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Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids
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Dynamical correlation functions of a fluid slab confined between two solid walls are computed using a
phenomenologial, hydrodynamic appoach that generalizes Onsager's principle of linear regression of
fluctuations to inhomogeneous systems. The phenomenological results are compared to exact
molecular-dynamics simulations on simple model systems. This comparison permits a determination of
the phenomenological parameters that describe the hydrodynamics of the fluid slab and especially of the

boundary conditions {BC's)that account for the presence of solid walls. In most cases, the hydrodynam-

ic BC for the tangential velocity field is found to be a no-slip BC and must be applied in a plane that is

separated from the solid by about one layer of fluid atoms. A set of formal relations between the param-

eters that characterize the hydrodynamic BC and the equilibrium correlation functions of the inhomo-

geneous fluid is also derived. These relations are analogous to the usual Green-Kubo equalities for the

transport coefficients of bulk fluids.

PACS number(s): 68.15.+e, 05.40.+j, 47.27.Lx

I. INTRODUCTION

The static properties of thin liquid films have been a
subject of constant interest in the past two decades and
are presently rather well understood. Experimentally,
the most spectacular results were obtained using surface
force apparatus (SFA) which permit a direct measure-
ment of the forces between two solid surfaces across a
thin (from several nanometers down to a few angstroms)
liquid film. Many of these developments are described in

the book by Israelachvili [1]. At large length scales (i.e.,
much larger than a molecular diameter), the results are
well described by continuum theories such as the Lifshitz
theory of van der Waals forces. Such theories break
down at molecular length scales, where the surface forces
display a strong oscillatory behavior as a function of the
distance between surfaces. Both numerical simulation [2]
and density-functional theory [3] on simple models have
been used to interpret such experimental results. The os-
cillations in the force are related to the layered structure
induced in the fiuid by the presence of solid walls, which
usually extends over several molecular diameters into the
fluid.

Dynamical properties of thin films have also been the
subject of many recent investigations using SFA. Experi-
ments involving either draining or shearing liquid films
have been performed, with results that fall into two
difFerent classes. Very thin films (less than 7—8 molecular
diameters) exhibit strongly enhanced apparent viscosities
[4], or even an exotic "stick-slip" behavior, intermediate
between that of an elastic solid and that of a viscous fluid

[5]. The response of thicker films, on the other hand, can
be described using the Navier-Stokes (NS) equations for a
viscous newtonian Quid [6,7], supplemented by the usual
"no-slip" boundary conditions (BC's) [8] at the solid sur-
face. Such a description, however, requires that the (hy-
drodynainic) thickness of the film is treated as an adjust-
able parameter, which might perceptibly differ from the

thickness measured using other (electrical, mechanical, or
optical) methods. Such difFerences are often interpreted
as indicating the existence of an "immobilized" layer of
fiuid that does not participate in the hydrodynamic flow.
In most cases, the thickness of this layer is of the order of
one molecular diameter [6,7]. This interpretation, how-
ever, does not have a microscopic foundation. The same
is true for the no-slip boundary condition (i.e., the condi-
tion that the tangential fiuid velocity vanishes), which is
usually used to account for the presence of a solid bound-
ary. This condition is usually taken as a postulate of
macroscopic hydrodynamics, which can be justified a pos-
teriori by checking the correctness of its consequences [8].
Microscopic considerations, on the other hand, do not in
general lead to the no-slip boundary condition. In partic-
ular, the early kinetic theory calculations of Maxwell [9]
predicted the existence of velocity slip at solid boun-
daries. Velocity slip is known to occur in rarefied gases
[10] and could also be present in polymer melts [11].
Studying the dynamics of thin films, in which the bound-
ary conditions can be expected to have a measurable
effect, should therefore provide an interesting way of in-
vestigating the validity of the no-slip BC for ordinary
newtonian fluids. The discrepancy mentioned above be-
tween different determinations of this film thickness is an
indication that the usual description in terms of the NS
equations and no-slip BC might not always be appropri-
ate at small length scales. More precisely, a better under-
standing of the boundary conditions would be desirable
in order to interpret such results. That the "hydro-
dynamic thickness" of a film can differ from other deter-
minations of the thickness is not, in itself, a surprising re-
sult. Some arbitrariness is a priori present in the process
of accounting for the presence of an interface at finite
width by a boundary condition applied at an idealized,
mathematical surface. This arbitrariness is devoid of
consequences in macroscopic hydrodynamics. For thin
films, however, the choice of different boundary condi-

1063-651X/94/49(4)/3079(14)/$06. 00 49 3079 1994 The American Physical Society



3080 LYDERIC BOCQUET AND JEAN-LOUIS BARRAT

tions can lead to very different interpretations of the ex-
perimental results. It is the purpose of this work to
demonstrate that the arbitrariness in the choice of hydro-
dynamic boundary conditions at a liquid-solid interface
can be avoided and that, under some reasonable assurnp-
tions, the appropriate BC can be determined from first-
principles microscopic calculations.

In Sec. II we propose a phenomenological description
of the dynamics of a fluid-solid interface. Our descrip-
tion combines a boundary condition that allows for veloc-
ity slip at the solid boundary with a generalization of
Onsager's hypothesis of linear regression of fluctuations.
Together with the phenomenological NS equations, the
BC permits a complete description of hydrodynamic
flows. Following the spirit of Onsager's hypothesis, we
postulate that the dynamics of small fluctuations around
an equilibrium state can be described by the macroscopic
equations of motion, including the boundary conditions
This simple assumption allows us to explicitly compute a
phenomenological form of the equilibrium time-
dependent correlation function of the momentum density
for a fluid slab confined between two solid boundaries.
The result depends both on the transport coefficients of
the fluid and on the parameters that characterize the
boundary condition.

Section III is devoted to a verification of the correct-
ness of our approach through extensive equilibrium
molecular-dynamics (MD) simulations. These simula-
tions provide an "exact" determination of the time-
dependent correlation functions of a fluid slab. By com-
paring these exact results with the analytical expression
obtained using the approach of Sec. II, we are able to
validate this approach and to determine the relevant phe-
nornenological parameters for model systems. Our philo-
sophy here is different from that underlying much of the
earlier simulation work on the dynamics of confined
fluids [12—14]. We do not attempt to model a specific
flow pattern using nonequilibrium MD, thereby avoiding
all the problems (temperature control, high velocity gra-
dients) inherent in nonequilibrium simulations. Rather,
we take advantage of the richness present in the natural
fluctuations of the system to simultaneously determine
different phenomenological parameters. Our approach is
therefore extremely close in spirit to the equilibrium
methods commonly used to determine, through Green-
Kubo formulas, the transport coefficient of bulk fluids
[15], as opposed to more recent, nonequilibrium, tech-
niques [16]. For the sake of completeness, and in order to
check the consistency of both approaches, we also per-
form nonequilibrium simulations of selected systems. Fi-
nally, we mention that, although our approach is quite
general, the simulations are performed on very simplistic
systems. Our aim here is not to provide a realistic
description of some particular liquid-solid interface, but
rather to test general assumptions on the simplest possi-
ble models.

The fact that the phenomenological parameters
characterizing a liquid-solid boundary can be obtained
from an equilibrium simulation suggests that these pa-
rameters could be directly expressed in terms of equilibri-
um correlation functions. Indeed, in the case of bulk

fluids, the use of Onsager*s hypothesis allows one to ob-
tain relationships between the phenomenological
coefficients and the microscopic time-dependent correla-
tion functions [17,18], which are known as Green-Kubo
formulas. In Sec. IV we show that similar results can be
obtained for the parameters characterizing the BC. The
numerical evaluation of the BC parameters through these
Green-Kubo like formulas, using MD simulation, yields
results that are in agreement with those obtained in Sec.
III using a more direct approach.

Our main conclusions are summarized in Sec. V. A
preliminary account of this work has been published in
Ref. [19].

II. PHENOMENOLOGICAL DESCRIPTION
OF A CONFINED FLUID SLAB

A. Description of the liquid-solid interface

Due to the formidable difficulties inherent in a full
treatment using, e.g. , kinetic theory, very little analytical
work has been done on the dynamics of a liquid flowing
past a solid wall. The interesting results that have
emerged from recent simulation work [13,20, 12] have not
been discussed in a statistical-mechanical framework. In
fluid dynamics, it is usual to bypass the complexity of the
microscopic problem by imposing a boundary condition
on the hydrodynamic velocity field. The most commonly
used BC is that of no slip: the tangential velocity of the
fluid vanishes at a fixed solid boundary. Experimental
evidence indicates that this BC is fully appropriate for
the description of the flow of simple liquids at rnacro-
scopic scales. It has been shown [21], however, that for
the "rough" walls that are used in such experiments,
different "microscopic" BC would produce practically
undistinguishable results. Therefore the success of the
no-slip BC at macroscopic scales does not necessarily im-

ply that it remains appropriate in experiments performed
at nanometer scales. Moreover, we already mentioned
that simple kinetic theory calculations do not in general
result in a no-slip BC. The boundary condition that is
considered in this paper is the simplest one that allows
for a velocity slip at the liquid-solid boundary, namely,

Bu (r, t)

az
u(r, t) ~,

—, (a =x,y) .
1

Z=Z 0
0

(2.1)

Here the interface is parallel to the z =0 plane and v(r, t)
is the velocity field. This BC interpolates linearly be-
tween the no-slip BC (5=0) and the perfect slip BC
(6= oo },which corresponds to a fluid near an ideally flat
wall. The length 5 is then the ratio of the fraction con-
stant A. to the shear viscosity g of the fluid.

Equation (2.1) introduces two parameters 5 and zp. In
the following, we refer to 5 as the slipping length and to
zp as the "hydrodynamic position" of the wall. zp locates
the position at which the boundary condition on the rnac-
roscopic velocity field has to be applied. It is not obvious
at first sight that 5 and zp are two independent pararne-
ters. For instance, if the flow is a planar Couette flow
(uniform velocity gradient), it is always possible to modi-
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fy the boundary condition by shifting zo by some amount
b, and increasing 5 by the same amount, without chang-
ing the flow pattern in the bulk of the fluid. In other
words, for the planar Couette geometry, identical bulk
flows would be induced by the motion of walls character-'
ized by the set of parameters (z0, 5} and (zo+6, 5+6 ).
If, as is the case in much earlier work [12,13], only this
geometry is considered, the two parameters cannot be
determined independently. One has therefore to resort to
some arbitrary definition of z» in order, for example, to
assess the presence of velocity slip at the boundary. If,
however, more complex (e.g., Poiseuille) flows are con-
sidered, the two sets of parameters (z», 5) and
(zo+6, 5+6, ) no longer produce identical results for the
bulk flow. Therefore it is in principle possible to distin-
guish between the BC associated with these two sets. The
study of a single flow pattern, however, is not in general
sufficient to provide a unique determination of all param-
eters, which means that the arbitrariness on the definition
of slip is also present in the studies of Poiseuille flow [14].
In general, zo is taken to correspond to the position of the
first layer of atoms in the solid, but this choice is indeed
arbitrary. The method we employ in this paper provides
a way of uniquely determining both zo and 5 for a given
solid-liquid boundary. This is done by using the fact that
all types of flow patterns are naturally present in the equi-
librium jfuctuations of the system, so that all the neces-
sary parameters can be directly obtained from the study
of these fluctuations.

B. Regression of fluctuations in a confined fluid

In the following, we restrict our attention to a system
made up of a fluid slab confined between two solid walls
parallel to the xy plane. The distance between the two
walls is denoted by L. As emphasized in Sec. I, some ar-
bitrariness is always present in the definition of L, since
the fluid-solid interface has a finite width. For large
enough L, the dynamics of the fiuid slab can be described
by the usual bulk phenomenological NS equations (in-
volving the bulk transport coefficients) supplemented by a
BC at each solid wall. The BC is assumed to be of type
(2.1) at each wall. The lower wall is characterized by the
parameters zo and 5=50 and the upper one by zo+ h and
5=51,. It should be clear from the discussion above that
the distance h between the two hydrodynamic positions
of the walls a priori divers from the arbitrarily defined
wall to wall distance L. L is an input parameter that sim-
ply serves to describe the setup of the two walls with
respect to each other. h, on the other hand, is a phenom-
enological parameter that serves to the description of the
dynamics of the confined fluid. It is a priori unknown
and can indeed depend on the nature of the fiuid under
consideration.

The NS equations describe the relaxation toward equi-
librium of the confined fiuid from an arbitrary initial
state. For bulk fluids, the transport coe%cients that ap-
pear in these equations are intimately related to the hy-
drodynamic {i.e., long-wavelength and low-frequency)
limit of the time-dependent equilibrium correlation func-
tions of the fluid [18]. The connection is achieved by as-

V j(r, t)=0 (2.2)
Po

and if r belongs to the hydrodynamic boundaries (z =z»,
and z =z»+h)

j~~{r,t)=5„,» 3f(r, t), j i(r, t}=0 .
n

(2.3)

Here po is the mass density inside the fiuid slab, P is the
pressure and i) and g are the shear and bulk viscosities of
the bulk fluid at the same temperature and density. The
indices

~~
and l refer to the tangential and perpendicular

components of the vector field considered. The vector n
is normal to the wall.

Equations {2.2) and (2.3) depone our phenomenological
model for the confined fluid slab. We assume that this
slab can be adequately modeled using the equations that
are appropriate for an isotropic, unconfined bulk fluid,
supplemented by BC. In particular, the transport
coefficients appearing in (2.2) are assumed to be
unaffected by the boundaries and the equations retain the
symmetry properties of the usual NS equations. This
description obviously is a reasonable one for large wall to
wall distances, but it could break down at small separa-
tions. In this section, we investigate the consequences of
our assumptions, postponing the evaluation of their
correctness to Sec. III.

As in the case of bulk fluids, our equations can be
greatly simplified by introducing the transverse momen-
tum density

j (z t)= f f dx dyj (r t), a=xy1

X JP

where L„and L are the lateral dimensions of the system,
which is periodic in the x and y directions. It is easy
show that this field obeys the diffusion equation

a, —"a', j.(z, t)=0,
Po

' (2.4)

with the two BC's

j.{,t}1,=,,=5,5j (,t)l, =.. . (2.5a)

suming that the equilibrium fluctuations in the fluid obey
the same phenomenological equations that characterize
the relaxation from a nonequilibrium situation. This as-
sumption was first introduced by Onsager [22] and is gen-
erally known as Onsager's principle of linear regression
of fluctuations. In this work, we propose that this hy-
pothesis can be generalized to the case of confined fluids,
by assuming that the equilibrium fiuctuations in a fluid
slab obey both the NS equations and the phenomenologi-
cal boundary conditions at the (hydrodynamic) walls.
Under these assumptions, we can write the following
equations for the evolution of a fluctuation in the
momentum density j(r, t): if r belongs to the bulk (i.e., if
0&z &h)

B,j(r, t)+VP(r, t)— V[V, j(r, t)]( +q/3)
Po
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j (z, t)l, =,,+t, — 5—
t, dj (z, t)l, =,,+I, . (2.5b)

The time-dependent correlation function of j is, as usu-

al, defined by

C(z, z', t) = (j (z, t)j (z', 0)), (2.6)

5, — 8,' C(z, z', t)=0, z, &z &z, +h
Po

(2.7)

where the angular brackets denote a thermodynamic
average. For simplicity, we drop the component index n
in the following. Our assumptions imply that this equi-
libriurn correlation function obeys the following equa-
tions:

For the purpose of comparison with constant energy MD
simulations, we need to compute the static correlation
function C(z,z', t =0) in the microcanonical ensemble.
We expect then a correction of order 1/N to Eq. (2.14).
We have computed this correction using the method of
Lebowitz, Percus, and Verlet [23]. The details of this cal-
culation are described in Appendix A and its results can
be summarized as follows.

(i) If the walls are ideally Qat (i.e., if the interaction be-
tween the solid walls and the fluid atoms is invariant un-
der translations parallel to the walls), the total momen-
tum of the fluid in the direction parallel to the wall is a
conserved quantity. The static correlation function is
then

c(z,z, t)l, , =5,a, c(z,z, t}l. . .

c(z,z, t)l, , ,„== 5„a—,c(z,', t)l. ..„.
The general solution to these equations is given by

C(z, z', t)= g a„(z')%„(z)I'„(t),
n=0

(2.8a)

(2.8b)

(2.9)

kqT
C(z,z', t =0)=k T(p(z))5(z —z') — (p(z)p(z')) .

mX

(2.16)

This correction is essential since it guarantees that the
fluctuations in the momentum parallel to the walls van-
1sh:

where the 4'„are a set of orthonormal functions defined
for 0&z &h by

—vA,

%„(z)=g„cos(A,„z —8„), I „(t)=e

the A,„,8„,and g„being solutions of

A,„(5o+5I,)
tan(y(, „h ) =

A, „5o5t, —1

A, „5o
cos(8„)=

QI+(X„5,)'
'

sin( 2A, „h —28„}+sin(28„)
~'=z '+

(2.10)

(2.11)

where r,. and p; are the position and momentum of parti-
cle i In the cano. nical ensemble, C(z, z', t =0) is simply
given by

C(z, z', t =0)=k T(p(z))5(z —z'),
where we have introduced a mass density p(z),

(2.14)

p(z}= g m5(z —z, (t)} . (2.15}

In (2.10), we have introduced the kinematic viscosity
v=g/po. The function a„(z') is determined by the
knowledge of the initial condition

ha„(z')=J dz C(z, z', t =0)%„(z) . (2.12)

Knowing the initial condition C(z,z', t =0), we are thus
able to explicitly compute C(z,z, t). This initial condi-
tion can be obtained from equilibrium statistical rnechan-
ics, using the microscopic definition of the momentum
density:

N

j(r, t }=g p;(t)5(r —r;(t)),

N N

gp; g p, =0, a&IxyI .
i =1 j=1

(2.17)

(ii) If the walls are rough, then the total momentum
parallel to the walls is no longer a conserved quantity.
The 1/N correction to the canonical expression vanishes
and the canonical result (2.14) is recovered. This shows
that, whatever the roughness, it is sufficient to restore the
thermal fluctuations of the total momentum:

N N

z p,
' x p.'))=Nmk~raE(x, y ) .,

i =1 j=1
(2.18)

In our phenomenological description of the fluid slab, the
density is uniform and equal to po for 0&z & h. The ap-
propriate initial conditions for the phenomenological
correlation functions are therefore

k~T
C (z,z', t =0) ktt Tpo5(z ——z') —

pomN

for flat walls and

(2.19a)

C(z, z', t =0)=k&Tpo5(z —z') (2.19b)

for rough walls. For ideally flat walls (described phenom-
enologically by 5O=5& ——oo },the solution is still given by
(2.20), with the term n =0 excluded from the summation.

To close this section, we briefly consider two limiting
cases of the BC(2.1), for which the correlation function
can be obtained in a compact analytical form. For per-
fectly flat walls (5O=5h = oo ) and for sticky walls

for rough walls. %'hen these initial conditions are insert-
ed in Eqs. (2.12) and (2.9), a straightforward calculation
yields

+ oo

C(z, z', t)= —
p k~OT g qy„(z)%„(z')exp( vA„t}, —

,

n=0

(2.20)
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(50=5& =0},the Laplace transform C(z, z', co) defined as C(z,z', co) =poks T
2v

C(z,z', co) =f dt C(z,z', t)e ', Re(a)) ~0,
0

can be summed explicitly using the equality

(2.21)

X

h —(z+z')
cosh +cosh

sinh

+ cos(nx) m cosa(m —x) 1

„=, n 2+a2 2a sinham. 2az

(2.22)

2
(2.23)

Introducing the length A, =(v/co)'~, we obtain for perfectly flat walls and

C(z,z', co) =poke T
2v

h ~z z'~ — h —(z+z')
cosh —cosh

sinh

(2.24)

for sticky walls.

III. MD SIMULATIONS OF CONFINED FLUIDS

A. Strategy and model

(k, k', t)= f dz fdz'e' e ' 'C(z, z', t)

=(j (k, t)j ( —k', 0)), (3.1)

In this section, we present a test of our phenomenologi-
cal description for the time-dependent correlation func-
tions against "exact" results for the same functions, ob-
tained from MD simulations of a particular model. Our
strategy is as follows. We first compute, using standard
technique [15], the bulk viscosity ri of a model fluid. We
then compute time-dependent correlation functions of the
momentum density for a slab of the same model Quid,
now confined by solid walls. The results are fitted using
the phenomenological expression (2.20), the adjustable
parameters being h, 50, and 5&. The best fit yields the
desired phenoinenological parameters characterizing the
fluid-wall interface under study. Finally, we have
checked the intrinsic character of these parameters, i.e.,
that each interface can be characterized by a set
(z„z, 5 ti ), which does not depend on the presence of the
second interface. This was achieved by varying the wall
to wall distance L and by using various combinations of
upper and lowet walls, with difFerent microscopic charac-
teristics. As a complementary test, we also perform
several nonequilibrium simulations of planar Couette
Qows between solid walls for which the phenomenological
parameters had been obtained in equilibrium simulations.
This allows us to check the consistency of equilibrium
and nonequilibrium approaches.

For practical reasons, the correlation function that was
calculated in the course of the simulation was not
C(z,z', t), but rather its Fourier transform

where j (k, t) is the Fourier component of the transverse
momentum density,

j (k, t)=pe 'p, ; (a=x,y) . (3.2)

F(k, t}=(j (k, t)j ( —k, 0)) . (3.3)

For the sake of simplicity and efficiency, we restrict our-
selves to the consideration of this diagonal part in the fol-
lowing. Because this diagonal part has a nonzero limit in
the bulk limit, this diagonal part is much larger —and
therefore less sensitive to statistical noise —than other,
nondiagonal, components of the correlation function. It
obviously contains less information than the original
correlation function, since the system is not invariant by
translation along the z direction. It is nevertheless

We stress that the summation in (3.2) includes all the
atoms in the Quid, irrespective of the value of their z
coordinate. In the phenomenological approach, the
confined fiuid is modeled as a slab of thickness h. The
momentum density in this slab (or equivalently its
Fourier components) represents, however, the momen-
tum density of the whole fluid, including those atoms
whose z coordinate does not lie between z =0 and h. Of
course, the mapping between the phenomenological mod-
el and the exact simulation results is, in principle, only
valid in the limit of small wave vectors k «2m /cr

Finally, we define the diagonal part F(k, t }of C'(k, k', t}
as
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sufhcient to obtain the BC parameters, as shown in the
following sections.

The fluid we have chosen is a standard one component
fluid of "soft spheres, " i.e., atoms interacting through the
purely repulsive pair potential U (r) =e(rr /r)' . This fiuid
is confined between two solid walls perpendicular to the z
axis. Periodic BC are imposed in the x and y directions.
The walls are "inert, " i.e., lack internal degrees of free-
dom. The interaction between the walls and the fluid
atoms can be described by an external potential U f act-
ing on the fluid, which we take of the form

z —zt(x, y) z„(x,y)+L —z
U f(r)=e ff +E fP

(3.4)

Most of the calculations are done with a purely repulsive
wall /=1/z' and e f/a= 1 (Sec. IIIB—III D). In Sec.
III E we present results for a strongly attractive wall, de-
scribed by /=1/z —1/z and e'~f/@=15. z„(x,y) and

zi(x, y) respectively model the microscopic roughness of
the upper and lower walls. Both z„and zi have a zero
average value, so that the potential (3.4) describes two
walls separated by a "physical" distance L. In all the
simulations, the temperature is T=1. O/ek sand, far
from the walls, the fluid has a uniform density
po=0. 64mo . A typical density profile (p(z)) of the
confined fluid is shown in Fig. 1. In most runs, the sys-
tem size is X=500 fluid atoms. Identical results are ob-
tained with larger systems (N = 1372 atoms). The simula-
tions are carried out at constant energy, using the stan-
dard Verlet algorithm [15], with a time step
v=0.005(mo /e)' . Typical runs extend over 10 time
steps. The shear viscosity of the corresponding bulk ther-
modynamic state (T=1.0e/ka and po=0. 64mo ), ob-
tained independently from an MD simulation of the bulk
fluid, is ri=(0. 60+0.05)(me)' cr

B. Results for Sat boundaries

We first study the case of purely repulsive and ideally
flat walls z„(z,y)=zi(x, y)=0 separated by a distance
L =30.00.. There is no friction force at the boundaries,
since no tangential momentum is exchanged between
fluid and walls. Such walls should therefore be adequate-
ly described by pure slip BC 5&=5I, = ~. The only pa-
rameter that can be adjusted to fit the experimental data
is the hydrodynamical distance between walls h. We
compare in Fig. 2 the phenomenological and simulated
correlation function F(k, t) for several values of k. The
agreement is excellent provided the distance h is taken to
be h =(26.80+0.05)0. The initial time correlation func-
tion F(k, 0) obtained from (2.16) for the same value of h

is compared in Fig. 3 to the simulation result. Again, the
agreement is good and F(k, 0) clearly displays the
behavior expected for a system in which the momentum
parallel to the walls is a conserved quantity. We there-
fore conclude that the fluid slab can be adequately de-
scribed by our phenomenological equations, the parame-
ters describing the lower and upper interface being, re-
spectively, (zo=1.6o and 5o= ~) and (zh =28.4o and
5o= co ). Inspection of the density profile (p(z)) shown
in Fig. 1 shows that the hydrodynamic boundaries are lo-
cated inside the fluid and are separated from the physical
walls by one layer of fluid atoms.

C. Results for "corrugated" walls

In a next step, we introduce the possibility of tangen-
tial momentum transfer between the walls and the fluid

by adopting for the solid walls a "corrugated iron" shape
z„(x,y)=zi(x, y)=u cos(qx). The corrugation is charac-
terized by its amplitude u and its wavelength 2m. /q. The

I I I I
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FIG. l. Liquid density profile (p(z)) between two purely
repulsive walls a distance L =30cr apart. The average tempera-
ture was T=le/k& and far from the walls the density was

po =0.64m o.

FIG. 2. Normalized correlation functions F(k, t) /F {k, 0) for
a fiuid confined between two perfectly fiat walls. The curves

correspond from top to bottom to ko. =0.033, 0.266, and 0.366.
The solid lines are simulation results. The error bars, when

present, are calculated on the basis of statistically independent
runs. The dashed lines are calculated using Eq. (2.20) with
h =26. 80. and 50= 5I, = 00.
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with our results is possible. In most cases, i.e., for com-
parable solid and liquid densities, it was observed that
or.e to two layers of fluid "stick" to the solid surface.
This corresponds to 5+zo ——0., in agreement with our
conclusions. Much larger slipping effects were observed
in the case where the solid has a much larger density than
the liquid [12]. In an attempt to reproduce this effect, the
wavelength of the corrugation was decreased to
2~/q=cr/2 and cr/4, keeping the amplitude constant
(u =0.2cr ). A no slip BC was still found for these param-
eters. Here again, the amplitude of the corrugation is
much stronger than the effective amplitude that results
from summing up the interactions with discrete atoms,
and this probably explains the absence of slip even in that
case.

D. Intrinsic character of the BC parameters

We have shown in the two preceding sections that pa-
rameters appropriate for the description of a given fluid-
solid interface can be obtained from the simulation of a
fluid slab confined by two identical solid boundaries. It is
of course desirable to check whether the parameters ob-
tained are transferable, i.e., if they can be used to describe
this same interface in a different geometry. To this aim,
we study fluid slabs in which the upper and lower walls
have different microscopic characteristics and for which
the phenomenological parameters have been obtained in
a previous study. The comparison between the phenome-
nological correlation function and the exact one is there-
fore free of adjustable parameters.

We first consider a system confined between a flat wall
and a corrugated one (of characteristics 2m. /q =1.00 and

0.8

~- 0.6
A

~ 04
A

0.2

0—
I I I I I I I I I I I I I I ( I I I I

50 100 150 200

FIG. 5. Same as Fig. 4, but with the lower wall perfectly flat
and the upper one characterized by the roughness parameters
u =0.02 and 2mq '=1. The dashed lines represent the results
of Eq. {2.20) with h =26.8o,50= oo, and 5„=7.2a. In this case,
the phenomenological parameters of each wa11-fluid interface
have been obtained in previous studies, so that the comparisons
are free of adjustable parameters.

u=0.02o). Such a configuration should, according to
the results presented above, be described by the phenom-
enological parameters z0=1.6o., z& =28.4o, 5o= oo, and

5h =7.20.. The correlation functions obtained with these
phenomenological parameters are in excellent agreement
with the simulation results, as shown in Fig. 5.

Another way of checking the intrinsic character of
phenomenological parameters is to study walls separated
by various values of L. According to our model, the
different configurations should be adequately represented
by slipping lengths 5o and 5& that do not depend on I.
and a distance between the hydrodynamic boundaries
that differs from L by a constant term. We find that, for
the values of L between 300 and L = 12.0o, the phenom-
enological correlation function fits very well the simulat-
ed one without any adjustment of the parameters.

E. Attractive walls

In order to estimate the influence of an attraction (e.g. ,
van der Waals attraction) between the fluid molecules
and the solid walls, we use an attractive wall-fluid in-
teraction described by a 9-3 Lennard-Jones form for P,
P(z}=1/z —1/z, and e„&/a=15 [see Eq. (3.4)]. Both
walls have identical corrugations, characterized by
2m/q=1. 00 and u =0.2cr. At short times, the hydro-
dynamic equations do not correctly describe the MD
correlation functions. This discrepancy is likely due to
the fact that, for such a strong attractive potential, epi-
taxial locking of the fluid particles in the grooves of the
Quid-wall potential takes place. The dynamics of these
locked particles is essentially solidlike and cannot be de-
scribed using the equations of fluid dynamics. At longer
times, the correlation functions in this simulation could
still be fitted by the phenomenological form (2.20},with a
slipping length equal to zero and h =26.0. The presence
of a strong (only a large value of e I, and therefore a
deep potential well at the wall, was able to produce this
effect} attractive part in the wall-fiuid potential therefore
causes the hydrodynamic thickness of the Quid slab to de-
crease. The hydrodynamic position of the BC is, in that
particular case, separated from the physical wall by about
two layers of Quid molecules.

F. Nonequilibrium simulations

A final test of our approach consists in performing
nonequilibrium simulations for systems which have been
fully characterized in equilibrium simulations. The flow

pattern obtained in the nonequilibrium simulations can
then be compared to the solution of the NS equations,
with the BC s that have been obtained from the equilibri-
um simulations. Comparisons of this type, which do not
involve any adjustable parameter, are shown in Fig. 6.
The soft sphere fluid is con6ned between two identically
corrugated walls. A planar Couette flow is imposed by
moving the upper wall along x at a constant velocity
U=1.0(e/m)'~ . The flow pattern is entirely character-
ized by the average velocity profile (U (z) ). The temper-
ature is kept constant by introducing a frictional term
(Hoover's thermostat [24]) in the equations of motion
along the y direction. Two wall corrugations,
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I I
] I I I I ]

'I I I I ] l I the x direction will result from the application of this
field. Linear-response theory yields

T

(j )= —f dt(j(0, t)j(0,0)) F (4.1)

0.5
where P= I /ks T and ( )cE denotes a canonical ensemble
average. An alternative expression for (jo ) is obtained
using the hydrodynamic description of the confined slab.
In this picture, the force field generates a Poiseuille-like
flow in the x direction with a velocity profile

0

I i s i i I i s & & I

poFo h z+25„h

2m' h +5o+51,

h +25(,h

h +5o+5q

—io 0
Z/0

10

FIG. 6. Reduced velocity profile v (z)/U inside the fiuid slab
in a Couette geometry. The velocity of the upper wall is
U=1.0(e/m)' . The solid lines are obtained from NEMD
simulation for two wall corrugations, 2~/q=1. 00, u =0.2a
(steep curve), and 2m/q=1. 0cr, u=0.02cr, and for a purely
repulsive potential. The dashed lines are solutions of the NS
equations and the slip BC [Eq. (2.1}], with, respectively,

~wa]] 0~~ zwa]] 1.60' and 5~a]]=7.20 szwa]]

2ir/q =1.0o, tt =0.2o and 2m /q =1.0o tt =0.02a, are
considered. For the larger corrugation, both the purely
repulsive potential of Sec. III C and the Lennard-Jones
potential of Sec. III E are used. For the sake of clarity,
only the two simulations with a purely repulsive potential
are displayed in Fig. 6. The agreement between the simu-
lated and calculated velocity profiles is seen to be excel-
lent and confirms the validity of the equilibrium deter-
mination of the BC parameters.

IV. DISSIPATION COEl FlCIENTS
AND KUBO RELATIONS

The results obtained in Secs. III and IV lead to the fol-
lowing conclusions.

(i) The dynamics of the natural fluctuations in a
confined fluid can be adequately described using phenom-
enological equations of motion and boundary conditions.

(ii) The simple BC (2.1) is sufficient to describe the
properties of the fluid-wall interface.

For bulk fluids, it is well known that property (i) allows
one to relate the phenom enological dissipation
coefficients to the equilibrium time dependent correlation
functions of the fluid. In this section, we derive similar
relations for the phenomenological parameters z,» and

5„»& appearing in (2.1).
A first relationship between the parameters that

characterize a confined Quid slab can be obtained in the
form of a "sum rule" involving the correlation function
of the total momentum parallel to the walls
j(k =O, t)=g;p;„(t}. The derivation of this sum rule is
based upon applying linear-response theory to a fluid slab
in which all molecules are subjected to a uniform force
field Fo in the x direction. An average current (jo) in

The resulting momentum flux in the x direction is

(j ) =f mv(z)dz

5o5a
5o+5s+4

12' H +5o+5q
' ' 1+3

(4.2)

(4.3)

The identification of the two results (4.1) and (4.3) yields
the sum rule

t Jot Joo CE
0

hz
=Npoktt T

12'

5o5s
'

5o+5„+4

h +5o+5„
(4.4)

The above derivation clearly illustrates the principles
that underly the derivation of "Kubo-type" formulas for
the BC parameters. The resulting sum rule, however, is
not sufficient to independently determine all the phenom-
enological parameters. We have developed a more gen-
eral approach to obtain explicit formulas for the parame-
ters characterizing a planar fluid-solid interface. We
present below a simple derivation of our results using
linear-response theory. An alternative approach using
the Mori-Zwanzig formalism is presented in Appendix B.

The system we consider is a fluid of viscosity g and
density po, filling the upper half-space z )0 and bounded
by a solid liquid interface in the z =0 plane. Here z =0
refers to the physical position of the interface, i.e., it has
the same meaning as L in Sec. II. When a flow parallel to
the wall is induced in the fluid, the net friction force act-
ing on the fluid must be, according to the phenomenolog-
ical description, proportional to the hydrodynamic veloc-
ity field computed at some position z„,&&

inside the fluid.
The proportionality constant is of the form SA,„,&&, where
S is the interface area and A.„,» is the friction coefficient.
The phenomenological parameters A, ,» and z,» do not
depend on the specific flow pattern or the external causes
that generate this flow. This allows us to consider a par-
ticularly simple category of hydrodynamic flows, which
can be generated by a simple perturbation of the system
Hamiltonian. Our approach is inspired from the
methods commonly used in nonequilibrium molecular dy-
namics (NEMD}. In NEMD, homogeneous hydro-
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dynamic flows or temperature gradients are created in a
simulation cell by introducing fictitious force fields into
Newton's equations of motion. Applying linear-response
theory to these artificial fields, one recovers the usual
Green-Kubo relations [16]. For example, the Green-
Kubo relation for the shear viscosity can be obtained by
applying linear-response theory to the perturbation Ham-
iltonian [24]

f ds(F (s)F (0))cE
Sk~ T o

f ds (F„(s)(r,'f, '(0) )

f ds ( F,(s)F„(0))CF
0

with F, =g;F,' and S the interface area. Equation (4.9)
can be cast into the final form [using (4.10) and (4.7)]

H[Vu]= g r, p,'(Vu) (4.5) (F» )NE(t) = —
SAwa»v(zwa)) ) . (4.13)

N
H [y, z() ]=j g (z; —z() )p; „. (4.6)

This creates in the bulk fluid an hydrodynamic flow
characterized by the strain rate tensor (Vu) [the super-
script T in (4.5) denotes a transposition]. To obtain the
viscosity, one simply computes the stresses in the per-
turbed fluid to first order in (Vu ) and one identifies the
result to the usual Navier-Stokes form. We have extend-
ed this approach to the determination of the interfacial
dissipation parameters, by considering perturbation
Hamiltonians of the form

This expression is exactly similar to the phenomenologi-
cal form for the friction force which reads

( F„)N»(t) = —S v(z„,ll ) .
wall

(4.14)

'9
wall

wall

f ds (F„(s)F„(0))&E,SkqT o

(4.15)

Comparing the two expressions (4.13) and (4.14) provides
the desired Green-Kubo expressions for the phenomeno-
logical parameters of the BC,

This perturbation generates a Poiseuille flow in the x
direction, characterized by the strain rate j. The veloci-
ty profile, computed to first order in y, is linear and van-
ishes for z =zo,

s F„so„','0
s F 0

(4.16)

v„(z)=j(z —zo) . (4.7)

Linear-response theory gives the nonequilibrium average
of any variable 8 in the presence of the perturbation as

(B )NE(t)= — f ds(B(t —s)A(0))cEj(s),
kqT o

(4.8)

(F„)NF(t) = f ds (F„(t—s ) A (0) ) cE .
k~T o

(4.9)

The time derivative A can be expressed in terms of F
and of the off-diagonal term of the stress tensor inside the
fluid cr„',',

o'', ' is defined as

(4.10)

1V
(f)—~ " ' a ' +(F(f)+F(w))
XZ X, l X, l lm

(4.11)

where F' and F„' are the forces acting on particle i
due, respectively, to the rest of the fluid and to the wall.
If we now introduce k„,» and z„,» defined as

where the subscripts NE and CE denote, respectively, a
nonequilibrium and a canonical average and
A =g; —l(z; —

z() )p; „.The friction force (F„)NE exerted

by the wall on the fluid by the flow is obtained by special-
izing to B =F„ in (4.8), which yields

It is easily checked that a shift in the origin of the z axis
leaves 5„,» invariant and shifts z„,» by the same amount.
The parameters obtained using (4.15) and (4.16) are there-
fore intrinsic parameters, independent of the choice of
the coordinate system. As noted before, (4.15) and (4.16)
can also be obtained using the Mori-Zwanzig formalism,
as shown in Appendix B.

The correlation functions appearing on the left-hand
side of (4.15) and (4.16) could be computed in MD simu-
lations. However, the evaluation of these formulas leads
in finite systems to vanishing transport coefficients. This
difFiculty arises generally for any Green-Kubo coefFicient
A of the form A ~ 1 ~" ( A A(t) ), where is A is a dynami-

cal variable (see [25] and references therein). To obtain a
nonvanishing transport coeScient from this expression,
the thermodynamic limit has to be taken before perform-
ing the integration to infinity, which is not possible in
MD simulations. Several authors [26,27] have proposed
a practica1 way to obtain an estimation of the previous in-

tegral by introducing a cutoff upper limit To in the time
integral. They proposed to choose To as the first zero of
the autocorre1ation function. We have carried out an ex-
plicit evaluation of these formulas using this approxirna-
tion for some of the systems studied in Sec. II. The re-
sults are reported in Table I. The agreement with the
previous results is only fair and the approximate evalua-
tion overestimates the friction [25] (and so underesti-
mates the slipping length). The situation for the hydro-
dynamic position z,&~

is even worse since it is expressed
as a ratio of two integrals of correlation functions. How-
ever, a semiquantitative agreement is found, as seen in
Table I.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have presented an alternative ap-
proach to the theory of hydrodynamic boundary condi-
tions. Generally speaking, the description of the none-
quilibrium behavior of a fluid under the action of external
fields requires two ingredients: phenomenological trans-
port coefficients and boundary conditions. It is we11 es-
tablished that the transport coefficients are intrinsic prop-
erties of the bulk fluid. These coefficients can be mea-
sured independently of any boundary conditions by moni-
toring the relaxation of Quctuations in the bulk Quid, e.g.,
in inelastic light-scattering experiments. They can also,
in principle, be computed from first principles using equi-
librium statistical mechanics. Boundary conditions, on
the other hand, are not, in general, derived from first-
principle considerations. Rather, they usually appear as
an additional hypothesis in the theory, whose conse-
quences must be checked a posteriori.

Our work constitutes an attempt to avoid this
difference in the treatment of transport coefficients and of
boundary conditions. We have restricted our study to
the boundary condition for the tangential velocity field in
the fluid at a solid-liquid boundary, both because the
problem is experimentally important and conceptually
simple. Our approach consists in four steps. First, we
specify the phenomenologica1 form of the boundary con-
dition, which will involve a few phenomenological pa-
rameters. Second, we compute the time-dependent corre-
lation functions of the Quctuations in a confined Quid un-
der the assumptions that the dynamics of these Quctua-
tions obeys both the phenomenological equations of
motion and boundary conditions. Third, we compare the
computed correlation functions to exact results obtained
from MD simulations. This allows us to confirm the va-
lidity of the phenomenological description and to obtain
the corresponding parameters. Finally, we use the stan-
dard methods of statistical mechanics to explicitly relate
the phenomenological coefficients of the BC to the equi-
librium correlation functions of the fluid, computed in
the presence of the boundaries. Evidently, these correla-
tion functions now depend on the nature of both the fluid

and the solid that form the interface. The approach is
quite general and can be used for any type of solid-liquid
interface, although in this paper we only considered the
interface between an "inert" solid (i.e., a solid without
internal degrees of freedom) and a liquid. It could also be
generalized to the study of boundary conditions for other
6elds, e.g., temperature.

From a practical point of view, our most striking result
is the fact that even extremely smooth solid surfaces are
characterized by no-slip boundary conditions. For corru-
gations amplitudes larger than a few percent of the
molecular diameter, velocity slip is absent at the solid
boundary. This result is proven here only for the particu-
larly simple system we considered, but we expect it to
hold quite generally for simple fluids under standard con-

I

ditions, since our system is quite typical of such fluids.
Of course, the situation can be very difFerent for poly-
mers, in which another length scale, the chain size, must
play an important role [11].

The second important result we derive is that the
boundary condition on the hydrodynamic field must be
applied at a surface that lies on the fluid side of the inter-
face and is separated from the solid by about one layer of
fluid atoms. This is true both of the no-slip BC which, as
discussed above, holds in most cases and of the perfect
slip BC that describes ideally flat walls. Again this result
a priori is specific of the soft-sphere system we consider,
but its validity probably is much more general. In fact,
our result is qualitatively in perfect agreement with re-
cent experimental observations [7] on a variety of simple
molecular Quids. Also in qualitative agreement with
these experimental observations is the fact that a strong
attraction between the fluid molecules and the solid wall
results in a decrease in the hydrodynamic thickness of the
layer. Earlier simulation work [13,20, 12] on Couette or
Poiseuille flows also concluded, in most cases (see Sec.
III C), to the existence of one or two "immobile" fluid
layers at the solid liquid boundary. Our method permits
a clearcut distinction between the position of the hydro-
dynamic BC and the slipping length itself, which cannot
be found in earlier work.

Natural extensions of this work include the modeliza-
tion of more realistic solid walls, the study of equilibrium
correlations in strongly confined systems, and in systems
presenting a Quid-Quid interface between two immiscible
liquids. Such systems have been studied in the past using
nonequilibrium methods [13,12,28—30], but we believe
that the study of their equilibrium correlation functions
could help understand their peculiar dynamical proper-
ties.
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APPENDIX A

In this appendix, we obtain the relationship between
the momentum fluctuations in the microcanonical and
canonical ensembles [23]. We recall here only the main
steps in the derivation, which is based on the method of
Ref. [23].

We consider a system characterized by extensive
variables {V|, Vz, . . . ], with conjugate intensive
variables [X&,X2, . . .]. For any quantity A, the
average in the ensemble specified by variables
X, ,Xz, . . . , (A~X, ,X2, . . . ) is related to the average
computed in an ensemble specified by variables
V„Vz, . . . , ( A

~ V„Vz, . . . ) through a Legendre trans-
formation:

(A~X„X2, . . . )=e ' ' ' f f (A~V„V2, . . . )exp —[%(V„V2, . . . )++X;V;] dV, (Al)
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where the functions exp[ —[%(X„Xz,. . . )]] and
exp [

—[4(V„Vz, . . . ) ] ] are the partition functions of
the system in each ensemble. In the thermodynamic lim-

it, the exponent 4( V„Vz, . . . )+g,X,. V, in (Al) goes to
infinity as (N ) and the distribution in the I V„V2, . . . ]
space becomes infinitely sharp. At finite (N), the aver-

age of A in the [X] ensemble is given by the average in
the [V] ensemble plus corrections in powers of (N)
A Taylor expansion yields

Applying (A2) to a product AB, the desired relation is
obtained,

&5~5Blv&=& ~Blv& —
& ~ Iv&&Blv&

= (5w5B lx &

x; a(six& a&Blx)
av, ax, ax,

where V; means ( V, lX).
We now specialize to the fluid slab studied in this

work. We first consider the case where the walls are
ideally fiat. In the microcanonical ensemble, the x and y
components of the total momentutn P are conserved
quantities and the extensive variables that characterize
the system are the energy and the total momentum paral-
lel to the walls (in addition to the volume V and the parti-
cle number N): (E,P,P ). The conjugate intensive vari-
ables are, respectively, the inverse temperature p and the
x and y components of the center of mass velocity U„and
u . Using (A3) we obtain the relation between the fiuc-
tuations in the microcanonical and canonical ensembles
of any pair ( A, B) of variables

a(A & a(B &

ap ap

2

(5 A 5B )MF
= ( 5 A 5B )CE-

B

p a&a)„a&B&„
mN aPv) aPvp

(A4)

where the subscripts ME and CE, respectively, stand for
microcanonical ensemble averages, C is the specific heat
per particle, and v~~ is the vector (u„,u~). To derive (A4),
we make use of the standard results:

a&E &CE = —((5E) )CE= Np C/k~, —

a(p, &„= —(5E5P; )CE=O,

a&p, &„' "=(5P,5P, &„=NmZP,
a vi

(A5)

where i,jP {x,y]. Applying (A4) with A =j (z, t) and
B=j(z', t) [Eq. (2.13)], we obtain Eq. (2.16) of the main
text.

For corrugated walls (i.e., the wall-fiuid interaction de-
pends on x and jor y), the total momentum parallel to the

& al&v}}=&six&+-,'y '
& ~l&v& &

ax, av;ax,
(A2)

The correction vanishes for the pair of variables

[j (z, t),j (z', t)], which yields Eq. (2.14).

APPENDIX 8

In this appendix, we derive the Green-Kubo formulas
for the phenomenological parameters 5„,a and z„„,
within the Mori-Zwanzig formalism [18]. As in Sec. IV,
we consider a single solid-fluid interface. The wall is lo-
cated in the plane z =0 and the fluid fills the upper half-
space z &0.

In the Mori-Zwanzig projection operator formalism,
the (exact) evolution equations of any set of dynamical
quantities A are written in the form of generalized
Langevin equations,

d 1'—A(t)=i 0 A(t) f dr M(—r) A(t —r)+F(t), (Bl)
dt 0

where Q is the frequency matrix

Q = (I.A, A') ( A, A') -'

and M(7) is the memory function matrix

M(r}=(F(r),F (0) ) ( A, A )

(82)

(83)

F(r) is the random force, F( )r=e px(iaL }rf,f=iaL A,
and L is the Liouvillian. The operator 6 is defined as
6= 1 P, where P is the—projector onto variables A,

P=(. . . , A') &A, A'&-' A. (84)

The angular brackets here stand for a canonical average.
When the variables A relax much more slowly than all
other properties, a time-scale separation (Markov ap-
proximation) is possible and leads to the following equa-
tions:

—A(t)=iQ A(t) —I A(t)+F(t),d
dt

where

r= 1'"dr M(r)

(85)

(86)

is the relaxation matrix. In addition, we will assume as
usual that in the hydrodynamic limit (i.e., the zero wave
vector limit) the time evolution of the memory functions
is governed by the propagator exp(iLr). The memory
functions are then equal to the corresponding time corre-
lation functions.

Let us consider now the set of variables A= [jk],
when j„=g;p„;exp(ikz; ) is a Fourier component of the
transverse fluid momentum density parallel to the wall.
Because of the presence of the wall, these variables are
not conserved and their correlation time does not go to

walls ceases to be a conserved quantity in the micro-
canonical ensemble and the system is characterized only
by its energy (in addition to V and N). Using (A3) we
now have

(535B )ME=(5A5B )cE—
p2 a& ~ )„a&B}„

B
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j„(t)=fdk'[iQ](k k')'Jkt'
jk +Fk (B7}

A straightforward calculation shows that [iQ](k,k') is
equal to zero. The relaxation matrix can be written

infinity when the wave number goes to zero, as opposed
to the bulk case. However, we expect the lifetime of
these variables to be still macroscopic compared with mi-

croscopic relaxation times, so that the Markov approxi-
mation is valid. In terms of these variables, (B5) can be
rewritten

1'(k,k')= f d [(F( ),F (0)) ( A, A ) '](k, k')
0 "I, " AA~ ' ",k', BS

where we introduced I defined as

I =f +"d&(F(~),F (0) ) . (B9)
0

The matrix ( A, A ) ' can be written in the alternative
form, using the equilibrium mass density profile p(z),

i(k —k')z

[( A, A ) '](k, k')= f dz . (B(0)
(2m. ) k&Tp(z)

Using (B8) and (B10), we then compute the second term
in the right-hand side of (B7),

r
(2m. ) ks T p(z) 2nktt T

(B1 1)

In Eq. (Bll), we have introduced the hydrodynamic velocity field v(z) (and its Fourier transform vk) defined as
v (z)=j(z)/p(z), where j (z) is the momentum density, related to its Fourier components through

Jk e ' '=2' z (B12}

The time evolution of jk is thus given by

jk(t}=— fdk'[f'](k, k')vk +Fk(t),1

dt ' 2~k, T (B13)

which shows that the x component of the force acting on the fiuid due to the wall FP" is related to the hydrodynamic
velocity field through

F„""'(t)= P„(t)= j„(t—)= — „ fdk'[I ](k =O, k')v„+F„( ),wa][ (B14)

where P„=g,p„, is the total momentum parallel to the wall.
In the limit of small k, the matrix I is simply

1'=f d (F,( z)F, (0)z)+((k —k') f d (F,( ) z(0)z)+zO(k', . . . )
0 0

=A,„,]]Skit T[1+i(k —k')z„„,+O(k, . . .)], (B15)

where F„(t) is the instantaneous force acting on the fiuid due to the wall, cr„,(t} is stress tensor inside the fiuid, S is the
interface area, and the two parameters A,„,[] and z„,&]

are defined by Eq. (4.12). In the phenomenological approach, the
force acting on the fiuid depends only in the hydrodynamic velocity field. Therefore only small k' are involved in the
integration in (B14) and we can write

F„""'(t)=—A,„,]]S fdk'[1 ik'z„,[[+O(k' —)]vk +F„o(t)1

2'
(k[]Sv(z =z„(k[])+Fk=o(t) . (B16)

In the Markov approximation, the random term Fk o(t) can be neglected after a transient time much shorter than the
hydrodynamic time scale, which yields the final result

F„""(t)= —A,„,]]Sv(z =z„,[[) . (B17)
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