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Microphase separation in topologically constrained ring copolymers
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This paper presents results of the Monte Carlo simulation of dense melts of symmetric diblock copoly-
mer rings using the cooperative motion algorithm. Due to topological constraints, i.e., the entire ab-

sence of entanglements prevents the self-avoiding ring melts from adopting Gaussian statistics, and the
scaling exponent v is found to be v=0.45+0.01, where the radius of gyration Rg scales with chain length

N as Rg -N". The loss of entropy due to the missing chain ends of the rings reduces the microphase sep-
aration transition temperature in block copolymer rings with respect to dense melts of linear diblock

copolymers by almost 40 Jo. This compares surprisingly well to random phase approximation calcula-
tions. With decreasing temperature the copolymer rings strongly stretch in the direction of the axis con-
necting the two centers of mass of the block. The symmetric diblock copolymer rings undergo a micro-

phase separation transition into a lamellar structure with a wavelength smaller than that for linear di-

block copolymers by a factor 0.51-0.55.

PACS number(s): 61.25.Hq, 02.40.Pc, 05.70.Fh

Topological problems are of significant importance in

many fields of physics [1,2]. Many difFerent applications
are the result of special topological properties of field
theories. Polymer scientists are in an extraordinary posi-
tion since polymer molecules of special topology can be
produced [3].

Polymer rings are a basic example for such topological-
ly constrained systems. Even without any selective A-B
interaction among the monomers rings are expected to
show a behavior from linear chains. The rings considered
in this paper are not entangled with each other, nor are
they self-knotted. These topological constraints prevent
the rings from adopting Gaussian statistics. Several
disputed scaling arguments are discussed in the literature
[4,5]. A correct theoretical description of cyclic diblock
copolymers with partially incompatible blocks has, how-
ever, not yet been given. The random phase approxima-
tion (RPA) deals with the copolymer rings as providing
ideal Gaussian behavior [6,7]. Obviously this assumption
is rather crude. Moreover the loss of entropy due to the
connection of the chain ends of the rings may reduce the
microp hase separation transition temperature with
respect to the corresponding dense melts of similar linear
diblock copolymers. With decreasing temperature the
copolymer rings change their conformation. The sym-
metric diblock copolymer rings undergo a microphase
separation transition into a lamellar structure.

The cooperative motion algorithm (CMA) allows to
simulate dense polymer melts on a lattice [8—10]. To our
knowledge the CMA is the only lattice algorithm for the
simulation of dense, incompressible, and monodisperse
polymeric systems in contrast to the bond breaking algo-
rithm [11]. In the CMA every lattice site is occupied by
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one and only one monomer. Real polymer systems are
compressible and so in a more realistic simulation vacan-
cies have to be introduced. The reason for using the
CMA in this study is twofold. First the usual formula-
tion of the RPA is given in terms of the incompressible
limit (which can be relaxed simply [12]), and second the
algorithm is more effective the fewer vacancies are
present. Indeed in a previous publication [13] we have
shown that the introduction of vacancies in this algo-
rithm is possible. In that work the phase behavior of
linear diblock cop olymers has been studied where
amongst other variables the vacancy concentration has
been varied systematically. We succeeded in presenting
all results in scaled form, i.e., with master curves, where
the vacancy concentration is scaled out. In the case of di-
block copolymer rings two chains of either monomer type
A or type B are connected at both ends to form the cyclic
copolymer with length N=Nz+NJt. Additionally the
rings are assumed to be nonconcatenated and non-self-
entangled.

The volume fractions of the two species A and B are
P„and Pz. As noted earlier the lattice in the CMA is
occupied entirely by monomers of the two species, lead-
ing automatically to the incompressibility constraint

P z +Pn
= 1. The two types of monomers are partially

compatible and interaction parameters e,j are introduced,
i.e., ezz=e~z =0 and ezz =1. In usual Monte Carlo al-
gorithms new polymer configurations are generated by
jumps of monomers onto free sites in the lattice. In dense
incompressible systems new chain configurations can be
generated by successive cooperative rearrangements of
monomers along a closed random path. Technical details
of the CMA are summarized in a previous paper [10]and
not reconsidered in this study.

The following results are obtained by simulations on a
fcc lattice, where the bonds have the length a =W2. The
possible bond angles are a=60', 90, 120, and 180' with
degeneracy d =4, 2, 4, and 1. Each of the monomers
has q =12 nearest neighbors in the simulation. We used
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lattices of sizes I. =20 and 24 containing 4000 or 6912
monomers, and used ring sizes from N =16, 20, 24, 48.
These may appear very small, and for a previous study on
athermal ring melts a much wider range was used [14].
The aim of this paper is to take into account thermal in-
teractions and concentrate on their effects. Since we al-
ready have the correct scaling for the rings of the sizes
used in the present study as given by Pakula and Geyler
[14] in the athermal limit, small rings are used to de-
crease the equilibration time. To reduce boundary
effects, the usual periodic boundary conditions have been
employed. The simulations were performed on DEC sta-
tions 5000/120, 5000/125, and 5000/200.

The most effective way of generating an initial
configuration for the cyclic polymers in the CMA is to fill

the lattice with rings in a totally ordered state, such that
no entanglements appear from the beginning. This pro-
cedure assures that neither knots nor entanglements of
chains occur at any time later in the simulation.

In the athermal melt no AS interactions between the
monomers are relevant apart from the overall excluded
volume interaction, i.e., @=0or kii T/e~ ~. Depending
on the temperature a system with %=20, for example,
needs a thermalization time of approximately 4.75X10
MCS/ring. We sample for a span of around 5.75X106
MCS/ring every 1000 MCS/ring, to avoid close correla-
tions between the configurations. Diblock copolymer
rings in the athermal limit behave as excluded volume
rings in melts. Thus the first step in analysis is to observe
the configurations in dense polymer ring melts and to
compare the results to melts of linear polymers. It is well
known that in dense melts of linear chains the excluded
volume interaction is screened and the radius of gyration

Rg scales with chain length N as R
g
—X" with v =0.5,

which is a well-known result [8,10,13,15,16]. Polymer
rings may behave differently. In addition to the excluded
volume interaction the constraint of nonconcatenation
exists. These effects have been estimated using different
(scaling) arguments. Khokhlov and Nechaev [4] postu-
late an exponent v= —,', whereas Cates and Deutsch [5] ex-

pect v= —', in three dimensions. Pakula and Geyler [9]
simulated using the CMA dense melts of polymer rings.
For rings of sizes from N =16 to 512 they observed v to
be v=0.45 [8,9]. Although the ring size in the present
work is of much narrower range we confirm these results,
i.e., v=0.45+0.01 is found. This is slightly higher than
the crude estimate of Cates and Deutsch, but obviously
smaller than the Gaussian exponent 0.5. Recently we per-
formed a path-integral analysis of the nonconcatenating
ring melt where we found an exponent v=0. 42 [17].

The main purpose of this paper is the simulation of the
phase behavior of diblock copolymer rings. Therefore
only rather small rings can be used with a reasonable
simulation time. To test the results for cyc1ic polymers
we compare these with those obtained for linear polymers
of the same range of chain length. For linear chains we
obtain v=0. 52, i.e., the excluded volume interaction is
screened. The exponent v =0.45+0.01 for the rings
shows that indeed the topological constraints prevent the
cyclic polymers from adopting Gaussian melt statistics.
Problems could be expected in such cases when the usual

formulation of the RPA is used, since it treats the exclud-
ed volume interaction as a small perturbation. The RPA
takes only certain diagrams into account and a change in
the exponent of the correlation length is not obtained.
Such more sophisticated details will be presented in an
analytical study separately [17].

Despite these principal difficulties Marko [6] and Ben-
mouna, Borsali, and Benoit [7] investigated diblock copo-
lymer rings using the RPA neglecting all topological con-
straints, which can be described mathematically by
Gaussian integrals [18]. Rings described by excluded
volume interactions only can be called topological phan
tom rings [17]. The condition for the microphase separa-
tion transition (MST) can be expressed as (yFN), =C,
where the constant C is given by the architecture of the
copolymer. The random phase approximation for linear
diblock copolymers yields C =10.495 [19]. For T-shaped
diblock copolymers Olvera de la Cruz and Sanchez found
C to be equal to 13.5 [20]. References [6,7] suggest that
cyclic diblock phantom rings exhibit a similar condition
for the microsphase separation transition as linear copo-
lymers. Marko calculated the constant for cyclic copoly-
mers as C =17.8 [6], and Benmouna, Borsali, and Benoit
as C =18 [7]. Similar to this it would be mentioned that
linear multiblock structures with more than one junction
point between the blocks should also show a higher con-
stant C than linear diblock copolymers [21].

Symmetric diblock copolymer rings are expected to un-

dergo a phase transition into a lamellar structure, similar
to linear or T-shaped diblock copolymers. Monte Carlo
simulations of linear (see, for example, [10,13]) and T-
shaped diblock copolymers [22] have shown the appear-
ance of the periodic stucture. It is interesting to compare
their transition temperatures to those of linear diblock
copolymers and diblock rings. Due to their architecture
rings have less conformational entropy than linear di-
block copolymers and the energy entropy balance should
be different for cyclic diblocks. Intuitively it is clear that
the phase transition will occur at lower temperatures for
cyclic diblock systems. These intuitive guesses can be ob-
served by the simulations (Fig. 1). An efficient way to
determine the critical temperature of the MST is analysis
of the specific heat. The computation of the specific heat
is commonly performed via the fluctuation-dissipation
theorem Ci ={I/ksT ){(E ) —{E) ) from the energy
of the entire system E. At the critical temperature the
specific heat exhibits a pronounced peak. We find that
the critical temperatures for cyclic diblock copolymers
are much lower than those of linear diblock chains of the
same length. We calculate the ratio of the critical tem-
peratures TIinear +cyc)ic 1.61 (1.88) for the smaller (larg-
est) simulated polymers. The interaction parameter y~ is

usually assumed to be inversely proportional to tempera-
ture T by yz=e(q —2)/k&T. e is the monomer interac-
tion parameter and q the coordination number of the lat-
tice. Taking into account this correspondence, this ratio
corresponds surprisingly well to the predictions for topo-
logical phantom rings (yFN), ""'/(yFN'), ' "'=1.7 ob-
tained from Marko [6] using the random phase approxi-
mation. This result is very surprising. It wi11 be reported
in a subsequent publication how this coincidence appears
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FIG. 1. Comparison of the critical temperatures of simulated
linear and cyclic diblock copolymers. The critical temperature
k& T, /e of diblock copolymer rings is approximately 407o lower
than for linear copolymers of the same length.

from analytical calculations [17]. An intuitive way to un-
derstand this is that the topology does not matter very
much on the length scales of the microphase separation,
which takes place at a certain wave vector. Despite this
fair agreement we would like to comment on the absolute
values of critical temperatures of both simulated linear
and cyclic diblock copolymers. They are smaller by a
factor of almost 2 than the theoretical predictions of Lei-
bler and Marko.

Below the critical temperature kz T, /e the microphase
separation transition of the symmetric diblock copolymer
rings into a lamellar structure occurs. The wavelength A,

of this lamellar structure is proportional to the radius of
gyration of the polymer. The radii of gyration, respec-
tively, the wavelengths of the periodic structure, of the
diblock copolymer rings are smaller by a factor
RP""/Rsa""'=0.51—0.55 than the radii of linear di-
block copolymers of the same chain lengths. This can be
interpreted as phases formed by linear chains that have to
fold once within the phases. The length scales of the
phases formed by diblock rings are therefore half of those
of linear diblock copolymers (Fig. 2).

Simulations of linear diblock copolymer systems have
shown [10,13,23] that the chains stretch by 10—15%
with decreasing temperature. The reason for this stretch-
ing effect is the strong effective repulsive interaction be-
tween A and 8 monomers in the melt. As an aside we re-
mind the reader of the calculation of the effective mono-
mer potentials between the different monomers in the in-
teracting melt [13]. From those potentials the
configurations of single chains in melts can be deter-
mined. VA'th decreasing temperature or increasing values
of yzN, the potentials become very large at the critical
point for a fixed wave vector k*, which re8ects the wave-
length of the ordered structure. Such effective interac-
tions can be calculated for diblock rings also. The two
blocks of the rings have even fewer possibilities to
separate from each other compared to linear diblock

FIG. 2. Comparison of the radii of gyration of linear and cy-
clic diblock copolymers of length N =20. The radii of the copo-
lymer rings are smaller than the radii of the linear copolymers
by a factor of 0.51.
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With decreasing temperature we observe a strong in-
crease by 20-25 Fo of the radius between the two centers
of mass of the two blocks (Fig. 3). The length of the vec-
tor Rzz increases continuously while lowering the tem-
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FIG. 3. Temperature dependence of the distance between the
centers of mass of the two blocks. 8» increases strongly with
decreasing temperature. Ring sizes are N = 16,20,24,48.

copolymers, and it is necessary to investigate the ring
conformation. Three quantities are relevant: the dis-
tance between the centers of mass of the two blocks R „z,

R„,=+&(R," —R,' )'&,

the radius of gyration of the blocks Rs',
' 1/2n N/2

g g(rj —R, ' )2

i=11=1

(a= A, B), and the end-to-end distance of the blocks
g block

end
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FIG. 4. Temperature dependence of the end-to-end vector of
the single blocks. R,„'d" shrinks continuously with decreasing
temperature. Ring sizes are X=16,20, 24, 48.

FIG. 5. Temperature dependence of the radius of gyration of
the single blocks. Rg(a= A, B) shrinks continuously with de-
creasing temperature. Ring sizes are N =16,20, 24, 48.

perature. The effect is more pronounced than for linear
diblock copolymers (15% [13]). For linear diblock copo-
lymers it has been shown [13] that the increase of R„ti
underlines the axial character of Gaussian chains and the
chains stretch, i.e., the chains do not swe11 isotropically.

In rings similar results can be expected. To see this,
consider the long mean axis R„ti. The end-to-end vector
of the blocks serves as such a second independent axis.
Figure 4 shows a strong reduction of the end-to-end vec-
tor of the blocks Fb(„k by almost 15%. Together with
the increase of R„Ji this gives rise to the assertion that
the ring copolymers stretch during the cooling process.
This stretching effect is remarkable, as the two ends of
the two blocks are linked together. At temperatures
kti T/e below the microphase separation transition tem-
perature kti T, /e the blocks are shaped like two hairpins.

The radius of gyration of the individual blocks shrinks
for cyclic diblock copolymers (Fig. 5). Linear diblock
copolymers only show a very small shrinking effect. The
shrinking effect can be understood in terms of effective
AA or BB interaction which changes sign and becomes
attractive. Such effects are well known in the macro
phase separations of polymer blends [24,12,25], i.e, the
polymers shrink in the pure domains, which consist ei-

ther of species A or B In c.opolymer systems the spatial
extension of the phases is smaller than in binary mix-
tures. This phenomenon happens also at finite length
scales, i.e., at scales proportional to the inverse of the
critical wave vector. Therefore the "screening effect, "
i.e., the attractive potential between monomers of the
same species, is reduced. The overall stretching effect for
copolymers is a special copolymer effect and is due to the
connectivity of the two blocks.

The diblock copolymer rings change their sizes with
decreasing temperature. Linear diblock copolymers
behave in a similar manner. Mean-field descriptions as
given by Leibler [19] for linear diblock copolymers and
by Marko [6] for cyclic copolymers cannot explain this
variation of the polymer size with temperature. A self-
consistent treatment using the effective potentials be-
tween two monomers in the dense melt [13] solves this
problem [26].
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