculations
of loui frequency eigenm-odes corresponding to the long
mavetength elastic vibrations of an elastic globe. This
just is the case when the procedure of the frequency cal-
culations (from the boundary conditions placed on the
Lamb solutions) ceases to be valid. Therefore one of our
goals is to supplement the investigations performed in
Refs. [2—5]. The long-wavelength vibrations of a homo-

geneous elastic globe are studied in Sec. III, where the
low-&equency spectra of spheroidal and torsional modes
are derived in analytic form as functions of particle ra-
dius, shear modulus, density, and multipole degree. The
discussion of the results obtained is contained in Sec. IV.
The details of calculations are presented in Appendix.

II. GOVERNING EQUATIONS
OF AN ELASTIC CONTINUUM

The continuum approach is expected to be an effec-
tive tool in the theoretical analysis of spectroscopic data
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(2 2)

B6V, BbP;, BhU"B +B +"B (2.5)

B6P;~ t'B6V; B6V~ B6Vj, 5

By po and Io we denoted the equilibrium density and
pressure which are presumed to be uniform and isotropic.
By de6nition, the Buctuations in the velocity bV; are re-
lated to the 6eld of displacements s; by means of

when it is known in advance that the wavelengths of ab-
sorbed or inelastically scattered photons are much larger
than the lattice spacing in the particle interior. The un-

derlying idea of a macroscopic description of the parti-
cle response is the following. When a macroscopically
small particle is irradiated by intense long-wavelength
laser light, a large number of atoms are set in collective
vibrations; the center of mass of the particle stays at
rest. Owing to the fact that the length of electromag-
netic wave is much larger than the crystal lattice spacing
(of the same order or larger than the particle size), the
coherent vibration of atoms is supposed to be modeled by
vibrations of a continunm. Having accepted the model
of an elastic solid for particle material, the observable
response may be interpreted in terms of resonant scat-
tering of the photons on the phonons of long-wavelength
elastic vibrations.

In this section, we show that the consequent math-
ematical treatment of elastic vibrations may be given
within the framework of equations of the 13-moment ap-
proximation of the continunm theory. The terminology
(widely used in plasma physics) originates from the fact
that the density p, the three components of mean veloc-
ity V;, and nine components of the strain tensor P;~ are
defined as, respectively, zero, first, and second velocity
moments of distribution function of atoms. Equations
for these variables are obtained from the collisionless ki-
netic equation by taking successive velocity moments of
the latter [9]. A similar method has recently been con-
sidered in nuclear physics where it has been found that
giant nuclear resonances may be interpreted as a mani-
festation of the quantum elasticity of nuclear matter (see
[11—13], and references therein).

The governing equations of the method have the form

—+ p = 0, (2.1)
dp BVj,

dt BzI,
dV; BP;i, BU

Equation (2.1) is the equation of continuity. Equation
(2.2) is the Euler equation (only when P;~ = 6;&P, to
be exact). The internal potential energy of intermolecu-
lar forces is denoted by U. Equation (2.3) descrjbes the
evolution of internal stresses in the material.

Let us consider the problem of normal oscillations. The
linearized equations (2.1)—(2.3) are represented as

Bhp B6Vi,+ p, =0, (2.4)
Bt Bx~

Bs;(r, t)
(2.7)

Inserting (2.7) into (2.4) we obtain

Bsg(r) t)
~P = —Po

Bxg

Substitution of (2.7) into (2.6) yields

6P;, = Po~— '+ '+b;,/Bs, Bs, Bsi, )
x, B2:; Bzl )

(2.8)

(2.9)

The potential energy is the functional of the density U =
U(p). Thereby, the fiuctuations in U may be represented

(BU) &BU)
6p = —po I&»),. (2.10)

Substitution of (2.7), (2.9), and (2.10) into (2.5) leads to

, &BUI
pps = 2Pp+ po i

E Bp),. grad div s + PoA s. (2.11)

Defining the Lame coefficients p, the shear modulus, and
A, the squeezing modulus, as

p, =Pp z (BU)
A = Pp + po ~&»),. (2.12)

Eq. (2.11) takes the form

pos = (A+ p)grad divs+ pAs,

and we see that this is exactly the Lame equation (1.1).
Therefore all the results obtained within the Lamb model
can be recovered on the basis of Eqs. (2.1)—(2.3). More-
over, the method based on these equations, as will be
shown below, is very efFective in the analysis of the low-
frequency response which corresponds to excitation of
long-wavelength elastic vibrations. Meantime, the stan-
dard method for frequency estimation (based on the
boundary conditions placed on the Lamb solutions of the
Lame equation) becomes questionable.

To illustrate the latter statement, let us consider solely
longitudinal vibrations, i.e., when the field s(r, t) is irro-
tational (rot s=0). Then, Eq. (1.1) transforms into the
wave equation (see, for details, [10])

c) s —As =0, (2.13)

Ls+k 8 =0, with A:

l
(2.14)

Here k is the wave number and ~ stands for the frequency
of oscillations. The solution of Eq. (2.14), regular in
origin, is weD known

s = grad/, with P =ji(kr) Pi(cos 8) sinurt. (2.15)

where ci = [(A + 2p)/po]i~2 is the speed of longitudi-
nal sound wave. For the standing waves Eq. (2.13) is
replaced by the Helmholtz equation



3168 S. I. BASTRUKOV

The spectr»m of spheroidal modes may be computed by
using either the Dirichlet or Neumann boundary condi-
tions. The Dirichlet condition reads

which for standing waves is reduced to the Helmholtz
equation

Bji kr)= 0, or the same
|9T

= 0.

—R = 0, or the same ji(kr) ~„—R = 0.

The Neumann boundary condition requires

(2.16)

(2.17)

AhV+ k'bV = 0, divbV = Q. (3.5)

bV(r, t) = $(r)6(t), (3.6)

Here k = ~/cq and cq ——gp/po is the speed of transverse
waves. Next, it is convenient to represent the deviations
of velocity in the form

The eigenfrequencies are computed from the equation

k R= "R=
el

C~l„= —Zl (2.18)

As =0. (2.19)

The solution of Eq. (2.19) corresponding to the long-
wavelength longitudinal vibrations is given by

s = grad/, with P = r' Pi(cos 8) sin art, (2.20)

that is, the radial dependence is given by the function
r instead of the Bessel function ji(kr) As a re. sult, the
displacement field s happens to be independent of the
wave number k. In view of this, the boundary conditions
do not help in the finding of vibrational frequencies ~. In
the next section a method is presented which allows one
to calculate the eigenmodes of long-wavelength elastic
oscillations.

Here index n labels the number of a root at a fixed mul-

tipole degree l. It is clearly seen that the Dirichlet and
Neumann boundary conditions yield different values of
zi„and, hence, lead to the different predictions of eigen-
frequencies uq„. Analogous analysis can be carried out
for the general solutions [Eqs. (1.2), (1.3)].

Particular emphasis should be placed on the case of
low-frequency response related to excitation in the parti-
cle volume of the long-wavelength vibrations, i.e. , when
A -+ oo and wave number k = (2x/A) -+ 0. In this limit,
Eq. (2.14) is replaced by the vector Laplace equation

where g(r) is the field of instantaneous displacements,
and o,(t) is the harmonic in time amplitude of vibrations.

In the long-wavelength limit (k ~ 0), Eq. (3.5) is
transformed into the vector Laplace equation which [ac-
counting for substitution (3.6)] takes the form

divg = 0. (3.7)

Equation (3.7) has two independent solutions: poloidal
and toroidal corresponding to spheroidal and torsional
vibrations, respectively.

Substitution of (3.6) into (3.3) allows one to represent
the Huctuations in the strain tensor as

hP;, = —p] *+ ' )o
(B(; B(, 'r

Zj Zi
(3.8)

1 BbV2 BhP,~ (3.9)

Substitution of (3.6) and (3.8) into (3.9) leads to the
standard equation of harmonic oscillations

It is worth noticing that Sp bP;z ——bP;; = 0; this is due
to the condition of incompressibility (3.7).

The fundamental &equencies of long-wavelength vibra-
tions may be computed by use of the Rayleigh "method
of normal coordinates. " The procedure is the following.
The scalar multiplication of (3.2) by the velocity depar-
ture bV; and integration over the particle volume yields
the equation of energy balance

III. LONG-WAVELENGTH ELASTIC
VIBRATIONS OF A SPHERICAL PARTICLE

19bVg,

Oxk,

BbV,. BbP;j
po +

MP~ (BhV; BhV, )
( Bx~ Bx~ )+p +

=0, (3.1)

(3.2)

(3.3)

where p is the shear modulus. Combining Eqs. (3.1)—
(3.3) we come to the standard equation for transverse
waves,

The low-&equency particle response is induced by the
weak fields. Therefore it is natural to believe that exter-
nal perturbations do not lead to the fiuctuations in the
density. Therefore the particle material may be consid-
ered as an incompressible elastic continuum. In this case
equations of linear dynamics are written as

Mo, +Ka =0, (3.10)

where parameters of inertia M and stiKness K are given

by

1 (B(; B( )M= poiid~, K= — p '+
2 (Bz~ Bx; j

(3.11)

A. Spheroidal eigenmodes

The poloidal solution of Eq. (3.7) has the form

g„(r) = Nrotr torr' P~(cos8) = N~(l + l)V r' Pi(cos8).

(3.12)

So, in order to compute the frequency w = gK/M one
only needs to know the distribution field of instantaneous
displacements g. The density po and the shear modulus

p entering (3.11) are input parameters of the method.

poV —p, LbV = 0, (3 4) This field of displacements corresponds to the spheroidal
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modes and describes the harmonic distortions of the par-
ticle surface. The inertia and stifFness computed with
field (3.12) are given by

(u, = ~p [2(2l+ 1)(l —1)]' (3.14)

where ~0 stands for the basic &equency of transverse elas-
tic vibrations

(cg pCO2—0 )~R R2' (3.15)

It is worthwhile to notice that surface oscillations char-
acterize the response of liquid drop. If the particle is
modeled by the drop of inviscid liquid, the macroscopic
response of the particle is described by the modes of solely
spheroidal vibrations.

B. Torsional eigenmodes

The toroidal solution of Eq. (3.7) is given by

$,(r) = Ngrot r r'P)(cos8). (s.16)

This field describes the torsional (essentially rotational)
oscillations which are solely due to elastic properties of
the particle continuum (in the drop of inviscid liquid
these vibrations cannot be excited). The inertia and stifF-

ness of torsional vibrations read

l(l+1)
' (2l + 1)(2l + 3)

(s.17)

N2 2l(l I) Rzl —2' (2l+1)
The eigenmodes of torsional long-wavelength vibrations
are given by

M = 3mN R, K = 6m N c& l(l —1) R' (2l + 1)

(3.13)

where m is the mass and R is the radius of a particle. The
eigenfrequencies of spheroidal long-wavelength vibrations
u, are found to be

IV. SUMMARY

(2l + 3)
2(2l + 1)

(4.1)

As was noted above, the approach considered may be
applied to analyze data when it is known in advance that
the wavelengths of photons are much larger compared to
the particle size. This requirement is compatible with
the conditions of measurements reported in [1],where the
particles with radii of the order of 50—200 A. were irradi-
ated by the light of a 4-W argon laser with wavelengths

5000 A. Therefore the measurable spectra may be
interpreted on the basis of the theory presented. As a
conclusion we note that the model of long-wavelength vi-

brations of a perfectly elastic globe is interesting as such
and one may hope that the results obtained here can find
other physical applications.

Equations (3.14) and (3.18) are the basic finding of the
present paper. It follows from (3.14) and (3.18) that the
monopole excitations (l = 0) of both kinds are excluded.
This is due to inertness of the particle material (the fiuc-
tuation in density is considered to be negligible). The
dipole field (l = 1) of poloidal displacements contributes
only to the parameter of inertia M, whereas the restor-
ing force (the parameter of rigidity K) of vibrations is
canceled [see Eq. (3.13)]. As was mentioned above, the
dipole case corresponds to the translation of the parti-
cle center of mass. An analogous eKect takes place for
the torsional dipole excitation. However, in this case we
deal with the rotation of a particle as a whole. For tor-
sional vibrations the parameter M is interpreted to be
the moment of inertia J. In the case of rigid rotation
(l = 1) we obtain the well known formula for moment of
inertia of the sphere: J = (2/5)MR . Thus we have ob-
tained that the lowest multipole degree of the spheroidal
and torsional modes is quadrupole. It is worthwhile to
emphasize that the frequencies of torsional vibrations are
systematically lower than those for spheroidal ones. This
follows from the ratio

art ——uo [(2l + 3)(l —1)) ~ (s.18)
APPENDIX A

It is worthwhile to notice that arbitrary constants do
not enter the final expressions for the &equencies. In
other words, the problem of boundary conditions does
not appear at all and, therefore, one may set N„= Nq ——

1. It is interesting to note that Buctuations in veloc-
ity, Eq. (3.7), with field of instantaneous displacements
(3.16) may be represented as

hv = [r x cu], (s.19)

where cu = Vr' (Pcis o)a8—is the angular velocity of
the local rotational vibrations; a is an azimuthal angle
of rotation around polar axis z. For example, the dipole
case corresponds to the rigid rotation of the particle. The
quadrupole torsional mode, recently discussed in [14], is
associated with excitation of motions when the north and
south semispheres oscillate in the opposite directions.

The links between the Cartesian and spherical compo-
nents of the strain tensor used in calculations of stiffness
are given by

~(i ~(- ~(2»(p +
OZy BT OZ2 T 08 T

8(s 1 B(y („(scot8+ —+
Bxs r sli18 8$ r r

~(i 1 &(. (p &(2

BZ2 T 08 T DX y OT

c(i 1 8(„
Bxs r sli18 Bf r
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BQ 0(y 8(2 1 8 ps L4
Bxg Br '

Bxs r sine BQ r

OQ 1 8(4,
BZ2 T |9~

where (; are the components of the instantaneous dis-
placements.

The calculations of integrals are much easier to perform
if one uses the substitution p, = cos8. The following
integrals turn out to be useful:

f
+1

P'(P)dP=(2l 1)

f f de(ls) i 2l(l + 1)
dp ) (2l+1) '

f dP( (tj,) 2l

(2l + I)
'

f
+' ( dP((p)1 , l(l+ 1)(2l —1)dp=

dy, ) (2l+ 1)

Two last integrals have been calculated on the basis of
recurrent relations between Legendre polynomials.
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