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The elastic behavior of a weakly aggregating polystyrene latex dispersion was investigated using a
homemade controlled stress rheometer and commercially available dynamic rheometers. Both the creep
measurements and the oscillatory experiments show the absence of a yield stress. The low-shear-limiting

viscosity obtained with the controlled stress apparatus shows a power-law dependence upon volume frac-
tion with a power of 5.3+0.3. Combining the data of the di8'erent rheometers, the storage shear modulus
6' at high frequencies was found to depend upon volume fraction with a power of 4.6%0.3, being in line

with earlier data mentioned in the literature. Using an additional exponent, i.e., one describing the criti-
cal strain above which the material deforms nonlinearly, the fractal dimension df and the upper and
lower bounds of the structural parameter c. were obtained. The latter is a measure for the degree of an-

isotropy of the network skeleton. The values df =2.0+0.2 and 0.5 ~ c 1 are consistent with a model
based on noncentral or bond-bending interactions. It was shown that the structural parameters and
hence the microstructure change significantly when going from rest to high shear rates. Thus, in gen-

eral, one cannot use the results obtained with one type of experiment in another type of experiment.

PACS number(s}: 82.70.Dd, 62.20.Hg

I. INTRODUCTION

The question of whether aggregating dispersions have a
finite low-shear-limiting viscosity or a yield stress and
also a nonzero equilibrium shear modulus (which is the
modulus measured at infinitesimally small deformations)
has been a matter of controversy for quite some time.
Solidlike behavior has been reported by Sonntag and
Russel [1] and Chen and Russel [2]. These authors mea-
sured the complex modulus in oscillatory shear and
found a low-frequency plateau in the storage modulus.
One can argue that this is no proof for the existence of a
finite zero-frequency limit of the storage modulus, since
one can always raise the question of what would happen
if one were able to measure at still lower frequencies.
Furthermore, Chen and Russel in the same study [2]
showed the result of a creep measurement on an aggre-
gating silica dispersion at a shear stress far below the re-
ported yield stress, which was contradictory to the idea
of a rest modulus because the strain increased linearly
with time after imposition of a constant stress, while the
deformation did not completely recover after cessation of
the applied stress. However, this could perhaps be as-
cribed to the fact that the only reported creep experiment
was performed on a sample just below its melting point or
percolation threshold, which might still exhibit fluidlike
behavior. No creep experiments were reported above the
percolation threshold, so it remains unclear if the ob-
served creep behavior is characteristic for the entire
range of experimental conditions covered by the dynamic
measurements.

Buscall, McGowan, and Morton-Jones [3] measured
the high-frequency limit of the storage modulus and the
steady shear viscosity as a function of shear rate for a
number of volume fractions. A Newtonian low-shear-
rate plateau was found, indicating the absence of a yield

stress. Russel [3] argued however, that the detected pla-
teau could be due to wa11 slip, which may be difficult to
avoid at high relative viscosities 10 . Recently, Bus-
call, McGowan, and Morton-Jones [4] reconsidered their
earlier experiments and performed new measurements us-
ing roughened cylinders. They concluded that the earlier
results were indeed influenced by wall slip. However, in
the more recent experiments they again found a low-
shear-rate plateau in the viscosity.

Patel and Russel [5] reported reproducible yield
stresses in aggregating polystyrene latex-dextran disper-
sions. They did not show any plots of the strain as a
function of time; hence, it is not clear whether the angu-
lar displacement could be measured with sufficient accu-
racy with the apparatus used.

At low volume fractions the network formed by an ag-
gregating dispersion has been shown to have a fractal
structure [6], i.e., the number of particles inside a sphere
depends upon the radius of the latter via a power law, the
exponent of which is called the fractal dimension. The
values of the fractal dimension under different conditions
are well established now. As a result of the fractal nature
of the microstructure, the high-frequency storage
modulus (and other quantities depending on the micros-
tructure) of aggregating dispersions as a function of
volume fraction also shows a power-law scaling behavior,
i.e., G' ~ P ', with y, depending on the age of the sample
[1]. The values most often mentioned [2,7—9] lie in the
range from 3.7—4.5, y& being higher for older samples.
Low values of y& were shown to be indicative of aniso-
tropic structures or low fractal dimensions, whereas
higher values indicate more isotropic structures or higher
fractal dimensions [10,11].

From a theoretical point of view, a number of authors
pointed out that for spheres, central interactions alone
cannot be responsible for static elastic behavior at small
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deformations [11,12] because the particles would be able
to rotate freely around each other. Since the usual elec-
trostatic, van der Waals, and steric forces from colloid
chemistry are central, it is difficult to understand elastic
behavior of aggregating dispersions in terms of these
pair-interaction potentials. These difficulties could be
avoided if one assumes particle chains in the network to
be straight. In some cases, such as, e.g., aggregation in
shear flow [13],this assumption is perhaps not unreason-
able, but if aggregation takes place in the absence of
shear flow, it is difficult to see why one would expect
straight chains, especially at higher-volume fractions.
Then we have to imagine possible causes of noncentral in-

teractions as an origin of elasticity. In our model disper-
sion a surfactant layer is adsorbed onto the surface of the
spherical particles. For particles with polymer layers ad-
sorbed on their surfaces, a number of authors recently
showed [14—18] that for two interpenetrating layers,
there is a force parallel to the particle surfaces, resisting
shear and hence hindering rotation of particles around
each other. Though it is difficult to quantify the magni-
tude of this force for our model system with adsorbed
surfactant instead of polymer, qualitatively it seems plau-
sible that a slight interpenetration of surfactant layers

may indeed be the cause of some bond-bending com-
ponent of the interparticle force on time scales shorter
than the relaxation time of "entanglements" between sur-
factants belonging to different layers, thus leading to a
shear modulus at higher frequencies. Another possible
cause of bond-bending interactions may be inhomogene-
ous adsorption of surfactant on the particle surface. In
this case it will be energetically favorable for two parti-
cles to make contact in the area of relatively low surfac-
tant density. Moreover, if one has a surfactant layer
which is not grafted but is adsorbed onto the surface, the
adsorption equilibrium may change locally when two par-
ticles meet. Due to the driving force caused by the van
der Waals attraction, surfactant may desorb in the area
of contact, which results in a locally higher attractive en-

ergy and also a bond-bending force. Finally, though
viewed with an electron microscope the particles seem to
be spherical, it is not clear whether they are spherical on
smaller length scales. Any deviation from the spherical
shape would also cause a locally higher attractive energy.
The last three cases may also lead to the existence of a
static shear modulus at small deformations.

In the present paper rheological experiments are re-
ported on a "weakly" aggregating polystyrene latex
dispersion, i.e., the attractive interaction energy between
two particles ranges roughly between 4k' T and 10k' T.
To this end, a surfactant with a suitable chain length is
adsorbed onto the particle surfaces [19]. At saturation
adsorption a dense layer is present, causing steric repul-
sion. Hence, after addition of electrolyte, the system will
aggregate only weakly, since the dense layer effectively
decreases the strength of the attraction. The advantage
of a weakly aggregating model system is that at these rel-
atively low attractive energies, particle bonds are rather
easily broken under shear, while at the same time the at-
traction is strong enough to prevent fast thermal breakup
of bonds in the absence of shear, thus facilitating experi-

ments on reproducible structures.
Two kinds of experiments were performed. First, a

controlled stress rheometer developed in our own labora-
tory [20] was used to perform creep measurements for a
number of volume fractions between 0.02 and 0.30. The
apparatus is capable of applying very small stresses
(down to 0.6 mPa) and of measuring very small angular
displacements (down to 10 rad}. Since the applied
stresses were well below the yield stresses reported in the
literature [5], it was expected that in the case of a yield
stress, the angular displacement as a function of time
should reach a constant value at each shear stress. More-
over, application of a range of stresses enabled a check on
the linearity of stress-strain experiments. In the absence
of a yield stress, a low-shear-limiting viscosity was ex-
pected.

Second, dynamic moduli were measured in the frequen-
cy range between 0.00.1 and 5 Hz in order to investigate
whether or not a low-frequency plateau in the storage
modulus could be detected and to see if the results of the
two independent experiments could be related to each
other. It was hoped that through the use of the accurate
equipment, some new light could be shed on the question
of whether or not at least the specific model system used
possesses a yield stress under certain conditions. Fur-
thermore, we intended to correlate experimental data
with a certain model for the microstructure. Thus a
number of parameters describing the microstructure of
the aggregating model dispersion were determined. It is
noted that the model assumes a fractal network to be
formed over the entire range of volume fractions men-
tioned above, though this may be questionable at the
higher volume fractions ($)0.15). However, it will be
shown that the measured rheological quantities corro-
borate the same scaling behavior for all the volume frac-
tions considered.

II. THEORETICAL

A. Relation between retardation and relaxation

In the controlled stress experiments a stress
o(t)=oofy(t}, with H(t) the Heaviside unit step func-
tion, is applied, after which the strain y(t) is measured.
From the theory of linear viscoelasticity [21], one can
derive a general form of the retardation function
J(t)= [y(t)]/oo, i.e.,

J(t}=H(t) J + +g J„(1 e")—
ri(0}

(2.1)

where J is the glass compliance, ri(0) the low shear limit
of the steady shear viscosity, and Jk the retardation
strength at retardation time tk We note that .(2.1) may
only be used in the linear case, i.e., when J(t) does not
depend upon o.o.

Considering the inverse experiment, one can also
derive the general form of the stress o (t) as a function of
time after imposing a stepwise strain y(t)=yoH(t) The.
function G(t) = [o (t)]/yo has the form [21]
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G(t}=ri'(~)5(r)+H(r) Gp+g G„e (2.2)
Doing the same for (2.4b), one finds

where ri'( 0o ) is the real part of the complex viscosity at
infinite frequency, Go the equilibrium modulus, and Gk
the relaxation strength at relaxation time ~k. Defining
J'(co) =—J' i—J" and G' =G—'+iG" as the Fourier trans-
forms of dJ(t)/dt and dG(t)/dt, respectively, the rela-
tion between these is given by [21]

and

Go
lim =0
~-p q(0)co

lim Jgri'( ~ )co=0,

(2.9)

(2.10)

JG =1

JIG/ J/IGII+ 1

JIG II JIIG I

Performing the Fourier transforms gives

NJ'(co) =Jg +g Jk 1—
co +1/tk

1 co/rkJ"(CO) = + Jk" co'+ I /rk

and

(2.3)

(2.4a)

(2.4b)

(2.S)

respectively.
One now can distinguish between four classes of ma-

terials which satisfy Eqs. (2.7)—(2.10), i.e.,
(1) J &0, ri'( ao ) =0; Gp &0, ri(0}=oo. For both short

and long times such a material is elastic
(2) Jg & 0, g'( ~ ) =0; Gp =0, ri(0) & 0. Materials in this

class behave elastically at fast deformations and uiscous at
slow deformations.

(3) Jg =0, ri'( ~ ) & 0; Gp & 0, ri(0) = ~. In this case the
material behaves uiscous at fast deformations and elasti
cally at slow deformations.

(4) Jg=O, ri'(~)&0; Gp=O, ri(0)&0. Materials be-

longing to this class behave Uiscous on both short and
long time scales.

Thus one can conclude that if in a linear measurement
J(t) does not reach a constant value, i.e., 7)(0)&0, Gp
must be zero and the material under investigation has no
yield stress. Considering for the time being a class-1 or -2
material, one finds from (2.8)

COG'(~)=Gp+ g Gk, , =—cori",
co +1/~„

co /'kr
G"(co)=ri'( ~)co+ g Gk, , =—cori' .

N +1/wk

(2.6)
Gp+ QGk

k

1

G'(oo )
(2.11)

Note that the existence of an equilibrium modulus Go
implies a low-frequency plateau in G'(co). Substituting
(2.5} and (2.6) into (2.4), one obtains two relations that
must be satisfied for all co. These relations are generally
valid within the formalism of linear viscoelasticity. Next,
we consider the limits for co —+0 and co~ ~ of (2.4a) and
(2.4b), in order to distinguish some special classes of ma-
terials. Taking co~0 in (2.4a) yields

(2.7)

where in the first equation Go=0 for a class-2 material.
Using (2.11),creep experiments can be related to dynamic
measurements, provided one finds a finite Jg. We wi11

show in Sec. IV that the latter is indeed the case.

B. Mean relaxation time from creep experiments

One may wish to extract a characteristic relaxation
time from creep experiments, which can be compared to
a time obtained with dynamic measurements. To this
end, we first write the complex viscosity ri" (co) as [21]

k ri'(co) =f e '"'G(t)dt, (2.12)

Considering (2.4a) for co~ Oo gives

J Gp+g Gk = — —g g'(a) )Jk/tk+ I . (2.8)
g'( oo )

k k

i.e., as the Fourier transform of the relaxation function
G(t) given by (2.2). A mean relaxation time r~ or
characteristic time scale of change of the memory func-
tion G(t) can be defined by

f rG(r)dr

f" G(r)ch

Go &0

g Gk~k
k

2 Gkrk+g'( ~ ) = g Gkrk/v)'(0), Gp=0 .
k k

(2.13a)

(2.13b)
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Writing 6+~k=gk, one sees that ~ is the weighted

average of the relaxation times ~k with rlk as a weighting

function. Restricting ourselves now to the case GO=0,
i.e., a class-2 or -4 material, we have 71'(0)=g(0) in

(2.13b). On the other hand, one has in the frequency
domain the relation

&'( )=
G'(co) +G"(a))

(2.14}

Je'9(0 } (2.15)

Defining the steady-state compliance J, by J,—=J'(0),
one finds, after taking the limit for F0~0 of (2.14) and us-

ing (2.6) and (2.13b},

to the correlation length g by [24]

N (2.18)

The exponent d,„ is called the chemical dimension and
must be at least 1 to provide a closed path. The upper
bound of d,), is given by min(d&, —,'), the value —,

' pertaining

to a self-avoiding chain. Computer simulations have sug-
gested that d,„=1.35 for a three-dimensional (3D) per-
colation network [25]. It is noted that the exponents s
and d,„are coupled in some way, e.g., for straight chains
one has s =0 and d, ),

= 1.
Now the shear modulus Go is given by the g depen-

dence:

which allows evaluation of the mean relaxation time from
creep experiments, in which J(t) is measured. Hence, for
a class-2 or -4 material this characteristic time may then
be compared to the time scale obtained by dynamic mea-
surements.

If one is dealing with a fractal structure, i.e., [24]

1/(d~ —3)
CC q)

(2.19)

(2.20)

C. Scaling behavior of rheological quantities

Several authors [8,10,22] have modeled power-law
behavior of the elastic modulus for fractal structures,
which arise at low volume fractions of primary particles,
i.e., / &0.1. All these approaches assume bond-bending
interactions between the primary particles which form
skeleton chains combined into a space-filling network.
Although in the Introduction we pointed out that it is
not straightforward to imagine bond-bending forces, it is
possible, and we will follow the same approach as other
authors [8,10,22] to see if in this way a plausible interpre-
tation of the measurements can be found.

Kantor and Webman [23] showed that in the case of
both central and noncentral interactions, the latter dom-
inate for long particle chains. They found for the elastic
force constant k, of a particle chain with noncentral in-

teractions

(2.16}

where P is the volume fraction of primary particles, one
finally obtains

()+2t+d ), )/(3 —d/) y(
Go cc (2.21)

where U is the bending energy needed to break one bond
between two primary particles, f,„, is an external force,
and b, g is the deformation of a blob. Using f,„,=k, hg
and (2.16), (2.17), and (2.22), one finds

We note that in the following (as have other investiga-
tors [8—10]), the storage modulus G'( oo ) at infinite fre-

quency is assumed to have the same power-law behavior
as Go. More sophisticated modeling would involve much
more complicated calculations than the scaling con-
siderations given in this work.

Now we derive a simple expression for the yield stress
o„ofa fractal network. Writing down the critical energy
per skeleton chain, thus assuming only one chain is load-
ed, one has

(2.22}

Rt Q-P, (2.17)

with 0 ~ e ~ 1. The case m=0 applies to a straight chain,
while a=1 applies to a purely isotropic chain. Further-
more, the number of particles X,& in the chain is related

where R~ is the radius of gyration of the chain projected
on the plane perpendicular to the line connecting the
ends of the chain and N, ), the number of particles in the
chain.

In the following we only consider the skeleton chains
of the network, by which any external forces are
transmitted. Brown [10] and Shih et ol. [8] assumed the
chains to be isotropic, i.e., R j =g, where g' is the correla-
tion length of the space-filling network. The latter may
be viewed as consisting of a number of connected blahs
with radius g [24]. Each blob is assumed to have one
skeleton chain with length g. However, a more general
description may be obtained by taking into account the
anisotropy of the chain [22], i.e.,

(2.23)

which yields

fext g t (2+&)/(3 d/) y2
J' 2 (2.24)

b,L
L /g'

(2.25)

For isotropic chains (i.e., c= 1), Wessel and Ball [26]
derived a similar expression for 0. in a different way.
One sees that y & y2.

The experiments described in this paper all deal with
linear viscoelastic behavior. Above a certain critical
strain, however, this is no longer the case. Shih et al. [8]
give an expression for the limit of linearity y„;, assuming
isotropic chains. They start by writing the microscopic
deformation b,g in terms of the macroscopic deformation
EI., i.e.,
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Generalizing their approach, we next write the force
f,„, on a blob as

1 AL
2E+d, h L, /g

(2.26)

where (2.16) has been used, and we again take into ac-
count the anisotropy of the chains. A bond breaks if the
force f,„, on it exceeds a critical value, which may be set
to unity since we are only interested in scaling behavior.
Hence, y„;, is given by

Shih et al. measured y3 for two kinds of boehmite
alumina gels and found y3= —2. 1 and y3= —2. 3 ~ The
exponents y&, yz, and y3 contain three unknowns, i.e.,
the structural parameters df, d,z, and s. Thus, from
separate determinations of these exponents, one can in
principle obtain values of the structural parameters. In
this work measurements of y& and y3 will be reported.

III. EXPERIMENT

A. The model system

The system we investigated was described earlier by
Goodwin et al. [19] and consists of a polystyrene latex
dispersion with a negative surface charge and a nonionic
surfactant, i.e., C,zE6, adsorbed onto the surface of the
particles. At saturation adsorption a dense layer is
present, causing steric repulsion at short distances and
thereby reducing the depth of the (van der Waals) poten-
tial well. Goodwin et al [19] supp. osed that the surfac-
tant molecules are fully stretched and estimated the layer
thickness to be 3.85 nm. After addition of a suitable
amount of electrolyte, the particles will aggregate due to
screening of the electrostatic repulsion. Since due to the
chain length of the particular surfactant chosen the po-
tential well is rather shallow (less than 10k&T), this ag-
gregation is reversible, i.e., the structure can be broken
down again by shearing the sample at a high shear rate.

B. Materials

Two monodisperse polystyrene latices (hereafter re-
ferred to as latex 3 and latex B) were prepared without
emulsifier using the method described by Goodwin et al.
[27]. It should be noted, however, that in the case of la-
tex A, we made some modifications. Instead of a three-
necked Aask, we used a 500-ml borosilicate bottle. After
addition of 425 ml water and 50 ml styrene nitrogen was
purged through. Hereafter, the bottle was sealed and
placed in a thermostat bath at 70 C. In this bath the bot-
tle was rotated end over (at 40 rpm) to ensure thorough
mixing. After 1 h, the bottle was shortly removed in or-
der to add 0.25 g K~S~O, dissolved in 25 ml water, and
placed back again. The advantages of this method are
that the reaction takes place in a closed system and that
the styrene is better mixed with the water. In the case of
latex B, the preparation as described by Goodwin et al.
was followed, except that now a 2-liter three-necked Aask

was used in order to obtain a larger yield. The quantities
added were 1700 ml water, 200 ml styrene, and 1.49 g
KzSzOs (dissolved in 100 ml water). As with latex A, the
reaction took place at 70'C.

The latices were purified with an Amicon TFC10
ultrafiltration apparatus. The number averaged particle
radii as determined with electron microscopy were 200
and 250 nm for latex A and latex B, respectively. Con-
ductometric titration revealed no weak acid groups on
the surface of the particles, while the surface charge den-
sities due to SO~ groups were 5.8 and 5.1 pC/cm~ for la-

tices A and B, respectively.
After purification, C&zE& (Nikko Chemicals Co.) was

added. The samples were rotated end over for 24 h in or-
der to attain equilibrium adsorption. The amount of
C,~E6 was such that an equilibrium concentration of
2 X 10 ~ mol/1 was reached [19]. Finally, NaC1 was add-
ed, resulting in a concentration of 0.7 mol/1. This con-
centration was high enough to cause aggregation, as
could be seen with a light microscope. A slight move-
ment of the slide caused disaggregation to occur,
confirming that the sample was only weakly aggregated.

Samples of latex A, with volume fractions of 0.027,
0.036, 0.043, 0.074, 0.104, and 0.151 (+5%) were
prepared from a stock dispersion by addition of a C&zE6-

NaCl solution to the concentrations indicated above.
Similarly, samples of latex B with volume fractions of
0.118, 0.172, 0.230, and 0.287 (+3%)were prepared.

C. Rheological measurements

1. Creep experiments

For the creep experiments we used a controlled stress
rheometer with a double-gap geometry, capable of apply-
ing small shear stresses (down to =0.6 mPa) and detect-
ing small angular displacements (down to =10 ' rad).
This instrument has been developed in our laboratory
[20). For a number of volume fractions ranging from
0.02 to 0.30, shear stresses between 6 mPa and 1 Pa were
applied in the following way: the samples of latex A were
presheared for a few minutes at a high motor speed. The
cylinder speeds, however, were low due to the high
viscosities involved. The samples of latex B were not
presheared, because the viscosities were too high to move
the measuring cylinder at an appreciable speed. After a
waiting period of 1 to 4 h to allow for formation of a net-
work, a small stress was applied for a certain period (usu-
ally between 30 and 200 s, depending on the volume frac-
tion). During this period the angular displacement as a
function of time was recorded every 0.5 s, and after cessa-
tion of the applied stress, the elastic recoil to a new equi-
librium position was measured in the same way during
more than 200 s. Hereafter, a higher stress was applied
and this procedure was repeated for about 50 stresses per
volume fraction.

2. Dynamic experiments

The dynamic experiments were performed with two
rheometers, i.e., a Bohlin VOR, suitable for measuring
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moduli G' & 1 Pa and a Rank Pulse Shearometer, which
was designed especially for highly elastic materials (50 Pa
&6'&500 kPa). At volume fractions $&0.074, the
storage and loss moduli were measured in the frequency
range between 10 and 5 Hz using the Bohlin apparatus.
At volume fractions lower than 0.074, the moduli were
too low to be measured. By varying the applied max-
imum strain, a check on the limits of linearity was per-
formed. With the Pulse Shearometer only one frequency
can be applied (250 Hz). Since this rheometer only works
well at storage moduli larger than 50 Pa, it was used for
higher volume fractions (latex 8).

Since the moduli increase on very long time scales, all
the Bohlin measurements were done after a waiting
period of 13000 s. With the Pulse Shearometer a waiting
period of more than 12 h was taken prior to the measure-
ments. To avoid evaporization of the sample, a solvent
trap was used on the Bohlin. For the Pulse Shearometer
this was not necessary since the sample was already iso-
lated from the outer atmosphere.

With the Bohlin the effect of preshearing of the sample
on the dynamic moduli was investigated in the following
way: After a waiting period of 13000 s, the moduli as a
function of frequency without preshearing were mea-
sured. Then a low shear rate of about 0.1 s ' was applied
for 32 min. After another waiting period of 13000 s, a
new frequency sweep was done. Finally, the same pro-
cedure was repeated with a shear rate of about 100 s
Thus, we were able to examine the effect of shear history
of the sample on the magnitude of the moduli as a func-
tion of frequency. Both the creep and the dynamic exper-
iments were done at room temperature (298.15 K}.

IV. RESULTS

A. Creep experiments

At each volume fraction the experimental data, i.e., the
angular displacement as a function of time for a number
of shear stresses, were treated in the following way:
First, by plotting the jump in the displacement after ap-
plying the stress as a function of the latter, a check on the
linearity of the measurements was performed. At each
volume fraction, the relation between jump and stress
turned out to be linear (in some cases up to a certain criti-
cal stress). The displacement-time curves for stresses cro

in the linear regime were then averaged by dividing each
point by the appropriate stress, adding the curves and di-
viding by the number n of curves. This resulted in a
"master curve"

Hence,

52

5.0—
slope 1/10.8q(0)

4.8—

4.6—

4.4 —:

4.2—

3 /10. 8

where C =10.8(8(0)/oo) is an offset due to the fact that
all the displacements are taken relative to the original
zero position. In Figs. 1 and 2 typical results are shown.

The steady-state compliance, glass compliance, and
viscosity are determined from the curves in the way indi-
cated in Fig. 1 (see also Sec. II A}. Apparently, the mea-
surements indicate that we are dealing with a class-2 ma-
terial, so (2.11) and (2.15) can be used. The instantaneous
jump after imposing the stress is determined by a polyno-
mial fit. For latex A the viscosity determined from the
recovery is about three times higher than the viscosity
determined from the slope of the curve as indicated in
Fig. 1, being an indication that the time to of application
of the stress was chosen too short for all the retardation
processes to have taken place. Therefore, the viscosities
were determined from the recovery. It should be noticed,
however, that since the recovery was not yet completed
after the time scale of the experiments (i.e., the slope of
the curve after cessation of the stress was still slightly
negative before application of the next stress), the viscosi-
ties determined in this way are lower bounds of the real
viscosities.

In the case of latex B both ways of obtaining the
viscosity gave the same results and thus for this latex the
times chosen were long enough. At the highest volume
fraction the cylinder returned below its original position
after cessation of the stress. This turned out to be caused
by drift of the autocollimator signal. Separate measure-
ments of this effect on the time scale of the creep experi-
ments (i.e., 4 h} yielded a drift of —(1.0+0.5)X10
rad/s, which was used to correct the data at /=0. 287.
In Fig. 2 the corrected M(t) is shown. At all other
volume fractions the correction was negligible. The data
plotted in Fig. 2 are the worst as far as noise is con-

4.0—

3.8—

I,i10.8q(0)~

at each volume fraction. Here, 8;(r) is the angular dis-
placement at time t, relative to the original zero position
(i.e., before the first stress was applied). The averaged re-
tardation function (J(t) ) can be obtained from M (t) in
the following way: By definition, (J(t))=(y(t)/oo),
where y(t) is the strain at time t. From the geometry of
the rheometer, one can estimate

0 50
I

100
I I

150 200 250

Time (s)

300 350

FIG. 1. Typical example of a master curve M(t) measured
with the controlled stress rheometer at low volume fractions.
The master curve was obtained for latex A at /=0. 104. For
averaging, 8 curves were used.
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FIG. 2. Typical example of a master curve M(t) measured
with the controlled stress rheometer at high volume fractions.
The master curve was obtained for latex B at /=0. 287. For
averaging, 15 curves were used, considerably reducing noise.

cerned, i.e., in this case the strains are so small that the
bounds of the apparatus specifications are reached. All
other results looked rather like the graph shown in Fig. 1.

The values of J as a function of P were converted to
G'( cc) using (2.11). A discussion of the results is given in
Sec. IV C.

FIG. 4. Storage modulus as a function of frequency for latex
B at volume fractions /=0. 118 (0), 0.172 (&), 0.230 (6), and
0.287 (0). Also indicated are 6'( 00 ) obtained from creep exper-
iments (lines in increasing order of volume fraction} and 6' at
250 Hz measured with a Rank Pulse Shearometer (solid sym-

bols).

frequency behavior. Notice that there is no low-
frequency plateau for any volume fraction, so from the
dynamic experiments there is no indication of solidlike
behavior.

B. Dynamic experiments

The results of the dynamic measurements are shown in
Figs. 3 and 4 for latices A and 8, respectively. The data
of both dynamic rheometers are shown, while the G'( ac )

extracted from the creep experiments are also plotted for
comparison. The applied strains were smaller than 10
in all experiments, this being the lowest limit of linearity

y„;, determined from measurements at 1 Hz.
The values of G' measured with the Pulse Shearometer

(latex B) appear to agree reasonably well with the low-

C. Inhuence of shear history, sample handling

and storage on rheology

In Fig. 5 a compilation of G'( cc ) and G' (250 Hz) mea-
sured with different rheometers is shown as a function of
volume fraction. For latex A extrapolated values at 250
Hz from the low-frequency experiments are plotted since
the Pulse Shearometer could not be used at these low
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FIG. 3. Storage modulus as a function of frequency for latex
A at volume fractions /=0. 074 (&), 0.104 (61, and 0.151 (Q).
Also indicated are G'((x) } obtained from creep experiments at

/ =0.074 (dashed line) aud / =0.104 (dot-dashed line).

FKJ. 5. Comparison of 6' obtained with different rheome-
ters. Solid symbols, latex A; open symbols, latex 8. The results
were obtained with the controlled stress rheometer (o ), a Boh-
lin VOR (D), and a Rank Pulse Shearometer (&). The values
obtained with the Bohlin are extrapolated to 250 Hz from low

frequency data.
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volume fractions. From Fig. 5, 6' does not seem to de-
pend significantly upon the particle radius. When trying
to compare the results of different rheometers, one en-

counters some problems which are inherent to the model
system used. We investigated a number of possible
sources of error:

(1) Injluence of waiting period It .was found that the
storage modulus increases on very long time scales. Only
after 8.5 h did 6' no 1onger increase significantly. After
the initial relatively fast increase of 6' due to formation
of a space-filling network, a restructuring of the latter
may occur on longer time scales, causing a slower in-
crease of 6'.

(2) Short-term and long-term reproducibility. The
short-term reproducibility of the dynamic experiments,
which was examined by refilling the rheometer and re-
peating the same experiment, is good. Over longer
periods (several months), however, the reproducibility
was worse. Hence, when comparing results of different
rheometers, care should be taken to perform the experi-
ments in as short a time period as possible after synthesis
of the latex.

(3) Influence ofshear history and sample handling. The
exponent y& derived in Sec. II C depends upon a number
of structural parameters. Therefore, the amount of
preshearing, which alters the microstructure of the sam-

ple, may be expected to influence the magnitude of 6'.
The hypothesis was verified by performing frequency
sweeps after different shear histories (see Sec. III C2}. It
was found that in some cases the moduli differed by a fac-
tor of about 2 depending on the shear rate applied during
the preshearing period. Similar effects were also shown

by recent computer simulations of Melrose and Heyes
[28,29].

(4) Extrapolation. Due to the resolution of the time
measurements (the angular displacements were measured
at time intervals of 0.5 s), J must be determined by ex-
trapolation of the creep data. As a result, one in practice
cannot extract G' at infinite frequency from the creep ex-
periments. Therefore, hereafter, if the quantity 6'( ~ ) is
used, we mean 6' at high frequencies relative to the
characteristic frequencies of structural changes in the
skeleton chains forming the space-filling network.

We conclude that considering differences in the experi-
mental conditions between the various rheometers may
add up to errors of roughly 70%. Applying a linear
least-squares fit of (2.21) to all the data, one finds

y, =4.6+0.3. The prefactor is about 6X10 Pa. The
range of y &

found in this way overlaps the range
3.7 ~ y, ~ 4. 5 found in the literature [7—9].

D. Critical strain

In Fig. 6 the critical strain y,„,as a function of volume
fraction is plotted. In the case of the Bohlin experiments,
y,„., was determined from measurements at 1 Hz. For
three volume fractions a number of shear stresses applied
with the constant stress rheometer turned out to be high
enough to cause nonlinear behavior. The y,„, in these
cases were taken equal to the maximum strains at the on-
set of the nonlinearity. Since these estimations are rather

io0-.

10—

10 -.

10
10 io' io0

FIG. 6. Critical strain as a function of P. Solid symbols, la-

tex A; open symbols, latex 8. The results were obtained with

the controlled stress rheometer (D) and a Bohlin VOR (0).

crude, larger error bars are appropriate. Fitting the data
to a power-law dependence [see Eq. (2.27)] yields
ys= —2.520.3. This result may be consistent with the
values y = —2. 1 and 2.3 found by Shih et al. [8]. In Sec.
IV 6 we will come back to a discussion of y3 in relation
to other structural parameters.

E. Low-shear-limiting viscosity

Now we return to the question posed in the Introduc-
tion, i.e., whether or not the model system shows a yield
stress. Since all creep experiments were done in the
linear regime and the slope ofJ(t) remains finite after im-

posing a stress, we must conclude that for none of the
volume fractions considered was there a yield stress or a
Go (see Sec. IIA). Froin the slope of the master curve
M(t) just before cessation of the applied stress or its
recovery after cessation of the stress, vi(0) can be found,
as indicated in Fig. 1. The relative low-shear-limiting
viscosity vt(0)le, (vi, being the solvent viscosity} as a
function of volume fraction for latex A and latex B is
given in Fig. 7. The data can be fitted to a power law
with a power 5.3+0.3. The shear rates associated with
the viscosities are as small as 10 s ' for the highest
volume fraction.

In a recent paper Buscall, McGowan, and Morton-
Jones [4] investigated wall slip in experiments on weakly
aggregating dispersions. They pointed out that relative
viscosities higher than 10 will not occur unless the slip
layer becomes undefinable, i.e., much smaller than one
particle diameter. Since the viscosities we measured are
of the order 10 or higher, the conclusion that our experi-
ments were not influenced by wall slip seems justified. As
an illustration of the sensitivity of our instrument, we will
give an example of the relative displacements in the creep
experiments: From Fig. 1 one finds a low-shear-limiting
viscosity of about 3X10 Pa. At a shear stress of 0.1 Pa
and a gap width of 2 mm, particles at two sides of the gap
are thus displaced at a rate of 7X10 m/s relative to
each other. After the 65 s during which the stress was
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FIG. 7. Relative low-shear-limiting viscosity as a function of
Viscosities were extracted from creep experiments. Solid

symbols, latex A; open symbols, latex B.

FIG. 8. Mean relaxation time as a function of P. Times were

extracted from creep experiments. Solid symbols, latex A; open
symbols, latex B.

applied, the maximum relative displacement of two parti-
cles is 450 nm, i.e., about one particle diameter. From
this example one also may conclude that the occurrence
of wall slip is unlikely.

F. Comparison of characteristic time scales

An additional consistency check of the results may be
provided by a comparison of the time scales extracted
from the different experiments. Using (2.15), one easily
obtains the mean relaxation times ~M from the creep ex-
periments. One of the primary quantities, i.e., J, as a
function of P is given in Table I [the viscosity r)(0) as a
function of P has already been given in Sec. IV E]. Also
indicated in Table I is gk Jk =J, —Jg as a function of P.
Fitting of J,(P) to a power law gives a power —4.7+0.3.

In Fig. 8, rM as a function of P is plotted for latex A

and latex B. Again, the data for latex A and latex B
agree well. Fitting of the data to a power law yields a
weak dependence upon P, i.e., rM ~P * . The large
error arises from a propagation of errors in J, and rl(0).
Ladyzhinskii et al. [30] suggest

2777M
=6X10 4Hz

associated with this value of rM is of the order of the
lowest frequency 10 Hz applied in the dynamic mea-
surements. Since the frequencies fst at all other ~st are
even smaller, a direct comparison is not possible. How-
ever, one sees from Figs. 3 and 4 that ~ may indeed be
larger than 260 s at P) 0.027, since all the curves of G'
are decreasing only slightly at frequencies around 10
Hz, indicating that a transition may occur at frequencies
lower than 10 Hz. Hence, the dynamic and creep re-
sults are also not contradictory with respect to the
characteristic time scales.

B y~ (y)~y ch f

In principle, d, h can be determined with this expression if
d& is known, but in this case the error in the exponent is
so large that the value of d,h obtained in this way would
be of little interest.

The shortest time ~~ shown in Fig. 8 is ~~ =260 s at
(t =0.027. The frequency

J, (1/Pa) g Jk (1/Pa)

0.027
0.036
0.043
0.074
0.104
0.118
0.172
0.230
0.287

3.4X 10
6.9x 10
2.4x10 '

5. 1x 10-'
1.3 x10-'
5.5 x10-'
9.6x10 '
1.7x10-'
2.3X10

1.8x10'
4.0x10-'
1.4x10-'
3.0x10-'
7.5X10
2. 1x10-'
2.9x10
4. 1X10
3.1X10

TABLE I. Steady-state compliance J, aud g„Jq =J, —Jg as

a function of volume fraction. Data were obtained from con-
trolled stress measurements on latex A (upper five rows) and la-

tex B (lower four rows).

G. Determination of structural parameters

In Sec. IIC three expressions were given with which
the three structural parameters d&, c, and d,h can be
determined from y&, y2, and y3. The exponents y, and

y3 have already been discussed in previous sections. It is
at first sight tempting to use steady shear results to obtain
y2, as was done in [3] by extrapolating the high-shear-
rate behavior in a shear-rate versus shear-stress plot back
to zero shear rate. In this way one determines the ap-
parent Bingham stress or yield stress in shear. However,
such a result in general cannot be combined with the ex-
ponents y, and y3 extracted from linear xneasurexnents,
since the former was obtained from a nonlinear experi-
ment in which the structure is likely to be different from
the equilibrium structure at rest. In other words, the
structural parameters s and d,„(and perhaps also d&)

may be dift'erent in both types of experiments. We will il-
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lustrate this by using our previous data on the steady
shear viscosity of the same model system [13] to deter-

mine y2 in steady shear. Following the same procedure
as described in [3] to obtain the apparent Bingham stress
as a function of volume fraction, we find y2=2. 0+0.1.
Using (2.24) and the bounds imposed on s, we conclude
that 0 & e & 0.4 for l. 8 & df & 2.0. Values of df )2.0 give
negative c, while values of df & 1.8 are excluded because
they are unrealistically low.

Next we look more closely at the results obtained from
the linear measurements. Using (2.21) and (2.27), one
finds

2/(3 —df ) =y(+y3=2. 120.4 .

10-

1O'-

10 =

10 =.

10 =.

10-

10 =.
1

1O'
1O'

ooooo cm oo

I

1O'
I

10 10

Hence, df=2. 0+0.2, which overlaps with the range
determined from the steady shear results. Thus, df in

rest does not seem to differ much from df in shear. Since
we have only two equations for three unknowns, we can
only give lower and upper bounds of s and d,h. Again,
using (2.21) and (2.27), one has

4e+2d, h =(3—df )(y) —y3)=7. 1%1.7 .

Only certain combinations of s and d,h are allowed
within our model, because 0 & s & 1 and 1 & d,h

& —,'.
Hence, we find 0.5 & c & 1, while 1 & d, h

& —,'. Clearly, the

range obtained for d,h is not informative, but comparing
the range of s to the values 0 & a &0.4 extracted from the
steady shear experiments, one sees a difference, which
may arise from a difference in structure. In the context
of the model it is thus implied that in rest the skeleton
chains are more or less isotropic, while in shear they are
straighter. It corroborates the view that for aggregating
systems one cannot combine results obtained by different

types of experiments.
The presence of a difference in structure is further cor-

roborated by the following: In Fig. 9 we plotted the
viscosities at low and high shear rates against shear
stress. The former were obtained with creep experiments
on latex A (/=0. 043, radius 200 nm), while the latter
were measured with a Contraves low shear rheometer
[13] on a different latex batch (/ =0.045, radius 220 nm).
Notice that the creep experiments were indeed done in
the linear regime. It is evident from Fig. 9 that the ex-
periments starting from a high shear rate do not connect
smoothly with the experiments starting from the rest
structure. This too is an indication of a different struc-
ture in both cases, which also confirms the point we made
in Sec. IV C on the influence of shear history on rheologi-
cal properties.

The range found for df is consistent with the value

df =2.03 obtained from computer simulations including
random breakup of bonds [6]. Our data also are con-
sistent with the data given in [11],which were obtained
from computer simulations on fractal trees. For a
fractal dimension df =2.05+0. 15, it was found that
a=0.87+0.20 and d,h=1.7+0.1, resulting in 4c+2d, h
=6.9+1.0. The latter value agrees well with the value
7.1+1.7 obtained from the linear experiments. The com-
puter simulations in [11] were done for rigid structures
but did not include thermal breakup of bonds. In sum-

Shear Stress (mPa)

FIG. 9. Relative viscosity as a function of shear stress, illus-

trating the influence of the microstructure on rheological prop-
erties. Viscosities were extracted from creep measurements (0)
and steady shear measurements (6). The latter were performed
with a Contraves low shear rheometer and described in [13].

mary, we conclude that the data can be interpreted quan-
titatively using equations based on bond bendin-g interac-
tions. We think this is the first time that an attempt has
been made to relate the three exponents y „y2, and y3 to
the three relevant structural parameters df, s, and d,h.

V. DISCUSSION AND CONCLUSIONS

Using a sensitive controlled stress rheometer developed
in our laboratory, we have studied the creep behavior of
two weakly aggregating polystyrene latex dispersions in
the linear regime. The high-frequency storage moduli
6'(00) extracted from the creep experiments are con-
sistent with moduli obtained with dynamic measure-
ments.

Additional information obtained from the creep mea-
surements are the steady-state compliance and the steady
shear viscosity at low shear rates, from which we deduced
a mean relaxation time rM Measureme. nts of the creep
behavior at a number of volume fractions between 0.02
and 0.30 all show the absence of a yield stress or equilibri-
um modulus. The low-shear-limiting viscosity or
Newtonian plateau is as high as 7 X 107 Pa s at the highest
volume fraction, while the lowest shear rates associated
with this viscosity are of the order of 10 s '. The
mechanism responsible for the Newtonian plateau is
thermal breakup of bonds. The absence of an equilibrium
modulus is corroborated by the dynamic experiments,
which do not show a low-frequency plateau.

The high-frequency modulus as a function of P shows a
power-law dependence with a power y, =4.6+0.3. The
magnitude of the modulus appears to depend strongly on
the shear history (i.e., structure) of the sample. Also, G'
increases on very long time scales ( =8.5 h). Hence, cau-
tion should be taken to apply similar shear histories when
results of different apparatus are to be compared.

Using an additional exponent, i.e., @3=—2.5+0.3,
describing the scaling of the critical strain below which
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the material behaves linearly, the fractal dimension df
and the lower and upper bounds of the structural param-
eter c were determined with a model based on bond-
bending interactions.

When dealing with the dynamic moduli described in
Sec. III, there is an additional possibility (besides those
mentioned in the Introduction) which in principle could
explain apparent bond-bending behavior. In the Kantor
and Webman approach the elasticity is described in terms
of loaded skeleton chains forming the network. Branches
and dangling (i.e., unloaded) bonds are neglected. How-
ever, due to a branch, two particles near it are not able to
move aSnely since they sense the presence of a third par-
ticle. The latter introduces an egectiue bond-bending
component in the two-particle interaction potential at
high frequencies, because the time scales involved may be
too short for the force of a third particle to relax. In our
description in Sec. II C, dangling bonds or branches have
been neglected but actually there may be quite a large
amount of them [6]. Hence it seems not unreasonable to
consider a model based on unbranched chains where the
"error" made in neglecting the branches is felt as an ap-
parent bond-bending component in the interparticle po-
tentials. This assumption has been corroborated by the
reasonable agreement with the simulation results [11].

This fact we consider an intermediate research stage.
Though often used, the static picture of a number of elas-
tic chains as outlined in Sec. II C is clearly not very so-
phisticated. The microstructural picture of the model
system is one in which there are temporary bonds be-
tween aggregates, because of the absence of a rest shear
modulus. The kinetics of creation and breakup of these
bonds should in fact be taken into account. Thus the
static model does not account for the volume-fraction
dependence of the stationary number of bonds. The
latter would also result in a volume-fraction-dependent
prefactor of G'(ao ), which would be different from the
prefactor of Go.

Moreover, the question of the irrelevance of central
forces has not yet been settled. Indeed, it is not easy to
see how fractal structures with relatively low fractal di-

mensions df can be formed from particles having only

central interactions, since in that case finite volume

effects are the only factor preventing compact structures.
It was shown by computer simulations [6] that in the case
of diffusion-limited cluster-cluster aggregation, the fractal
dimension of the aggregates is increased from 1.89 in the
absence of reinstructing to 2.08 in the presence of re-

structuring due to rotations of the two parts of the aggre-

gate after they made contact. Other aggregation mecha-
nisms give somewhat higher fractal dimensions. Howev-

er, experimentally found values of df cannot be used to
determine whether or not the interactions are central, be-

cause df is also affected by thermal breakup of bonds. It
was found that in the case of diLsion-limited cluster-
cluster aggregation with random bond breaking, df in-

creased from 1.89 to 2.03 [6]. Since for our model system

one may expect thermal breakup to occur, an experimen-

tally determined value of df=2 does not necessarily

mean that we are dealing with central interactions only.
Hence, we have no experimental evidence in favor of or
against noncentral interactions. It would therefore be in-

teresting to develop a model based on central interactions
and to reconsider the resu1ts in terms thereof.
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