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Adsorption of line segments on a square lattice
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We study the deposition of line segments on a two-dimensional square lattice. The estimates
for the coverage at jamming obtained by Monte Carlo simulations and by seventh-order time-series
expansion are successfully compared. The nontrivial limit of adsorption of infinitely long segments
is studied, and the lattice coverage is consistently obtained using these two approaches.
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I. INTRODUCTION

Random sequential adsorption (RSA) has been used
for a long time as a xnodel of irreversible deposition pro-
cesses [1,2]. An object of a given shape is placed ran-
domly on a substrate, subject to the constraint that it
does not overlap previously deposited objects. One deter-
mines the coverage, de6ned as the &action of area covered
by the adsorbed objects, as a function of time, and its
in6nite-time limit, called the jamming limit. These quan-
tities can be determined exactly in one dimension and by
approximate methods or numerical simulations in higher
dimensions. The RSA models are characterized by two
main parameters: the nature of the substrate —discrete
or continuous —and the shape of the deposited objects.
Although lattice models are less directly connected with
experimental situations, they are easily accessible to nu-
merical simulations and accurate results can be obtained
from them. Furthermore, in most cases, one can define a
scaling limit which allows an extrapolation to the contin-
uum. The jamxning limit for the deposition of k-mers on
a one-dimensional lattice has been known exactly for a
long time [3] as well as its continuum limit [4]. In two di-
mensions, the regular objects that 6t a square lattice are
rectangles of width m and length 8 expressed in units of
the lattice spacing. When the aspect ratio a, de6ned as
the length-to-width ratio, varies &om 1 to oo the shape
of the objects changes &om the square to the line seg-
ment. The continuum limit of aligned squares, taken by
letting the edge size approach infinity with the aspect ra-
tio fixed to one, has been studied by Privman, Wang, and
Nielaba [5] and by Brosilow et aL [6] in the framework
of an extensive numerical simulation, leading to an accu-
rate determination of the saturation coverage and of the
correlation functions. On the other hand, the deposition
of randomly oriented rectangles in the continuum has re-
ceived much attention in order to guess the infiuence of
the aspect ratio on the kinetics of the process and on its
jamming limit [7—9]. For instance, it has been shown that
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in the case of extremely elongated objects, the jamming
coverage approaches zero as a power of the inverse of the
aspect ratio. In the limit of an infinite aspect ratio which
corresponds to the deposition of randomly oriented line
segxnents, the time evolution of the density of deposited
segments is driven by a power-law behavior [7,10—12].

RSA of dimers or of small k-mers on the lattice, be-
ing one of the simplest two-dimensional process, has been
widely studied as a testing model for the approximation
methods and numerical simulations. In contrast to the
continuum case, the RSA of long segxnents on a bidi-
mensional lattice has not yet been systematically inves-
tigated [13] and this is the problem we address in this
paper. The study of such systems can give insight into
experimental situations involving the deposition of rect-
anglelike objects with a large aspect ratio. For example,
the sticking of rodlike polymers to a surface on which the
activated sites form a lattice [14] may be modeled by an
RSA process. In addition, in the limit of infinite segment
length, this model is equivalent to the continuum depo-
sition of aligned unit segments onto the plane, which is
to be compared to the case of rundomly oriented ones.

We 6rst attack the problem by means of an extensive
numerical simulation, which is presented in Sec. II of
this paper, where we give the technical details and the
analysis of finite-size effects and propose an expression
for the large-k behavior of the jamming limit. Then, in
Sec. III, we derive seventh-order time-series expansion of
the coverage analytically in k and compare the result of
the extrapolation at jamming with the asymptotic value
obtained by the simulation. We comment on our results
in Sec. IV.

II. NUMERICAL SIMULATION

A. Method

We consider a periodic square lattice of linear size I,
on which we randomly deposit line segxnents of k sites
(k-mers). Since we are interested in the limit of long seg-
ments, we need a large-scale simulation. However, the
standard xnethod usually ixnplemented in the continuuxn
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deposition of oriented squares [6], of dividing the lattice
into cells containing at most one object, is not efficient
here. Therefore, due to memory storage and comput-
ing time limitations, we had to restrict our simulation to
segments of length k & 512 sites on lattices of linear size

I & 4096, preserving in all cases a ratio L/k ) 8. A

subsequent study of finite-size effects allows us to make
a reliable extrapolation to the k ~ oo limit. This point
will be discussed below.

The time evolution to the jamming limit is divided in
two regimes [5]: in the initial stage the possible adsorp-
tion site is randomly chosen among atl the sites; in the
late stage, it is drawn from the list of vacant positions,
which is regularly updated after a fixed number of depo-
sitions. The relative duration of both stages is optimized
in such a way that the rejection rate in the first stage re-

mains low whereas in the second stage the list of vacant
positions is small enough for the updating procedure to
be short. Good balance between these constraints is re-

alized for a number of attempts during the first stage of
typically four to five times the total number of sites.

For the largest lattice sizes, the memory storage needed
is very large. We use multispin coding to store the occu-

pancy state of each site and initialize the list of vacant
positions only at the beginning of the second stage when

it is reduced to less than 5% of the total number of sites.
Finally, the sample used for averaging and for the er-

ror analysis consists of at least 100 independent runs.

Although rather small, this sample size leads to results

of sufBcient accuracy for our purpose.

Actually, Privman et al. [5] and Brosilow ei al. [6] have

already observed that finite-size effects are negligible for
the deposition of oriented squares on periodic lattices of
size as small as eight times the square edge. In our case,
however, in order to reach the large segment limit at low-

est computing cost, we consider systems whose size is not

very large compared to the size of the adsorbed segments.
For this reason we must handle carefully the finite-size
effects. To estimate them, we perform the following anal-

ysis. For a given lattice size L, we measure OL, (k) for

various values of k up to k L/2 and then repeat this
measure for a larger value of L. Figure 1 shows the re-

sults for L = 128 and L = 256. It is apparent that both
lattices give the same result for k & 42. The finite-size
effects then start to occur for the L = 128 lattice whereas

they appear only for k & 90 for the largest lattice. The
continuous line results from the extrapolation discussed

in Sec. II C. It thus appears that a lattice of a given size L
behaves as if it were infinite as long as the segment size

does not exceed at most a quarter of the lattice edge.
With this rough analysis as a guide, we have measured

OL, (k), using several lattice sizes (typically three to four

values) for each k value, up to L/k = 4 and check that for

the largest sizes, the measured coverages remain consis-

tently wit;hin the error bars. We give the results in Table

I, which will be used as the basis of our extrapolation of
Sec. II C.

Another issue concerning the finiteness of the system
is the standard deviation over the sample of the fraction
of occupied sites, defined by

B. Finite-sise efFects

Finite-size effects are exactly known in one dimen-

sion [15,16]. MacKenzie has shown that, for RSA of k-

mers at jamming, the number of vacant sites on a lattice
of L sites with open boundary conditions is given by

o = g(O2) —(O)2

and connected to the statistical error of the jamming cov-

erage, AO = oe /QX„where W, is the sample size.

On the basis of standard statistical arguments, if one as-

sumes that the fluctuations of 0 are driven by the vari-

ations of the number of deposited objects, one expects

Vl. (k) = (k+L) V(k)+ 0~
( 1

f rLo-+oo, k/L~O
o L=128
~ L=256

where V(k) does not depend on L. A periodic lattice
of L sites, once the first segment is deposited, becomes
an open one of I —k sites and the coverages for both
systems are related by [where the superscript (0) stands

for "open" and (P) for periodic]

V'"'
A:O(P) (k)

I, ( )
I

=1 — = V(k)+Oi

It follows that finite-size corrections are less than expo-
nentially sma11 for a periodic lattice. Although this argu-
ment cannot be directly extended to higher dimensions
we expect that in two dimensions, the edge effects on the
jamming limit on a periodic lattice decrease very rapidly
when L m oo and k/L m 0.

I0.6
0 20 40 60 80 100 120 140

segment size

FIG. 1. The jamming limit for the deposition of k-mers

on lattice of size L = 128 (open circles) and L = 256 (filled

circles) as a function of k. The solid line corresponds to the
best Gt of the I —+ oo values.
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TABLE I. The jamming limit for the deposition of A:-mers on lattice of size L, for various segment lengths k.

128 512 1024 1536 2048 3072 4096

2

4
8
12
16
24
32
48
64
96
128
192
256
384
512

0.9066(2)
0.8109(3)
0.7487(6)
0.7233(8)
0.7107(13)
0.6956(6)
0.6867(23)

0.6709(38)

0.9068(1)
0.8106(2)
0.7484(3)
0.7239(4)
0.7111(6)
0.6970(7)
0.6894(13)
0.6812(20)
0.6721(25)
0.6734(20)

0.8106(1)
0.7477(1)
0.7239(2)
0.7106(2)
0.6968(4)
0.6890(7)
0.6814(9)
0.6769(13)
0.6731(6)
0.6697(24)

0.7477(1)

0.7110(1)
0.6967(2)
0.6893(4)
0.6809(5)
0.6765(6)
0.6714(5)
0.6692(13)

0.6608(27)
0.6656(13)

0.6682(6)

0.6641(10)
0.6655(7)

0.6632(13)
0.6637(6)
0.6634(6)
0.6628(9)

ue to decrease as the inverse square root of this number,
which would give a behavior in ~k/L. Instead, for the
whole set of data, we observe that

This behavior emerges clearly &om Table II, where oo
measured for several fixed k/L is roughly independent of
the lattice size L, the constant value obtained for each
k/L being proportional to k/I It is con. firmed in Fig.
2 where the k dependence of ciao for L = 256 appears
to be linear. On the same plot, we have superimposed
some data for L = 512 and k = 16,32, 64, 128 which
coincide within the error bars with the L = 256 data
for k = 8, 16,32, 64, respectively. The L dependence of
oe is a common feature of all the RSA simulations [1]
whereas a linear k dependence is somewhat unexpected.
This result can be interpreted as an indication that in
the limit of long segments, the system behaves mainly as
a one-dimensional one along each direction, the Huctu-
ations being linked to the number of deposited objects
along each line (L/k)z.

C. The extrapolation

Following the finite-size eRect analysis of Sec. II8, we

consider that for each segment length k, the value of

ei, (k) measured on the largest lattice size L of Table
I is a good estimate of 8 (k) = 1imL, ~~ OL, (k). These
data, plotted as a function of k, are displayed in Fig. 3
for k & 24. In order to extrapolate to k + oo, we must
guess the large-k behavior. Analogous analyses have been
performed previously in one dimension [15] and in two di-
mensions for the deposition of squares [2,6]. In both cases
the large-k limit corresponds to the continuum limit and
is approached up to a 1/k corrective term.

Although our data exclude a single 1/k dependence,
they are quite compatible with a superposition of 1/k
and 1/k2 corrective terms. The best fit according to this
behavior, realized for k & 48, is displayed in Fig. 3 and
corresponds to the expression

0 (k) = 0.660+ 1.071 ——3.47—1 1

k k2

&om which we conclude that

8 (oo) = 0.660 + 0.002, (2)

where the error bar results &om a variation of the fitting
interval. Accordingly, the coefficents of 1/k and 1/k in
Eq. (1) vary in the ranges [0.85, 1.08] and [

—1.0, —3.7],
respectively.

Let us 6nally discuss how the jamming coverage varies
with the deposition mechanisxn. Actually, besides the
conventional deposition mechanism used here, one can

TABLE II. The standard deviation oo of the coverage for different fixed values of L/k as a
function of the lattice size.

64 128 256 512 1024

32
16
8
4

0.0038(2)
0.0070(3)
0.0125(4)
0.0247(9)

0.0034(2)
0.0060(3)
0.0122(4)
0.0251(13)

0.0030(2)
0.0060(3)
0.0119(7)
0.0235 (9)

0.0024(2)
0.0059(4)
0.0117(8)
0.0265(10)

0.0031(3)
0.0061(4)
0.0129(7)
0.0267(16)
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0.03

= L=256
~ L=512

crossover between conventional and end-on coverages has
been observed recently in one dimension [18] at k = 4.

III. PERTURBATIVE Ic-MER FILLING
GF THE SQUAKE LATTICE

0.02 A. The perturbative expansion

0.01

0
20 40 60 80 100

segment size

FIG. 2. The standard deviation &To as a function of the
segment size k for the L = 256 (open circles) and L = 512
(filled circles) lattice sizes. The solid line is the best fit of the
I = 256 data by a linear function.

We will determine the time-series expansion of the cov-
erage O(k, t) for the RSA of k-mers on a two-dimensional
square lattice. The segment orientation is chosen at ran-
dom with equal probability for horizontal and vertical
deposition.

We first construct an operator which realizes the se-

quential addition process of arbitrary objects on a lattice.
This elementary time-evolution operator is obtained by a
generalization of the quantum-mechanical methods used
by Fan and Percus [19], and by Dickman, Wang, and
Jensen [20] to the deposition of arbitrary objects, and
cannot be evaluated except in a perturbative way.

The perturbative expansion (PE) of O(k, t) is then

choose the so-called "end-on" mechanism in which, once
a vacant site has been found, the deposition is (randomly)
attempted in atl the directions until the segment is ad-
sorbed or rejected. This method leads to denser configu-
rations than the conventional one [17] for small k-mers,
and for infinitely long k-mers we quote here the coverage
from Manna and Svrakic [13]:

O(k, t) = 2k) C„(k), t",( I)n —i

where the first-order term in time is 2kt, because the
first adsorption attempt on an empty lattice is always
accepted and occupies k sites in the two possible orien-
tations, and where the coefficients C„(k) are given by
implicit overlap integrals:

0 (k) = 0.583(+0.010) + 0.32
1

ink C„(k)= l1— (4)

clearly smaller than our result, Eq. (2). Comparing both
types of data, we observe a crossover for k 16, our
saturation coverage becoming larger than the end-on one
above this value. Let us point out that the same kind of

0.7

0.69

068

0.66

o 65
0 100 200 300 400 500 600

Segment Size

FIG. 3. The estimated I ~ oo jamming coverage as a
function of the segment size k and the fit of these data.

The set of integration variables defining a deposition is
denoted by i, and —K,~ is a hard Mayer function (K,~

= 1

only if i and j are overlapping objects, 0 otherwise).
The inclusion-exclusion sequence generated by Eqs.

(3) and (4) has already been used for square depositiori
in the continuum [20,21]. Similar techniques appear in

hard-sphere modelization of simple liquids at equilibrium
[20,22].

Next, one generates the nth-order diagrams by the full

expansion of C„(k). All monomials of this polynomial are
connected labeled graphs which are regrouped in classes
I „,(unlabeled graphs) of the same topology which thus

appear with combinatorial weights as can be easily seen
in Fig. 4, which shows the first terms uf the graphical
perturbative expansion.

Let us stress the generality of the above perturbative
approach, which is valid for any standard RSA process.
The details of the process affect only the graph integrals
I(r„,).

In order to compute I(I', ), one has to do the sum-
mation over fxi1, the n vertices of the graph I', . Here
the vertices {xi,x2, . . . , x„1 are to be understood as the
position of the starting point and the orientation of each
of the n k-lners.

Finally, the graph contribution is
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C,

C,

C3:

c 4 — — — — ~. — —,P,I:I

FIG. 4. Graphical expansion of C„ for one, two, three, and
four points. The reduction of the number of graphs oper-
ated by the topological identi6cation is especially efficient at
large orders not depicted on this 6gure, e.g. , at seventh order,
~ 6 x 10 labeled graphs are regrouped into 10 unlabeled
ones.

where the product g„ is done oa the links of I'„, aad
the sum is over all the degrees of f'reedom for the k-mer
variable z~, except one which can be frozen at the origin
by transational invariance.

Aligned object deposition is of practical interest here
because, due to the factorization property of hard Mayer
functions [23], it allows us to reduce the problem of two-
dimensional integration to a one-dimensional one, once
the orientations of the k-mers are Bxed. Such a factor-
ization has already been used in the RSA of aligned hy-
percubes to determine the time series [20,21] and proved
to be essential in the study of the Palasti conjecture [21].
In practice, we have analytically calculated all the 2"
projected one-dimensional graph integrals appearing at
order n. Sums of products of two one-dimeasional in-

tegrals are then performed to algebraically obtain the
two-dimensional graph integrals for segment deposition.

We have thus stored all the one-dimensional graph in-
tegrals I„; and weights necessary to compute C„(k) an-
alytically in k, up to the seventh order in t. The analytic
expression of graph integrals has no physical interest and
we give in Table III the coefBcients needed to reconstruct
to seventh order the time series expansion of which the
first terms are

t2
O(k, t) =2k t —(—1+2k+k')—

2

+(1 —5k+ k +5k + 2k )—
6

(6)

We give, as a first attempt at resummation, the pre-
dictions for the dimer jamming coverage 0 &om one of
the more stable methods for computing the infinite time
limit of O(2, t), knowing the exponential behavior of the
coverage at large times on the lattice.

We first invert the PE, Eq. (3), into a power series of
0 to calculate e~ in terms of O. The poles of the Pade
approximants formed &om this series in 0 give jamming
values O~, which are reached with the expected expo-
nential behavior O(t) O~ —Ae ~, the coefficieat A

k
k
I4
a'
a'
k
s8
a'
y1Q

I 11

1 -1 1 -9
2 -5 84
1 1 -95

5 -141
2 22

165
46

18 -900
-276 20940
645 -79802
343 46090

-323 -88615
-2288 648530

529 -365541
1357 -745840
283 235865

307480
50593

8100
-269460
1459620

-3561354
11703689

-33506220
16916830
59786163

-43362258
-40950720
16739500
13706391
1848119

being given by the residue. The resultiag Pade tables of
0 of the coefficients A can be found in Table IV, where
we notice very good agreement between simulations and
time-series estimates of the jamming coverage. In fact,
this series for deposition of small size objects can be nu-
merically performed at larger orders than the generic case
of k-mer deposition and allows us to observe a wider Pade
table.

The quality of the results, linked to the dispersion
of the Pade table, decreases with the length of the k-
mer. For example, the same method applied to the
eighth-order trimer series is still predictive, giving 0
0.842(2), and A = 0.135(5) in agreement with both the
result of Evans and Nord [24], i.e. , 0.8465 obtaiaed by
hierarchy truncation which exploits empty site shield-
ing, and the Monte Carlo simulation result of Nord [17],
0.8465(2). For k & 4, numerous instabilites forbid reli-
able evaluations.

These instabilities are reminiscent of the problems en-
countered in summing up the RSA series of (k x k) squares
deposition on a square lattice as k increases: the effective
behavior of the truncated power series seems to change,
as k increases, from e ' to lnt/t, which prevents the use
of a simple and stable extrapolation procedure in the
intermediate-k range. The situation is even worse for the
deposition of long k-mers because the usual scaling ar-
gument does not hold in such a way that the infinite-k
limit of the time-series expansion of the coverage cannot
be taken order by order. This can then be seen in the
behavior of the series for large k,

O(k, t) = —) K„(k't)", k »1, (7)

which implies either O(k, oo) = O(1/k) or the divergence
of the sum.

TABLE III. This table gives the coefficients a"„allow-
ing us to reconstruct the seventh-order time-series expan-
sion of O(k, t), the lat tice coverage by segments of k

sites, by O(k, r) = 2k+, ~ ~, C„ t", in which

C = g " n"„k~ . For small k-mers, more orders can eas-
p=Q

ily be computed: k = 2, Cs ——73035 123, C9 ——1663498315,
and for k = 3, C8 ——20554179608.

p 1 2 3 4
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TABLE IV. Pade table of the dimer jamming coverage obtained through equating exp' to the
Pade approximants [N(O), D(O)] where the denominator D (numerator N) degree varies horizon-
tally (vertically), respectively. For each entry of part (a) the coefflcient A of the approach to the
jamming limit given by 0™0 —Ae has been computed through the residue of the corre-
sponding pole and can be found in part (b). For comparison we recall the simulation estimates of
0.9069(2) from Nord [17] and of 0.9068(1) from Table I.

1

0.94117
0.92307
0.91549
0.91179
0.90980
0.90867
0.90800

0.94007
0.91535
0.91015
0.90831
0.90753
0.90718
0.90701

0.92212
0.91011
0.90781
0.90718
0.90696
0.90688

(a)
0.91478
0.90826
0.90718
0.90692
0.90686

0.91127
0.90750
0.90696
0.90686

0.90943
0.90?16
0.90688

0.90841
0.90699

0.90781

0.25
0.20843
0.19285
0.18506
0.18061
0.17788
0.17611
0.17494

0.20744
0.18425
0.17794
0.17521
0.17386
0.17315
0.17276

0.19183
0.17788
0.17433
0.17313
0.17264
0.17244

(b)
0.18416
0.17513
0.17312
0.17254
0.17238

0.17986
0.17379
0.17263
0.17238

0.17726
0.17310
0.17244

0.17562
0.17273

0.17455

Section III8 will report on a large-k resummation pro-
cedure and compare it with the Monte Carlo results of
Sec. II.

Therefore we define a "correlation" function by

(„e(k,t)
28i(k, t)

(9)

B. Summation of the perturbative expansion
in the large-k regime

0(k, t) = 2kt ) N„(k't)", k » 1, (8)

In this section we assume that the long k-mer limit of
the jamming coverage does not vanish, as shown by our
simulation results.

Let us Grst discuss the connection between adsorption
of line segments by a one-dimensional lattice and adsorp-
tion by a two-dimensional one, as already suggested in
Sec. II. Line segment deposition on a square lattice con-
tains obviously line segment deposition on each of the
one-dimensional sublattices and in the correlation be-
tween these two competing (horizontal and vertical) ad-
sorptions resides the difEculty of the study. Owing to
the flux definition used in Eq. (3), the one-dimensional
coverage Oi(k, t) appears explicitly in both lattice direc-
tions as one special configuration among all the others
because one has to sum over all possible relative orienta-
tions of the segments. This is perturbatively observed on
the time series of the coverage in which 20i(k, t) sums

up all the terms in k and k . Moreover we can rewrite
Eq. (7) as

Using the results Rom the Monte Carlo simulation of
Table I and from the series Eq. (6), inserting the ex-
actly known one-dimensional coverage ei(k, t), we can
give the following properties of I'(k, t), which illustrate
its smooth behavior: (i) I'(k, 0) = 1 V k; (ii) I'(k, oo),
which is related to the jamming coverage, varies slowly
with k [e.g. , I'(k, oo) = 1/2, 0.524, 0.514, 0.504, . . . , 0.444
for k = 1, 2, 3, 4, . . . , oo]; (iii) we can define a scaling vari-
able u = k2t in such a way that the coefBcients of the
power series in u of F(k, u) are slowly varing polynomials
in 1/k, as it can be seen from the first terms of I'(k, u)

u f' 1 5 l u2
I"(k, u) =1 ——+ [1+——

2 ~ k 4k') 3

Collecting the subseries in u of a given power of 1/k in
I'(k, u) we then define

I'(k, u) = I'(oo, u) 1 + + + . [, (10)

which has to be understood as an asymptotic expansion
of I'(k, u) when k goes to infinity, as long as the various
series in u appearing in Eq. (10) can be resummed, and
in particular

which then shows two kinds of "scaling" variables: kt.
typical of a one-dimensional RSA of k-mers, and a second
one, k t.

1 1 2 23 3 283 4I'(oo, u) = 1 ——u+ —u — u + u
2 3 108 2160

264 017
+5832000" +

50 593
648 000
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in[1+ O(u)]
~'( )

(12)

in which the perturbative expansion of C (u) can be easily
obtained &om Eqs. (11) and (12).

The final task is to find the limit at u = oo of 4. We
have used a standard method for such an extrapolation,
namely a mapping v(u) of the u variable followed by a
Pade analysis of the v series. In practice we have searched
for intersections of Pade approxixnants by varying the
parameter n entering the de6nition of the xnapping

v(u) = &
—au

In the following we shall work out a resummation pro-
cedure for I'(oo, u) together with an evaluation of the
subleading terms in 1/k, and we find sensible results.

A quick glance at the perturbative expansion of
I'(oo, u) given by Eq. (11) reveals its striking similar-
ity with the expansion of ln(l + u)/u, starting with an
identity of the 6rst three terms. Therefore we write

of the subleading coefficients Ai and A2, which appear
in the asymptotic expansion of the jamming coverage

O(k, oo) = O(oo, oo) + + 2
+.. .

We have applied the same mapping and Pade analysis
as above on the subdominant series Gi(u) and G2(u)
defined by Eq. (10). Among the distinct solutions that
we have obtained, namely

(Gi(oo), a) = ((0.956, 0.887), (0.713,1.165), (1.889, 0.333))

and

(G2 (oo), a) = f (—1.377, 0.694), (—0.791, 1.368)j,
the preferred solution, which corresponds to a larger
number of intersecting central approximants, has been
quoted first. These values of Gi(oo) and G2(oo) and the
known asymptotic behavior of Oi(k, oo) [15] allow us to
finally give our preferred estimates for Ai and A2

Ag ——0.827, A2 ———0.699
after the approximants have been calculated at the point
v = 1/a. From these intersections leading to the evalua-
tion of 4(oo) we finally obtain 8(oo, oo).

Figure 5 shows the Pade intersections in the plane

(8, n). The multiple intersections (of the fifth and sixth
order) group into four nearby classes in which we select
those containing the approximants of the highest order

by 0 = 0.658 and 0 = 0.670 and thus we deduce our re-
sult for the coverage of a square lattice by in6nitely long
line segments

O(oo, oo) = 0.664(6)

in good agreement with the Monte Carlo value, 0
0.660(2) obtained in Sec. II.

Let us now brie8y describe the time-series computation

0.7

0.69

0.68

0.67

0.66

together with the global range we have obtained &om
this method

0.6 & Ag & 1.5, —0.8 & A2 & —0.1

8(k, oo) = 0.664+
0.699

and gives an unexpected precision of the coverage at all
k values. Actually it deviates &om the simulation data
of Table I at most by 2'%, reached at k = 4, in the whole
k range.

In conclusion we have shown that the perturbative
expansion summation of long k-mer coverage can be
brought into full agreement with the Monte Carlo simu-
lations.

This result compares well to the best fit of our Monte
Carlo data &om Eq. (1), except for A2, found to be too
small. As a consistency check of the 1/k expansion we
have also resummed I'(k, u) for finite values of k using
the same method as for I'(oo, u). We find essentially the
same kind of results, which only differ by few percent
from our asymptotic calculation, which is

0.65 IV. CONCLUSION
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FIG. 5. Pade approximants plot of the fifth and sixth or-
der versus the variational parameter n. Intersections of Pade
approximants of the sixth order are shown by full circles,
whereas open circles are located at the other intersections.

We have determined the saturation coverage of ran-
domly adsorbed segments on a square lattice as a func-
tion of the size of the segments, by two independent
methods: a numerical simulation and a time-series re-
suxnmation method. Its behavior for large segxnents has
been obtained and both methods give comparable results
both for the asymptotic value itself and for the approach
to this limit. Indications that the large-segment deposi-
tion process is driven by a one-dimensional mechanism
have been seen in both cases, on the one hand, through
linear Quctutations in the simulation and, on the other,
by the particular role played by the one-dixnensional cov-
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erage time series that we used in the resummation of the
two-dimensional one.

Actually, a simple argument may explain this fact. If
one assumes that a jammed configuration is translation-
ally invariant (in average) and invariant versus the ex-

change of the X and Y axes, it is sufBcient to determine
the coverage of a single line of the system to get the
total coverage. On a line, the occupied sites are dis-

tributed among segments and points which result from
the intersection of the line with transversely deposited
segments. For instance, in the jammed configurations,
a local order is clearly apparent due to the tendency of
the last deposited segment to align with previously de-

posited ones. By measuring the distribution of cluster

sizes for the points and the gaps on the line, one would
guess a one-dimensional process to approximate the true
bi-dimensional one. If this were indeed true, it would
be possible to derive some simple approximations for the
correlations functions. We plan to investigate this aspect
of the model in the future.
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