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The microscopic dynamics of liquid Ga is investigated by means of inelastic neutron scattering.
The analysis of the experimental intensities is carried out with the help of available effective potentials
derived from direct inversion of the static structure factors, and the absence of well defined collective
excitations explained in terms of the relatively high values of the longitudinal viscosity. The relevance
of the present findings regarding some electronic transport processes is finally discussed.

PACS number(s): 62.10.+s, 72.15.Cz

I. INTRODUCTION

Although a consistent picture concerning the micro-
scopic collective dynamics of simple liquid metals such
as the molten alkali metals [1] and group IV elements
such as liquid lead [2] has emerged in the last couple
of decades, both the microscopic structure and dynam-
ics of semimetals such as Ga, In, or Ge are still some-
what controversial. As a matter of fact, two explana-
tions of the strongly asymmetric first liquid diffraction
peak have emerged, portraying such a feature as arising
from an interplay of two different length scales associated
with the diameter of the repulsive core and the Friedel
wavelength (Ar = 27/kFr), respectively [3], or from the
partial-covalency effects [4], which, in the case of liquid
and amorphous [5] Ga, could become specially important.

The case of liquid Ga deviates somewhat from the
simple-liquid character, since a behavior resembling that
observed for the heavy alkali-metal elements Rb [6] and
Cs [7] could be expected from its “harmonic liquid”
macroscopic constants [8]. Even more, a direct calcu-
lation of the first even-frequency moments of the S(Q,w)
dynamic structure factors using as input data the ex-
perimental S(Q) structure factors and effective poten-
tials, as reported in the Appendix, reveals that well de-
fined excitations at finite frequencies could be expected
to occur below wave vectors of Q =~ 1.7 A-1 where
Q = (47 /)X)sin(6/2). The present paper aims to con-
tribute toward the clarification of such facts by means of
the analysis of the inelastic-scattering intensity of liquid
Ga carried out at a thermodynamic state equivalent to
one of the two cases analyzed by Bellisent-Funel et al. [9],
where an effective two-particle potential was derived from
inversion of the measured S(Q) static structure factor.
The availability of such a potential thus enables the pre-
diction of several quantities which characterize the ther-
mal motion of the liquid, assuming that this conforms
to a simple-liquid behavior, an assumption which can be
tested by comparison with the corresponding quantities
as derived from experiment.

Understanding the dynamic structure factor also helps
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to define some of the most relevant electronic transport
properties, such as the electrical resistivity. Our interest
in this particular topic is focused on the analysis of the
relative importance of the quasielastic and inelastic con-
tributions to S(Q,w), a point seldom addressed in the
literature regarding electronic conduction in liquids.

Although some previous neutron measurements on the
same material have been previously reported in the lit-
erature, the focus of such studies was centered on either
the inelastic structure factors at constant energy trans-
fers [10], or in the low-energy (quasielastic) scattering in
the supercooled region [11], precluding comparison of the
experimental dynamic structure factors with the calcu-
lated ones for the kinematic range of interest.

II. EXPERIMENTAL DETAILS

The neutron measurements were carried out using the
1T thermal triple-axis spectrometer of the Orpheé reac-
tor at the Laboratoire Leon Brillouin, Saclay (France).
All the measurements were carried out in the constant
ks mode using incident wave vectors of 2.66 A-1! and
4.03 A~'. Although a somewhat larger incident wave
vector would be more adequate to cover a broader kine-
matic range, the two values quoted above represent a
compromise between an acceptable resolution in energy
transfers (i.e., to separate the quasielastic component)
and a moderate coverage of the energy transfers of inter-
est. The beam collimation employed was of 60’ (in pile)
40’ (monochromator) 50’ monochromator to sample and
60’ (sample to analyzer), providing resolutions in energy
transfers of 0.2 THz and 0.74 THz full width at half max-
imum (FWHM) as measured with a vanadium standard.
Several different runs were carried out on the constant-Q
mode using the two referenced wave vectors, as well as on
the constant energy-transfer mode. Also, the elastic in-
tensity I(Q,w = 0) was measured several times between
runs in order to ascertain the stability of the sample. The
sample (electronics grade Ga, provided by Professor F.
Briones) was placed inside a niobium cylinder of 1 cm
diam with 0.5 mm thick walls and a height of 47 mm.
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The temperature during the measurements was kept ap-
proximately constant at 330 K. The data were converted
into dynamic structure factors and the measured S(Q)
[9] were used for normalization. Sample absorption was
corrected using our own code, and special care was put
into the correction for multiple scattering. Because of
the widespread values found in the literature for the in-
coherent cross section (for a tabulation see Ref. [9]) it
was difficult to model from scratch a scattering kernel to
be used in the Monte Carlo calculations carried out using
the DISCUS code [12]. The total (integrated in energy)
percentage of multiply scattered neutrons was first esti-
mated from a run of the code and comparing the results
for S(Q) after applying a correction following the factor
method, with the tabulated one measuring T=326 K [9].
After some iterations the estimated percentage of multi-
ply scattered neutrons was of 12% and 17% for the two
referenced incident wave vectors. Once the total percent-
age of multiply scattered neutrons was set, several differ-
ent scattering kernels were modeled using a scattering law
for the input S(Q,w) based upon the three-pole approxi-
mation (see Appendix) and the Kerr formula to relate the
self-scattering to the total [13] (see below). The values
of the total (integrated in energy and momentum) cross
section were then varied until the percentage of multi-
ple scattering (integrated in energy) matched the values
given above. The spectra were subsequently corrected
with the distributions estimated in such a way. In or-
der to obtain the values of the S(Q, 0) elastic intensities,
the measured quantities were corrected from the resolu-
tion effects in a straightforward manner. No accurate
estimate of the generalized frequency distribution can be
derived from an experiment of the kind reported here
(for a basically total coherent scattering sample), and,
moreover, the absence of suitable isotopes preempts any
possibility of measuring the incoherent scattering spec-
tra. In order to derive quantities which could be qualita-
tively compared with the calculated result, the following
functions (i.e., related to the longitudinal current-current
correlation function)

2m;w

= g M) F 1]7'5(Q, w), 1)

P(Q,w)

where n(w) represents a Bose factor and m; the atomic
mass, were calculated from the experimental results.
For relatively large momentum transfers (i.e., well be-
yond the first diffraction peak), the resolution effects are
minimized, since the quasielastic widths far exceed the
achieved resolution and, moreover, they can be compared
with the calculated Z(w) on qualitative grounds (i.e., as-
suming that the incoherent approximation holds, and ig-
noring the details of the low-frequency dynamics related
to mass diffusion). Spectra measured at constant mo-
mentum transfers for Q = 5 A~! are then used for such
a purpose.

III. RESULTS AND DISCUSSION

A. Elastic scattering

The aim of this section is to compare estimates of the
1(Q,0) longitudinal viscosity derived from experimental

quantities according to well established formulas [14, 15]
with that calculated from the structure factor and effec-
tive potential, assuming a simple-liquid behavior. The
definition of longitudinal viscosity follows Ref. [14], where
the mass density term [16] has been incorporated to con-
vert from kinematic viscosity, and is written in terms of
elastic and static quantities as

S(Q,w=0
Q.0 = mprmay 2 o) 2)
4
77(010) = '3"7)3 + 1B, (3)
where p; is the ionic number density, m; the particle
mass, vy, is the thermal velocity, S(Q,w = 0) repre-

sents strictly elastic scattering, and the hydrodynamic
limit reproduces the total viscosity given in terms of its
shear and bulk components. Alternatively, an estimate of
the longitudinal viscosity can be derived from the calcu-
lated second w2(Q) and fourth w?(Q) reduced frequency
moments and the associated Maxwellian relaxation time
7(Q) (see Appendix) as

ncalc(Q,O) = [UJ%(Q) - wlz(Q)]T(Q) (4)

pim;
Q?
The functions derived from the present measurement are
shown in Fig. 1, for the two sets of experiments using
different resolutions in energy transfers, and are com-
pared with the calculated quantity. As can be seen, both
functions can nearly be superimposed within the range
of explored wave vectors. The statistical quality of the
data deteriorates substantially below 1 A~ due to the
low counting intensities in such a range (i.e., the value of
S(Q) is of the order of ~ 0.008 for the two data points
shown in that region). The hydrodynamic limit is obvi-
ously difficult to guess from such steep curves, but seems
to lie certainly higher than (4/3)7n, = 2.5 cP as calculated
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FIG. 1. Experimental and calculated 7(Q, 0) longitudinal
viscosities. Circles represent the data measured using a final
ks = 4.03 A~! and triangles refer to data measured with
ks = 2.66 A~!. The solid line represents the calculated result
(see text). The inset shows the same quantities extending up
to Q =5 A~! plotted on a logarithmic scale.
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from the experimental value [17]. The fact that such a
behavior is followed by both the experimental and calcu-
lated quantities gives support to the idea that a substan-
tial contribution from the np bulk coefficient should be
operative within this range of wave vectors. Such a find-
ing is in agreement with data reported for other liquid
metals such as lead and bismuth [18], where hydrody-
namic values of about 4.5 cP and 10 cP were found to
be consistent with those derived from neutron scattering
and computer simulation data, which extrapolates to the
correct hydrodynamic limit [19]. On the other hand, the
comparison of experimental and calculated quantities ev-
idence a clearly different trend, since the curvature of the
latter curve is substantially less pronounced than those
derived from experiment. In particular, visual extrapola-
tion of the calculated curve leads to a value of about 5.2
cP, not too different from that of lead, where collective
excitations have been evidenced [2], whereas values one
order of magnitude larger are estimated from the exper-
imental curves. The present finding is thus reminiscent
of that regarding the well documented case of liquid bis-
muth [18, 19], where values of about 7 cP for g, and a
ratio of g /ns =~ 4.2 after melting have been measured.

It is worth remarking that, in cases like the one consid-
ered here (or Bi), estimates of the bulk viscosity using for-
mulas linking the measured self-diffusion coefficient with
the inverse of the longitudinal and shear viscosities, gen-
erally applicable to hard-sphere or Lennard-Jones (LJ)
fluids (see, for instance, Ref. [20]), substantially un-
derestimates the bulk component and, as a matter of
fact, a calculation performed in such a basis led to a
value for ng = 3.2 cP, far below the estimates given
above. The same qualifications apply to the case of lig-
uid Bi, where experimental data regarding this transport
property are available. Although the first-principles cal-
culation of both viscosity coefficients still constitutes a
formidable task, it becomes possible to estimate the ra-
tio of the bulk to shear viscosities from the derivatives of
the interparticle potential and the pair correlation func-
tion from [21],

ns _ 30 [y drg(r)r®[u”(r) +u'(r)/r]
Ns 18 [ drg(r)r2[u”(r) + 4u/(r)/r]’

where the primed quantities are derivatives of the inter-
particle potential (see Appendix). The calculated val-
ues of such a ratio are deemed to be far more accurate
than the individual values for the two coefficients since
the uncertainties in modeling the friction constant (en-
tering as a prefactor in the two terms) are removed. A
calculation from the effective potentials and partial pair
correlations given in Ref. [9] yields values for such ratios
of 4.71 for T=326 K and 1.16 for T=956 K, which adds
further support to the values estimated from the longi-
tudinal viscosity as commented above, since an estimate
of the hydrodynamic limit of the longitudinal viscosity of
11.4 cP is obtained.

(5)

B. Inelastic scattering

As mentioned above, one of the aims of the present ex-
periment was to test the existence of finite-frequency ex-
citations, which, according to the calculations described
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in the Appendix based upon structural data and the de-
rived effective potentials, were predicted to exist in the
cold liquid. The characteristic frequencies given in terms
of the wo(Q) and w;i(Q) square roots of the reduced sec-
ond and fourth frequency moments of the scattering law
are shown in Fig. 2(a). As can be seen from the figure,
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FIG. 2. (a) Calculated wave-vector dependence of the

square root of the second w?(Q) and fourth w?(Q) reduced fre-
quency moments for the two temperatures for which accurate
diffraction data and effective potentials were available. Black
dots and solid line represent these quantities for T = 326 K,
and bars and dashed line correspond to T = 956 K. (b) The
logarithm of the phase velocities as derived from the calcu-
lated second frequency moment. Filled symbols correspond
to low temperature and vertical bars to the higher. The sym-
bols in the ordinate give the hydrodynamic values for the ul-
trasonic (adiabatic) velocity. (c) The calculated Maxwellian
relaxation times for the two temperatures considered. Same
symbols as above are used.
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the close proximity, at wave vectors below Q =~ 1.7 A~1,
of wp and w; in the cold liquid leads to the fulfillment
of the condition 3w2(Q) — w?(Q) > 0 (see Appendix),
according to which finite-frequency peaks should appear
in S(Q,w) for such a range of wave vectors centered at
frequencies not too far from we(Q). On the other hand,
as shown in Fig. 2(b), the calculated phase velocity of
the excitations approaches the correct ultrasound value
in the hydrodynamic limit [16], which lends some sup-
port to the calculation results. However, what comes out
remarkably short are the derived Maxwellian relaxation
times shown in Fig. 2(c) [22], where, for comparable wave
vectors the interparticle separations become of the order
of 107! s, a time scale too short in regard to thermal mo-
tion effects, but comparable to Drude relaxation times,
as well as to the characteristic times for the formation
of covalent aggregates, as reported from recent density-
functional calculations [4].

A representative sample of the measured spectra for

Smodel(Q7w) = [Sqel(Qa w) + Sinel(Qa “J)] ® R(Qv “J)a
S(Q)F,(Q,2)
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the two sets of incident wave vectors (uncorrected for
resolution effects), is shown in Fig. 3, and are com-
pared to the theoretical prediction upon folding the cal-
culated spectra with the measured resolution function
corresponding to the higher incident wave vector. Con-
trary to the case of the calculated functions, no clear sign
of any well defined excitation can be found within the
explored range of energy transfers, although the inelas-
tic intensity extends up to frequencies far higher than
those characteristic of self-motion (quasielastic scatter-
ing), a fact which can be easily tested by calculation
of the single-particle response using the reported values
of the macroscopic self-diffusion coefficients [23]. Also,
the relative importance of the quasielastic term is, as ex-
pected, strongly underestimated in the theoretical spec-
trum.

To analyze the experimental spectra, consideration was
made of both coherent-quasielastic and inelastic contri-
butions so that the model function becomes

Sqe1(Q,w) =Re T pe(QEn@ 7)) | (7)
1 dww, I
Sinel(@,w) = Z (Q)nu — exp (—hwP)] (w? — Qg)zq +q4w2rg’ ®)

where the symbol ® stands for convolution with the in-
strumental resolution function, the coherent quasielastic
response is evaluated by means of the approach due to
Kerr [13] in terms of the F,(Q,z) Laplace transform of
the F,(Q,t) single-particle response (see Appendix), the
static structure factor and the direct correlation function
c(Q) = (5(Q) —1)/5(Q). A damped harmonic oscillator
given in terms of the Z(Q) excitation strength and the
Q, renormalized excitation frequency and I'; damping
factor is used to represent the inelastic background. In
order to reduce the number of fitting parameters, two dif-
ferent approaches were followed to model S,(Q,w), from
either macroscopic transport properties or from quanti-
ties calculated from the effective potential as described
in the Appendix. A first-order mode-coupling expres-
sion was used in the first case following de Schepper
(24], which needed as input data regarding the macro-
scopic self-diffusion coefficient and kinematical viscosity,
and the three-pole expression for the incoherent function
was constructed from its first two even frequency mo-
ments, following the usual formulas [22]. Although some
differences are expected to show as a consequence of the
use of such models (the first one is not valid for large
wave vectors), the calculated linewidths are well below
the achieved experimental resolution, so that no signifi-
cant information could be drawn from the present exper-
iments. The calculated functions merit, however, some
further consideration regarding the thermal and trans-
port processes as described below.

Even if no finite-frequency features are visible in the

[

spectra, the renormalized frequencies 2, = /w2 +I'2

[25] can be interpreted as true excitation frequencies of
an oscillator undergoing overdamped motion. As a mat-
ter of fact, as Fig. 4 shows, the derived values of such
magnitudes can be favorably compared with the calcu-
lated ones, at least within the kinematic range useful for
such a comparison (i.e., 1.2-3.5 A~1). The fitted val-
ues for these frequencies seem to lie systematically above
those of the second moment curve, which may be inter-
preted as an indication that inelastic intensities arising
from higher-lying optic modes contribute substantially to
the spectra, thus causing a pullout toward higher values.
Such an hypothesis seems to be consistent with estimates
of the frequency distribution, as will be shown below.

The origin of such large damping terms can explained
from consideration of the viscous contribution only (the
heat conduction term can, in principle, be neglected due
to the small value of v — 1, and can only be relevant if the
latter quantity exhibits a strong dependence on the wave
vector). A simple calculation in hydrodynamic terms of
the damping ratio following

4/ 37725 + 1B QZ 9)
Pi
reveals that if the estimates of the longitudinal viscosity
shown in Fig. 1 are taken, values for the damping con-
stant of about 1.5 THz from the calculated curve and
of 3.2 THz from the experimental points are found for
the range of wave vectors of interest (Q ~ 1 A=1). The
high value of the damping constant corresponding to the

calc __
ree =
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experimental data becomes some 0.4 THz higher than
the predicted value of the wy excitation frequency, thus
preempting the appearence of any resolved peaks in the
corresponding dynamical structure factor.

Further support for the existence of collective excita-
tions is demonstrated by the inelastic structure factors
taken at constant energy transfer shown in Fig. 5. The
data can be favorably compared with those of Loffler
[10] measured a long time ago, since the statistical ac-
curacy achieved in the present measurement is far bet-
ter. Some relevant information regarding the microscopic
origin of the excitations being sampled can be derived
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FIG. 3. Constant-Q spectra measured using the two dif-
P g

ferent incident wave vectors for Q values given as insets. Ver-
tical bars correspond to measurements with ky = 2.66 A~1,
and circles to those measured with k; = 4.03 A~!. The
dashed line represents a calculation detailed in the Appendix
convoluted with the resolution function of the higher wave-
vector transfer measurement.
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FIG. 4. A comparison between the 2, renormalized fre-
quencies estimated from model fits to the inelastic intensities
(symbols) with the calculated second reduced moment. Open
circles are data measured using ks = 2.66 A~! and filled cir-
cles stand for measurements carried out with ky = 4.03 A~1.
The lozenges show the calculated wo(Q), and the adiabatic
sound velocity is depicted as the linear dispersion law given
by the dashed line.

from the relative phases of the oscillations, if a dynam-
ical model is available. Unfortunately, only rather sim-
plified constructs have been derived from either kinetic
or phenomenological approaches, which cannot take due
account of the complicated microscopic dynamics of this
liquid. Under such circumstances, we compare the wave-
vector dependence of the inelastic intensity with a model
developed to account for plane wave excitations in an
isotropic solid medium [26] given by

hQ? Z(w) !

e i) +1) [ duS(@+ ),

(10)

1(Q,w)

where the frequency distribution was taken to be the cal-
culated one, the experimental static structure factor [9]
is used for the calculation, and g, = w/v(Q) is the exci-
tation wave vector calculated from the computed phase
velocity. Although such a model is a clear idealization
since mass-diffusion effects are neglected, its use can be
justified for energy-transfers well above those character-
istic of low-energy (quasielastic) scattering, where the re-
sponse of the liquid may be not too different from a solid.
A comparison between measured and calculated quanti-
ties can be seen in Fig. 5. Even admitting the crude-
ness of such an approach, the comparison is surprisingly
adequate up to energy transfers of 3.6 THz, disregard-
ing the mismatch in amplitudes, which is a consequence
of the peaked Z(w) used for the calculation. Most of
the observed features are reproduced in the calculated
curves, including the progressive loss of coherence in go-
ing from 1.25 THz to 3.6 THz of energy transfers. The
strong oscillation that appears at about 3.8 A~ from 3.6
THz onward is poorly reproduced by the model calcula-
tion, which could be expected, since such frequencies are
high above the maximum of the wg(Q) curve shown in
Fig. 2(a) and, therefore, such features should correspond
to excitations of optical origin.

The relatively high frequencies found in the present
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study can be easily understood if consideration is made of
the vibrational spectrum investigated in the solid phase
(T = 77 K) by Waeber [27], where 12 modes arising from
the motions of the four atoms per unit cell have been ob-
served, covering a frequency region up to ~10 THz. As
evidenced in previous works on more complex liquids [28],
the spectral weight of the higher-frequency opticlike ex-
citations becomes dominant even for relatively low wave
vectors (above = Q,/4 in both cases, where Q, stands
for the position of the first diffraction peak). Under such
circumstances, most of the spectral intensity measurable
using conventional instrumentation (i.e., for wave vectors
of @ ® 1 A~! in order to cover a significant kinematic
range) will be dominated by these high-frequency compo-
nents, which, due to their very nature, tend to be strongly
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localized.

The shape of the wave-vector dependence of the exci-
tation curves up to &~ 3 A~ can be well reproduced using
simplified treatments such as that of Bathia and Singh
[29], provided that the relative contributions of the ions
and electrons to this property are taken as adjustable
parameters along with kp, which tends to require values
about 10% larger than those calculated from the elec-
tronic number density. As a matter of fact, a calculation
of the bulk modulus using Eq. (12) of Ref. [29] in terms
of a free-electron result gives a value some 27% higher
than the observed one, while the same calculation using
only the ionic contribution fails to reproduce adequately
the shape of the excitation curve.

0.4

0.3

0.2

0.14

Inelastic intensities at constant energy transfers (given as insets). Experimental data are shown as open lozenges

and the dashed line represents the inelastic intensity as calculated using Eq. (10).



C. Electronic and thermal transport

The purpose of this section is to evaluate, using the
information regarding the atomic dynamics gathered in
preceding sections, the contributions to the electrical re-
sistivity arising from diffusive and high-frequency mo-
tions. Such an exercise enables the separation of the two
contributions to this transport property, which may be
associated with incoherent scattering from the cores and
from collective oscillations, which often exhibit rather
disparate dependences with temperature. Our aim here
is to explain the small value found for the temperature
coefficient and, therefore, a semiquantitative treatment
to evaluate this property seems adequate. The electrical
resistivity was calculated from

p=pqel+pinel
2 2kr 2 ot 3
= V@rs@ete,

_ Me
T 127Ze? J

(11)
(12)

E,
5(Q) = / n(w)BhwS(Q,w),

S(Q?“") = Sqel(Qa w) + Sinel(Q,w)a (13)

where m, is the electron mass, e its charge, and a cut-
off value of Ey 15 THz was used in the integrations,
which allows a consideration of scattering of inelastic
origin (the original formula is recovered in the high-
temperature limit), as well as considerations of the con-
tributions to the resistivity arising from stochastic (qel)
and vibrational (inel) motions. The coherent response
has thus been subdivided into quasielastic and inelas-
tic terms which are evaluated using the formulas given
above. The high-temperature experiment of Bellisent-
Funel et al. [9] was also analyzed, using, for the purpose,
estimates of the diffusion coefficient from [23], and the
inelastic contribution was evaluated from the difference
between S(Q) and the integral over the quasielastic re-
sponse, which can be safely done since at this temper-
ature (956 K) the detailed-balance terms are very close
to one. Several model potentials to represent the V(Q)
electron-ion interaction were tested [30] and the resulting
calculated values for the electrical resistivity are com-
pared with relevant experimental data in Table I. As
expected, the calculated values are strongly dependent

TABLE I
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upon the pseudopotential used, an unavoidable fact un-
less real-space calculations such as those of Bose, Jepsen,
and Andersen (31] are carried out, although the result
can be compared with experiment on a semiquantita-
tive basis. The most remarkable finding regarding this
transport property concerns the rather different temper-
ature dependence of the quasielastic and inelastic con-
tributions, since the former decreases steadily with tem-
perature, whereas the opposite behavior is found for the
latter quantity, which shows a strong increase with tem-
perature. Such a result, which goes counter to what has
been predicted to occur in amorphous solids (see Jackle
and Frobose in Ref. [26]), can be easily understood from
consideration of the large diffusion coefficients at high
temperatures (of the order of about 2 A2ps~! at 950
K), which result in a distribution of the spectral power
covering a broader range of frequencies than those of
the vibrational excitations, which makes the latter a far
more efficient mechanism for electron scattering. At any
rate, the calculated temperature coefficient is in accept-
able agreement with published estimates, which quote
values of 0.14 at temperatures about the melting point.
From inspection of the numerical values given in Table I,
it becomes clear that for temperatures near the melting
point, the dominant electron-ion scattering mechanism
has to be associated with motions involving long-range
translational diffusion. Such a result could lead one to
think about the significance of the inelastic term and try
to relate such values to those of the hot solid. The large
scatter of the numerical values introduced by the differ-
ent potentials prevents any accurate estimation of such a
contribution. On qualitative grounds, the values quoted
in Table I can be compared with estimates of the ratio of
change in resistivity on melting pjiq/pso1 quoted in Table
5.1 of Ref. [32], giving, as a consequence of the strong
anisotropy in the solid, values within the range 0.45-3.1
(i.e., 8.4-57 puQ2cm). The largest value for pj,e at the low
temperature is not too far below the lower limit of the
resistivities of the solid, although values calculated using
the empty core (EMC) and Frobose-Jackle (FJ) pseu-
dopotentials seem definitely too low. The smallness of
the piner value compared with the solid could then be ra-
tionalized if additional scattering mechanisms present in
the crystal (i.e., electron scattering from low-lying trans-
verse acoustic modes) disappear upon melting (that is,
such modes become unstable).

Calculated values for the quasielastic pqe1 and inelastic piner contributions to the

electrical resistivity p for the two temperatures for which the effective potential is available. Units
are 10°® Qcm. The row EMC are calculations using the empty-core model, FJ stands for the
simple form of the potential employed by Frobose and Jickle [26], and HA corresponds to results
using the Heine-Animalu pseudopotentials with a dielectric function given by Leavens [35].

T = 326 K T =956 K
Pseudopotential p Pqel Dinel %3:—3 (2] P Pael Pinel
EMC 23.3 21.9 1.4 0.19 32.1 16.4 15.7
FJ 19.8 18.6 1.2 0.12 20.8 11.6 9.2
HA 25.6 19.9 5.6 0.14 34.8 13.9 20.9
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The calculated Z(w) generalized frequency distribution
is finally compared with the experimental result regard-
ing the P(Q,w) function in Fig. 6. Both curves cover a
similar range of frequencies, the main differences being
located at low frequencies, as expected from the defini-
tion of P(Q,w), as well as at higher frequencies, where
the experimental curve decays more smoothly as a con-
sequence of the intensity arising from higher-lying vibra-
tional states, which cannot be taken into account within
the simplified model employed for the calculations. From
consideration of the characteristic frequencies for sound-
like excitations shown in Fig. 2(a), as well as from the
time scales characteristic of mass diffusion, it becomes
clear that at frequencies about the maxima of those
curves, the vibrational states that contribute most to the
distributions cannot be identified with either of the two
processes just described.
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FIG. 6. (a) The generalized frequency distribution as cal-

culated from the Fourier transform of the velocity autocorre-
lation function (see Appendix). (b) The function P(Q,w) as
calculated from experimental data for a momentum transfer
value of 5 A71.

The shape of the theoretical function is somewhat rem-
iniscent of that reported for liquid sodium [33], exhibit-
ing a clear maximum at frequencies substantially higher
(about 1 THz) than those assignable to soundlike exci-
tations. In this respect, it is appealing to consider the
resemblance of the spectra of the liquid to those of the
solid, an exercise which can be easily done for Na [33],
and will give as a result, the close proximity of the fre-
quency of the maxima in the liquid to that corresponding
to a strong optical peak in the solid. On the other hand,
it is instructive to recall the case of liquid Rb, where the
maximum of its frequency distribution occurs at about
0.8 THz, without exhibiting significant contributions at
far larger frequencies.

A semiquantitative estimate of the heat capacity at
constant volume from the calculated frequency distri-
bution (assuming that it represents harmonic motions),
yields a value of 2.9R (in units of the gas constant R), to
which 0.025R can be added from the electronic contribu-
tion calculated from the linear term of the specific heat
in the solid. This value is somewhat lower than that of
3.2R [34], which should not be surprising considering the
crudeness of the estimate [34]. A similar estimate for the
entropy gave a value of 3.59R, well below the estimate
of 4.95R calculated from the high-temperature expansion
in terms of the Debye temperature.

IV. CONCLUSIONS

From the analysis of the inelastic-neutron-scattering
spectra described above, it is found that this liquid
cannot sustain finite-frequency excitations analogous to
those exhibited by some molten alkali metals or metals of
relatively low sound velocity. Such overdamped behavior
seems to be caused by the interplay of two effects, the
relatively high longitudinal viscosity and the existence
of a frequency spectrum covering a large range of fre-
quency space. The latter implies that, as evidenced by
the inelastic structure factors, excitations of nonsonic ori-
gin contribute significantly to the inelastic intensity for
energy transfers just above the maximum of the wo(Q)
curve. Under such circumstances it becomes clear why
the predictions made by use of generalized hydrodynam-
ics treatments, which have proven to be successful for the
analysis of molten alkali metals such as Rb, are not borne
out by experiment.

The decomposition of the calculated values for the elec-
trical resistivities into diffusive and vibrational contribu-
tions, serves to disentangle the often puzzling behavior of
the temperature dependence of this property. As shown,
both dynamical structure factors contribute to this trans-
port coefficient in a disparate way, showing the domi-
nance of low-frequency motions at temperatures not too
far above melting, a situation which is reversed at high
temperatures.
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APPENDIX

The first two reduced even-frequency moments of
S(Q,w) are calculated within the classical approximation
following [22]

2 _ <w2> _ Q?
“o(@) T S@” ms@) (A1)
@@= -2 o) - @),
02(0) = 52 [ rtarg(rlu(r) + 20/ (1),
(A2)

QZ(Q) 47I’P1 /(;oo rzdrg(r)[u”('r)fl(Q)

—‘f’%@fz(cz)l,

where the primes over the u(r) effective potential indicate
the order of the derivative taken wrt the interatomic sep-
aration, f;2(Q) are simple geometrical factors [22] and
the rest of the symbols retain their usual meaning. The
elastic properties given in terms of the bulk and rigidity
moduli are also calculated from the structural informa-
tion and the potential as

3;' + 27r5n /Ooo r2drg(r)
x[r?u (r) + (2/3)ru' (7)), (A3)

i 2mp} [T o d(ru'(r))
G= B + 1e /(; drg(r)—

B + (4/3)G

(A4)

The isothermal compressibility and the Br modulus
are calculated from the ultrasonic velocity [16] after al-
lowance is made for the small correction due to the
ratio of specific heats. Within the viscoelastic theory
[22], the existence of ﬁmte-frequency excitations is en-
sured if the condition 3w2(Q) — wj (Q) > 0 is fulfilled,

and a Maxwellian relaxation time is approximated by
7 = (2[w}(Q) — w3(Q)]/m)~Y/2. From the calculated fre-
quency moments, positive values for such a difference
are found in wave vectors up to ~ 1.7 A~! in the low-
temperature state, going up to a maximum of ~10 THz?2
about Q,/2, whereas only overdamped features can be
expected to show in the high-temperature liquid. Also,
the long-wavelength form of such an inequality turns out.
to be 3Bt /(B +4/3G) > 1, and the calculated values for
such a quantity were 2.11 and 0.78 for the low- and high-
temperature liquids, respectively. Calculation of the fre-
quency moments corresponding to self motion is straight-
forward, since

(W?) = Q?/fm; (w*) = (w*)[3(w?) + Q*(0)]

and the F,(Q,t) intermediate scattering function is then
evaluated from expressions given in Ref. [36]. The gen-
eralized frequency distribution is then finally calculated
from the Fourier transform of the relevant velocity auto-
correlation [36],

(A5)

Y(t) = v, exp (—t/27) [cos (et) + sir;e(:t) ,  (A6)
where ), is the thermal velocity and
1\?2
¢= [92(0) -(%) ];T = [mpR2(0)Dr]
(A7)

where D7 is the macroscopic self-diffusion coefficient.
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