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Fractal and compact growth morphologies in phase transitions with diffusion transport
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First-order phase transitions take place when a supercritical nucleus of the new phase grows into the

old phase. A conserved quantity typically is transported through the old phase by diffusion. A recent

theory has made quantitative predictions about a morphology diagram which classifies the various re-

sulting patterns formed by the growing nucleus at long times. In this paper we present detailed numeri-

cal studies on the advancement of an interface due to diffusional transport. Important control parame-

ters are the supercooling and the crystalline anisotropy. We confirm the basic predictions for the oc-

currence of the growth forms compact and fractal dendrites for anisotropic surface tension and compact

and fractal seaweed for vanishing anisotropy. More specifically, we find the following results. For arbi-

trary driving forces an average interface can move at constant growth rate even with fully isotropic sur-

face tension. At zero anisotropy and small driving force we find fractal seaweed with a fractal dimension

=1.7, in agreement with simple Laplacian aggregation. With increasing anisotropy the pattern can be

described as fractal dendritic, growing faster than a compact dendrite, which finally is obtained at larger

anisotropy. This is in agreement with the prediction for noisy dendrites. At large driving forces, but

still below unit supercooling, we find a transition from the compact dendritic to a compact seaweed rnor-

phology when anisotropy is reduced as predicted. The transition appears to be discontinuous with meta-

stable states. Symmetry-broken double fingers of the growing phase seem to be the basic building blocks

for the compact-seaweed morphology.

PACS number(s): 61.50.Cj, 05.70.Fh, 68.70.+w, 81.30.Fb

I. INTRODUCTION

Pattern formation in nonequilibrium systems [1,2] typi-
cally occurs when two possible phases of a system are
driven out of coexistence so that one of the phases grows
at the expense of the other phase. Implicitly it is as-
sumed here that the two phases do not mix perfectly but
are separated by an interface which moves during the
growth. Some of the basic questions one would like to
answer in this context concern the kind of structures that
can be formed by such an advancing interface and how
the structures and the conditions under which they are
formed can be characterized.

The growth of a crystal from the melt or from a solu-

tion is a typical example for such a pattern forming pro-
cess. This type of phase change usually requires the
transport of at least one conserved quantity, the solute
material or the latent heat of solidification, which is
transported via diffusion. This is about the simplest
pattern-forming process conceivable under essentially
homogeneous nonequilibrium conditions. Mathematical-
ly this is known under the name Stefan [3] or moving

boundary problem. Surprisingly enough it is still rather
unclear what happens for long times in the limit of van-
ishing crystalline anisotropy, which corresponds to the
case of a liquid droplet of some composition nucleating
from a mixture of two liquids, if one ignores convective
e8'eets for the moment.

It has been known for about three decades [4] that
such a growing nucleus becomes unstable as its radius be-
comes larger than a few times the critical radius. If the
surface tension is anisotropie, for example, due to crystal-

line anisotropy, it is generally believed that the nucleus
finally deforms into a dendritic pattern like a snowflake

[2,5]. The limit of vanishing anisotropy, however, is
much less clear.

There has been a recent attempt to formulate a theory
[6,7] for the fundamental morphologies and the most
relevant parameters controlling their appearance. This
was based on scaling relations together with asymptotic
matching requirements so that solutions expected in some
limits of the parameters would be recovered. The result-

ing morphology diagram (Fig. I) [7] uses supercooling vs

anisotropy as the principal axes and discriminates be-
tween seaweed and dendrites as the basic patterns, where
the dendritic patterns are characteristic for anisotropic
growth conditions. A second classification concerns the
patterns internal structures namely fractal as opposed to
compact patterns. A fractal pattern is one with a self-
similar or self-affine internal structure with a sealing
range of at least one order of magnitude in length scales.
The fractal region in parameter space is similar to the
critical region in critical phenomena and accordingly a
similar change over to the nonfractal compact region
may occur without any singularity. Some basic predic-
tions of this theory [7] can be summarized as follows.

The crystalline anisotropy in all cases considered here
is assumed to be sufficiently small and nonsingular so that
the crystal will not exhibit facets. This is often the case
in organic crystals such as succinonitrile [8] or in liquid
crystals [9—11] such as hexaoctyloxytriphenylene. For
typical experimental situations the compact dendritic
growth morphology then is the most likely one to occur.
We will further assume that the anisotropy parameter
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FIG. 1. Schematic morphology diagram supercooling 6 vs

anisotropy e4 for the compact and fractal, dendrite and seaweed

growth patterns CD, CS, FD, and FS. The region surrounded

by the dotted line depends on the noise. The region K with su-

percooling 6 & 1 is controlled by kinetics.

could be experimentally controlled. A reduction of this
crystalline anisotropy should lead to different structures
depending on the value of the supercooling which is the
driving force for the interface motion.

At very large supercoolings but still with diffusion con-
trolling the growth rate, the dendritic pattern is rather
compact. This dendritic pattern was predicted to com-
pete at low anisotropies with a compact-seaweed growth
mode which should still grow at a nonzero velocity even
when the anisotropy has completely vanished. In this
limit of course the dendritic growth rate was predicted
[12—15] and numerically confirmed [16,17] to go to zero.
The compact-seaweed growth mode was conjectured to
be an independent growth mode already several years ago
under the name "dense branching morphology" [18].
There was no indication, however, that this could be
discriminated from the compact dendritic mode in any

qualitative way and it could have been just a completely

smooth change of length scales. Some evidence for the

occurrence of a real transition was gained by computer
simulations of an Ising-like model [19]. In a short ver-

sion [17]of our present investigation the first proof" (at

least numerically} was given for the existence of the

compact-seaweed mode as a second mode of growth

which for small anisotropy moves faster than dendrites

and still moves at nonzero velocity in the isotropic case.
This supports the theory [7] that the transition from

compact dendritic to compact-seaweed growth under

reduction of anisotropy is a nonequilibrium phase transi-

tion, and most likely of discontinuous nature.
At the typical low supercoolings used in most experi-

ments and at sufFiciently strong noise the dendritic struc-

tures furthermore were predicted to break up into fractal
dendrites [7] similarly as was found to occur in Laplacian
growth [20] and for vanishing anisotropy finally into frac-
tal seaweed. Its fractal dimension was expected to be

equal to the one obtained in atomistic simulations [21] of
the Laplace aggregation. This behavior is also confirmed

[17] by the present investigation concerning both the
fractal dimension of the seaweed and the scaling of the
growth rate depending upon supercooling. The approach
to this limit should be sensitive to noise. This was inves-

tigated recently [22] and the results were found to agree

with previous scaling predictions concerning the stability
of dendrites and the appearance of fractal dendrites. The
also predicted noisy discontinuous transition between
compact and fractal seaweed at vanishing anisotropy so
far could not be clearly identified because of the difBculty
to precisely control the numerical noise.

In the present paper we give a somewhat detailed
description of the numerical methods introduced for
these investigations and we give the full details of the
simulation results in comparison with existing theories
and with some experiments. The paper is organized as
follows. In Sec. II we shortly introduce the standard
model of diffusional growth known as the Stefan problem
of a moving interface. In Sec. III we describe the numeri-

cal scheme of a rotated-lattice sandwich which efficiently

suppresses artificial numerical anisotropies under preser-
vation of vectorizable codes. In Sec. IV we discuss the
stability of dendrites and the influence of noise on dendri-

tic growth and in particular the appearance of fractal
dendrites. In Sec. V we present the results for fractal
seaweed. In Sec. VI our results for compact seaweed at
low and zero anisotropy are presented. In particular we

compare these findings with results for growth in a chan-

nel and we discuss the predicted transitions to free den-

dritic growth and to the fractal seaweed morphology. A
summary and outlook finally is given in Sec. VII.

II. THK MOVING BOUNDARY PROSI.EM

The system considered as an example is a crystal grow-

ing into its undercooled melt [2,14,5], where the growth
is controlled by the diffusion of the latent heat of freez-

ing. The diffusion field u denotes the temperature
difference measured from the value far away from the in-

terface and normalized by the temperature increase due

to the latent heat production. It obeys the diffusion equa-
tion

U„= Dn Vu, — (2)

with n being the normal vector of the interface. For sim-

plicity we use here only the so-called one-sided model

[14,5] with diffusion taking place on the "liquid" side of
the interface only. A generalization with our numerical
scheme discussed below is straightforward.

A rough nonfaceted interface can be regarded as being
in local equilibrium. The difFusion field u,. at the interface
with curvature a then must fulfill the boundary condition

Qi ~ dK

Here 5 is the dimensionless undercooling and d is an an-

isotropic capillary length with a fourfold symmetry as

d(8}=do(1—e4cos48} . (4)

=DV u,
Bt

with D being the thermal diffusivity. When the crystal is

growing with a velocity U, the latent heat produced at the
solidification front should be transported away by the
heat flow. The conservation law for energy then is writ-

ten as
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In the absence of surface tension, i.e., do=0, Ivantsov
[23] showed that a parabolic needle crystal may grow
steadily with a tip radius p. The undercooling 5 deter-
mines the product of p and the growth velocity U, or the
Peclet number p =up—/2D. In two dimensions, for exam-
ple, the relation is [23]

b, =2&p ei' f dx exp( —x ) . (5)
v'p

Relation (5), however, cannot determine the growth rate
uniquely for a given 6 since there are infinite combina-
tions of U and p possible for a given product p. Further-
more, all Ivantsov parabolas were found to be unstable
[24] against small perturbations. It was later shown
[12—15] that interface tension together with a nonzero
anisotropy e4 is necessary to stabilize a unique Ivantsov
parabola against infinitesimal perturbations. The growth
rate U satisfies a universal scaling relation

udo/2Dp =o(e~) . (6)

Here o depends only on the anisotropy of the surface ten-
sion e4, but is independent of the dimensionless under-
cooling b, . The scaling relation (6) has been confirmed by
previous numerical simulations [16].

A completely unsolved problem so far has been the
evolution of an initially flat interface with fully isotropic
surface tension. Clearly, if the interface remains flat, sta-
tionary growth at a constant growth rate is only possible
when the supercooling is precisely unity (ignoring the
possibility of interface kinetics for the moment). This is
an immediate consequence of the conservation law re-
sponsible for the diffusion equation. Alternatively, for a
perfectly flat interface the growth rate must go to zero at
long times for 5 & 1.

To escape from this strict condition one must give up
the assumption of a flat interface. As shown by Mullins
and Sekerka [4], a fiat interface is linearly unstable
against large wavelength perturbations. The fastest
growing mode has a wavelength of the order of the
Mullins-Sekerka or stability length pMs,

pMs 2~+doID

with tD =2D /U being the diffusion length and U the veloc-

ity of the front. Therefore assume that the solid-liquid
interface deforms into a fingery or comblike structure
with grooves which become deeper in growth direction as
time goes on. One may then define an envelope over the
front of this complex structure, calling this suitably aver-
aged envelope the auerage interface in contrast to the lo-
cal interface separating the solid from the liquid. This
average interface can be considered as the real growth
front in the sense that it is not just a solid that grows
from the liquid (in our present picture) but in fact a two-
phase mixture solid plus liquid grows into a one-phase re-
gion originally consisting of liquid only. With a properly
adjusted fraction of liquid in the mixed-phase region one
can easily define an averaged supercooling so that no
long-range di8'usiona1 transport into the far liquid is
needed anymore. In this way it becomes conceivable that
the system adjusts itself to an effective unit supercooling
of the mixed phase so that a constant growth rate of the

averaged front becomes possible at long times. It is a
central point of the present investigation to show that
this growth mode is possible and to elucidate its details.

III. THE ROTATED-LATTICE SANDWICH

A basic problem in every large-scale numerical project
is that the relevant length scales and time scales must be
clearly separated and identifiable in order to achieve
trustworthy results. This condition implies that one must
have some a priori estimates on what these scales could
be. In our case it is fairly clear that we have to separate
at least the length scales of the dendritic tip radius, the
stability length, and the difFusion length. Note that the
order of magnitude of these scales may depend on param
eters. In principle also the capillary length enters but
practically only via the stability length. Separating these
three length scales requires about 10 units of the nurneri-
cal grid in every direction. Concerning the time scales it
is clear that a vectorizable method of computation is
highly desirable as time scales in difFusion problems scale
as L +, with L being the linear grid size and d the space
dimension. Our computational method was speeifically
designed to meet these requirements.

A straightforward numerical treatment for the Stefan
problem using a computational grid for the diffusion
equation automatically introduces some artificial anisot-
ropy, even if @~=0 in (4). Although this anisotropy is

very small, it causes problems because the developing
shape of the interface is very sensitive to anisotropy. The
basic idea for a controlled reduction of this undesirable
anisotropy at high computational speed on vector com-
puters is to use a stack of two or more grids which are ro-
tated and shifted against each other, and to average over
them (Fig. 2). Admittedly, the procedure described in the
following is somewhat tedious to implement. We felt,
however, that this effort is necessary in order to obtain
reliable results with percent precision.

All previous attempts to numerically treat this mor-
phology problem were hampered in one or the other way
by this anisotropy or by system size or computing-time

FIG. 2. The rotated-lattice sandwich with two square grids
rotated by an angle of m/4 against each other.
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FIG. 3. The computational frame with the moving solid-

liquid boundary R
&

and three walls R &, R 3, and R4.

FIG. 4. Calculation of the gradient of the difFusion field at
the interface point A by means of a special eight-point interpo-
lation using the grid points 1-8.

requirements. The lattice models without rotation
[25,19,26] have the problem of anisotropy and when they
are atomistic, of strong noise, phase-field models [27,28]
need an additional length scale for the interface thickness
and introduce a kinetic coefficient, fully time-dependent
Green's-function representations [29] for complex mor-
phologies do not seem to be easier to implement
efficiently.

First we define an outer frame (Fig. 3) which consists of
a channel formed by two rigid sidewalls Rz and R4.
Across the channel lies the moving boundary R i, which
is discretized and which may be deformed. The "far"
boundary R3 is kept straight but mobile. Then we map
this frame onto a number of two or more independent
regular grids which are shifted by irrational amounts and
rotated against each other. Most of the simulations were
performed on a stack of four lattices rotated by a fixed
angle of n l8 against each other leaving no four- or eight-
fold anisotropy. Even higher-order anisotropy was not
detected within our numerical accuracy.

The discretized diffusion field u is defined at the grid
points inside the frame. In the following we denote the
inside of the frame as liquid and the outside as solid,
specifically the part across boundary R, .

The numerical simulation is performed as follows.
First an initial shape of the moving boundary is chosen.
In most cases we take an Ivantsov-parabola as shown in
Fig 3, becau. se we know the exact value of the diffusion

field for vanishing capillary length. With this Ivantsov
solution we initialize the different diffusion grids. By
means of the interface points which form the moving
boundary R i (Fig. 3}we calculate the normal vector, the
local curvature, and the boundary condition (3) at each of
these points. The interface points are thought to be con-
nected with straight lines and the boundary conditions on
them are linearly interpolated from the nearest-neighbor
points.

At each point of the interface we have to determine the
normal velocity (2}, which is proportional to the gradient
of the difFusion field in normal direction. Since the inter-
face can be very complicated and can be located between
grid points an interpolation is necessary. To do this, we
place a point B (Fig. 4) a fixed distance ~2+ a apart from
the considered interface point A into the liquid. The
small shift e is necessary to ensure that in any case all
grid points needed for the interpolation are in the liquid.

As a general rule for interpolations with a varying
number of anchor points which we encounter here we
tried to make sure that no jump discontinuities occur as
the interface advances. The value of the diffusion field
and its derivatives in the x and y directions at this point
B are obtained by a special eight-point interpolation,
which is exact in second-order, symmetrized and insensi-
tive to changes of the angle 8 (Fig. 4). Explicitly the
difFusion 6eld at the point B is approximated by

u = W(8} u, (1—p)(1 —q)+u +u

p(p —1) q(q —1)+Qg(p+q+pq p q )+85 +tg6

+[1—8'(8)] u, +u2(2p+q —pq —p —
q )+u3q(1 —p)

q(q —1)

+ q(q 1+2') + p(p —1—} + q(q —1)
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In the special case of Fig. 4 with —m. /4~6~~/4 the
weight 8'(8) is equal to 1/2+sin(8)/&2. The formulas
for the derivatives can be easily derived from this equa-
tion. Since the value of u at the interface point A is
known from the boundary condition (3), we can now ap-
proximate the u field between the points A and B to
second order in the distance from B. The gradient at the
point A multiplied by —D yields a second-order approxi-
mation for the local normal velocity.

It turned out that this complicated treatment is neces-
sary because a linear interpolation introduces too large
errors. A linear approximation which needs only four
points in the liquid is used in special cases when not all
eight grid points are available, i.e., when one of these
points is situated in the "solid." This situation can occur
in very narrow troughs. If a trough is so small that even
the linear approach fails, the local velocity is set to zero.
It follows from this procedure that the numerics cannot
produce reliable troughs narrower than 2&2+ s grid
units. Even in this limit the procedure turned out to be
rather robust against selfintersection of the moving
boundary.

For further improvement and noise reduction we use a
boundary element method to calculate the normal veloci-
ty. This method uses the maximum information available
about the difFusion field u in the surrounding of the inter-
face. Figure 5 shows a small part of the moving bound-
ary with three interface points i —1, i, and i + 1 and two
curve segments j:& and E2. In order to calculate the ve-

locity at the point i the two segments K, and E2 are cut
into 2N parts. N is typically set around three. We calcu-
late the normal velocities at these new interface points by
means of the method described above. The average of
the velocities a i, . . . , a4 (Fig. 5) is given by a& (l meaning
left), the average of a5, . . . , as is given by a, (r meaning
right). Now imagine that the left segment K, is shifted
parallel by the distance a&ht and the right segment K2 by
a„ht. These two shifted segments hit the normal vector
of the point i at two points close together. These points
are averaged and the distance u, b, t to the point i gives the
normal velocity v;.

We now have to solve the diffusion equation on the
grid obeying simultaneously the boundary conditions (3)
on the moving boundary. The interface points are al-
lowed to change smoothly, i.e., their positions are not re-

strieted to the points of the diffusion grid. The boundary
condition (3) is defined at these interface points which
can lie between the grid points. We would like to incorp-
orate this boundary condition directly into the di6'usion
field defined on the grid points in order to speed up the
computation. For this purpose we extrapolate those grid-
points which are situated directly behind the moving
boundary in the solid from the known value at the inter-
face (3) and the values of two points from inside the
liquid. Despite the use of a total of three points this is a
linear extrapolation along the grid lines. At some of the
border points there are difFerent possibilities to do this.
As an example Fig. 6 shows an interface with five border
points. There are three possibilities to determine the
value of the point number 3 by extrapolation from the
liquid side: two possibilities in the y direction by means
of the liquid points A „Az or 8„8z, respectively, and
one possibility in the x direction by means of C, and C2.
To ensure symmetry all three different results are aver-
aged to obtain the local value at point 3. In numerical
tests we received the best results when we assumed in this
boundary procedure that the interface had already grown

by U„b,t/2, b, t being the numerical time step and v„ the
local normal velocity calculated above.

A cross section through the interface is again sketched
in Fig. 7, which shows in detail the extrapolation of the
border point (i —1,j ) in the x direction by means of the
grid points (i,j ) and (t+1,j). xo denotes the interface
position at time t+ht/2 Asi.mple linear extrapolation
which needs only the point (i,j ):
u. ..=[uo —(1—5)u, , ]/5 is not useful when 5~0.
Therefore we use a different linear extrapolation, taking
into account the point (i+ 1,j) and take the weighted
average of the two possibilities. The two linear interpola-
tion formulas are

(1+5)u;,+(1—5)u;+,
u,'=5u, i+(1—5)u, , u, =

The weighted average of these is

Ap

Ag

I,I QUID 1 $ 2

LIQUIDLY

SOLID

FIG. S. Boundary element method for an improved velocity
calculation. A part of the interface with the three points i —1, i,
and i+1 is shown. The normal velocity of the point i is to be
determined.

FIG. 6. Setting the boundary condition at the moving bound-

ary. The 6ve border points 1—S are placed directly behind the

boundary and their values are calculated by an extrapolation

from points in the liquid.
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FIG. 7. Detailed schematic plot of the extrapolation of the
border point i —1 by means of the points xo, i, and i + 1. At the
interface position xo the difFusion field has the boundary value

Qg.

u,'=5uo+(1 5)u—o .

It follows that

u, +5(1—5)u; —(1—5) u;+i/2

5 +(1—5 )/2
(10)

Dht
2( ; u&1++u; I +J;uJ)++u( ) 4u; ) .

As it is well known this explicit scheme is stable only if
ht ~M /(4D}. In our simulations at large normal ve-
locities it turned out to be more effective to do from two
up to five small time steps with this simple scheme rather
than using a sophisticated implicit scheme with a larger
time step. This can be understood by two arguments.
First, there is a small time scale not much larger than the
critical time step due to the possible change in the curva-

This formula is numerically stable for 0 ~ 5 ~ 1. Since the
extrapolation needs at least two liquid points in the x or y
direction it works in all those cases where the velocity
procedure is applicable.

Next we must satisfy boundary conditions on the outer
frame. For free growth simulations we used the same
procedure described above but with the condition u =0
instead of (3}. This causes no appreciable error as long as
the interesting parts of the shape are several diffusion

lengths away from the walls. The case of refiecting or
periodic boundary conditions on the sidewalls of the
frame will be described later.

We now have the diffusion field completely defined us-

ing the grid points only, i.e., we have already incorporat-
ed the boundary conditions at the interface. Note, how-

ever, that this applies only to the liquid; the u values in
the solid are only meaningful near the interface and for
one time step. This incorporation of the boundary condi-
tions was originally developed for the one-sided model,
but it can be easily generalized into a two-sided model
with different material properties on both sides of the in-

terface at the expense of doubling the computing time.
Now we can perform a time step with the discretized

diffusion equation

n+1 n
E)J l)J

ture of the interface even at small displacements. Second,
the shape of the structure is very sensitive to breaking the
symmetry between the x and y directions on the grid.
Hence a powerful implicit scheme working with operator
splitting must be symmetrized and also becomes time
consuming. The maximum displacement of the interface
v„ht at each time step was lower than 0.1 grid units in all
simulations. Therefore we used the implicit scheme
mainly at low normal velocities.

Note that we have typically %=4 complete systems
consisting of interfaces, outer frames, and diffusion fields,
but the interfaces and frames are geometrically identical
and differ only by rotation and translation. At each time
step b, t the determination of the local velocity of the in-
terface, the incorporation of the boundary condition into
the grid, and the diffusion step are performed indepen-
dently on all N grids and interfaces. We advance each in-
terface by its own velocity and determine the average of
all these interfaces. This is possible because the inter-
faces were geometrically identical before advancing. This
averaged interface is then redistributed to the different
grids by rotation and translation. Since this average is
taken after each of the small time steps, the influence of
the artificial anisotropy from the underlying lattice can
be suppressed almost completely.

When the interface advances the distances between
consecutive interface points may change because every
interface point moves in normal direction with its own
velocity. After each time step these distances are adjust-
ed to fall in an interval s,„/2 &s. &s,„. If the length of
such a segment exceeds s,„a new point is added in the
middle of an averaged arc. If two consecutive points
come too close, one of thetn is eliminated. s,„=2-3
grid units seems to be a good choice. After the addition
or elimination of points, all distances between the inter-
face points are equilibrated by diffusing the points along
the interface. The iteration is now repeated with this new
interface. This procedure has been proved to be success-
ful already in previous simulations by a Green s-function
method [16].

During the simulation the foremost part of the struc-
ture was always kept approximately at the center of the
grids. This makes long time runs possible and can be
achieved as follows: After growing over some grid units
the interface and the values of the diffusion field are shift-
ed against the grid by the same amount. This takes place
independently on all grids. The shift vectors have integer
components in grid units. Therefore they do not cause
interpolation errors. They are constructed in such a way
that the foremost tip of the structure is always as close as
possible to the center of each grid. After shifting the
structure against the grid, some parts of it can lie outside
the outer frame (Fig. 3). We cut off these parts which do
not matter, if their distance to the foremost fingers is
large enough. For the simulations in a channel we need
rejecting boundary conditions at the sidewalls R2 and

R4 in Fig. 3. This is done by setting the field on the grid
points which are outside the computational frame but
near these walls to special values. These values are calcu-
lated at each time step in such a way that the gradient of
the diffusion field u perpendicular to the sidewalls is zero.
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a;
W =a; +b;, a; =arctan

l

(12)

It is of course beyond our computational power to
reach the long-time limit of a completely free developing
crystal. Therefore we tried to approach this situation by
a system with periodic boundaries at the walls Rz and

R4. This does not produce errors if all physical length
scales are much smaller than the periodicity length. In
contrast to the channel with rejecting boundaries the
periodic boundary conditions allow for horizontal drifts
without time limitation. It is particularly important to
achieve exact translational invariance for these periodic
boundary conditions in order to avoid pinning efFects.
While this is simple for a single lattice, simultaneous
periodic boundary conditions with the same periodicity
length 8' on two or more rotated lattices are not
rigorously possible for arbitrary angles of rotation.

Explicitly it is impossible to fulfill the conditions

After numerous simple tests such as the growth of a
Hat and a circular interface we simulated dendrites and

350 -I

300 —,

250—

g =0.5
p =0.05

200—

"50—

100—

are the actually realized periodicity or angle, respectively,
on grid i, while 8' and a are the ideal values. These ra-
tional approximations for irrational relations introduce
here relative errors of less than 10 or even 10, but
maintain full translational invariance.

IV. COMPACT DENDRITES
AND FLUCTUATION EF1'ACTS

for arbitrary angles a; of rotation and integer numbers a,
and b; for the lattice i on more than one grid. Figure 8

shows a specific channel which satisfies the conditions
(12). As a useful compromise we allowed the periodicity
length to differ slightly from Wand the rotation angles to
be not exactly equal to ir/4 or m /8, respectively.
Different periodicity on the lattices requires an additional
dilation or contraction by redistributing the average in-

terface to the difFerent lattices. We have chosen specific
numbers of grid units to further minimize the already
small error. The conditions
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FIG. 8. Schematic plot of the periodic boundary condition.
The rotation angle a is commensurable with tan(a) =a/b =

~

and the width of the channel is W=&58. The point A is
equivalent to the point A ' and the point B is equivalent to the
point 8'.

FIG. 9. Dendrite crystals grown from an initial Ivantsov pa-
rabola at different anisotropies simulated on a stack of four
grids. The parameters were D = 1, 6=0.5, (a) e4= 0.05,
dp =0.075 ID = 139 Rt p

22. 5, lattice size 1 121 X 1 121; (b)
64=0. 1 dp =0-05 ID =45.5 Rtt& 8.7 lattice size 333 & 333
and (c) F4=0. 15, dp 0.17 ID 87 Rt,-„15.53, lattice size
561 X 561. Here and in the following all lengths are given in lat-
tice units of the computational grid LU, all times in LU /D,
and all velocities in D/LU. The diffusion length ID was ob-
tained in the stationary regime by ID 2D /Vt p.
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FIG. 11. The normalized growth rate 0.=Ud 0!(2Dp ) of den-
drites is plotted vs anisotropy e4. Data obtained by numerical
simulation based on the Green's-function method [16] are plot-
ted with O. Data from our method are plotted with X for a
calculation on two grids (angle 0, m/4) and with 4 on four grids
(angle 0, m. /8, m/4, 3m. /8). Note the appreciable deviations of
the two-grid simulation from the Green's-function method at
low anisotropy which presumably is due to some rest of numeri-
cal anisotropy.

measured their tip velocities and radii in dependence on
the anisotropy of the capillary length. The results were
compared with accurate numerical results known from a
(per definition) fully isotropic Green s-function calcula-
tion [16] in quasistationary approximation. Most of the
simulations were performed with undercooling 6 between
0.5 and 0.8 and with fourfold anisotropy in the range
0.05 & @4~0.2. The tip radii were between 9 and 40 grid
units. The largest distance s,„between consecutive in-
terface points is 2 grid units. The initial configuration
usually was an Ivantsov parabola growing with a higher
velocity as expected for the stationary needle crystal.

The tip of the dendrites are automatically kept at a dis-
tance of at least two diffusion lengths from this outer
frame in order to suppress boundary effects. If the tip of
the dendrite grows too close to the far wall, the moving
boundary and the values of the diffusion field are shifted
backward by an integer number of grid units against the
outer frame and the grid. Now the shifted dendrite
exceeds the fixed frame and must be cut off at the bottom.
Since the growth rate of the dendrite is primarily
governed by the dendrite tip, only a very small error due
to the cutofF in the tail region is supposed to occur.

Figure 9 shows three dendritic crystals in their station-
ary regime grown on four grids with different anisotro-
pies e4=0.05, 0.1, and 0.15 at an undercooling of 5=0.5.
In Fig. 10 the time evolution of the tip radius and veloci-
ty for these dendrites is shown. Note that there are al-
most no sidebranches for the dendrite with high anisotro-

py e4=0. 15, while the crystal with @4=0.05 is near the
instability region, which is indicated by the strongly ir-
regular sidebranching and the large fluctuations in the tip
radius and velocity. Figure 11 shows the normalized
growth rate o =dov l(2Dp }, where do is the capillary
length and p is the Peclet number, versus anisotropy for
dendrites calculated on two and four grids and with the
Green's-function method. The Peclet number p in the

definition of cr is calculated for the given undercooling
from the Ivantsov relation (5). The Peclet number p ob-
tained by calculating VR/(2D) from the simulations is
always slightly smaller than p and depends on anisotropy
in agreement with [16].

At low anisotropy the two-grid version yields growth
rates twice as high as those of the Green's-function
method while the four-grid version agrees within 20%.
Thus most of the following simulations were done on a
stack of four grids leaving no four- and eightfold numeri-
cal anisotropy. The wavelength of the sidebranches
scales with the Mullins-Sekerka length (7) as A, =2.6pMs,
in agreement with previous simulations [16]. The CPU
time for reaching the stationary dendritic solution lies be-
tween 18 min [dendrite in Fig. 9(b)] and 37 h [dendrite in

Fig. 9(a)] on a CRAY-XMP supercomputer depending on
the anisotropy and the degree of discretization. Thus the
computational speed is comparable to that of the
Green's-function method for the same resolution, al-
though there is somewhat more noise produced by the
present fully time dependent scheme.

After these initial tests we considered the range of sta-
bility of these primary dendrites. The stationary state of
a needle crystal growing at nonzero anisotropy resembles
very closely a parabola [14]. Without anisotropy no sta-
tionary needle crystal symmetrical about the tip is possi-
ble [12—15]. Using numerical methods similar to [24] it
was found [30] that only the fastest growing solution
from the discrete set of possible stationary needles was
stable. Analytical results based on %KB-type approxi-
mations [31,32] gave the following picture for the dynam-
ical stability.

%e assume to be in a frame of reference moving along
with the tip of the needle. A wave packet of deformation
introduced a short distance away from the tip will grow
in amplitude, spread, and will be driven towards the tail
of the dendrite. This causes the sidebranches of the den-
drite. Close to the tip region this looks like a convective
instability: A perturbation in the laboratory frame will
grow indefinitely, but in the moving frame it will decay.
In fact, it was shown [33,31] that this is not quite correct
as the amplitude of the sidebranches will not grow
without bound, so the fastest growing needle will be com-
pletely stable. The possibly most rigorous analysis [14]
states that the tip of the needle crystal is absolutely stable
against small perturbations if they have only real eigen-
values in the stability spectrum. An alternative picture,
however, was given recently. There it was argued [34]
that the spreading rate of the wave packet might become
so large that the tip could undergo strong oscillations or
even become unstable. From the evolution of a wave
packet traveling down the shaft of the dendrite it is obvi-
ously not easy to conclude rigorously what happens
directly at the tip. This puzzle has its origin in the old
argument [24] that the tip becomes unstable if its radius
of curvature becomes sipnificant1y smaller than the stabil-
ity length A,, =2m+2doD/v. .This situation is encoun-
tered in the limit of small anisotropy e4 or small o. be-
cause of the relation A,, /p =2m V'o, which results from
(6}. Our conclusion here is in agreement with the general
opinion [31,32, 14] that the dendrite tip even in the limit
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of very small but nonzero anisotropy remains linearly
stable against arbitrary perturbations of infinitesimal am-
plitude. A recently given simple argument [22] illustrates
our conclusion, Fig. 12. Assume that an almost parabolic
needle crystal moves at velocity u. At small anisotropy
with small cr the stability length A,, is very much smaller
than the tip radius p.

Assume now that we introduce a spatially oscillating
perturbation of wavelength A, =A,, with infinitesimal am-
plitude over the tip region. According to the Mullins-
Sekerka stability analysis of a flat plane [4] this perturba-
tion grows with time -exp(Qt) and therefore tries to
destabilize the tip. This argument, however, ignores the
small but nonzero curvature of the tip. Since the motion
of the crystal surface is always in normal direction, a
point on the surface close to the tip will eventually be
driven away from the tip, even though this is initially a
very slow process for points very close to the tip, as illus-
trated in Fig. 12. A point originally at a small distance
xo away from the tip is slowly moving down the shaft rel-
ative to the tip position due to convection. A short cal-
culation [22] shows that within a time

c, +in+2c, +ln
Xp

(14}

the point has gone down the shaft by a distance c,p, with

c& being a constant of order unity. At this time the point
on the interface has essentially left the tip region. As-
sume now that xo=A, '/4 is the first node point of the
perturbation of the most dangerous fastest growing mode
with periodicity A,

' =~3iL, near the tip, where the ampli-
tude of the perturbation changes its sign. If the ampli-
tude initially is infinitesimal, it remains arbitrarily small
during the time 5t, but the node then has left the tip re-
gion. In other words, the perturbation has disappeared
from the tip region. This explains why the dendrite tip is
stable against infinitesimal perturbations since a pertur-
bation, even when it is located directly at the tip, tends to
be convected away.

If the initial amplitude of the perturbation exceeds a

critical value of

A ' =p exp —— c i +In(+2c i )+ln
3 Xo Xp

the perturbation becomes much larger than p during the
time 5t and the tip will split into finer structures. Hence
the dendrite is absolutely unstable against this pertuj. 'ba-

tion.
In Fig. 13 we plot A '/p logarithmically versus

rr=(8/3tr)(x0/p) with c, =1. The dendrite tip accord-
ingly is unstable against finite amplitude perturbations
when the amplitude of the perturbations is larger than
the critical value A '. This tip analysis agrees in its basic
scaling properties with the previous results [33,31] from
the analysis of wave packets moving along the shaft. A
similar consideration has been made before for the some-
what related SafFman-Taylor problem [35]. So far we
considered the deterministic growth of an itnposed per-
turbation. This process can be related to the perturba-
tions generated by a noise source acting continuously on
the tip [36,22]. This noise was introduced in Ref. [36] by
adding at a point rI near the tip a random Gaussian ve-

locity v" to the systematic part of the velocity

v "(r, t )=yoR (t)5(r rt)—, (16)

with (R(t)R(t'})=5(t t') and —
yo being the strength of

the noise. This becomes equivalent to an initial deforma-
tion of the interface with amplitude

Q(k)=— [1—
—,'dolnk ]0 D (18)

near the tip [22]. Here Qk, is the second derivative of
the Mullins-Sekerka dispersion relation [4]
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FIG. 12. Schematic plot of the convective motion of a nodal
point on the surface of a parabolic dendrite, initially at position
x0. As time goes on, the nodal point moving in a normal direc-
tion to the parabolic surface is driven away from the tip.

FIG. 13. Kinetic phase diagram of morphologies in the phase
space of perturbation amplitude A versus anisotropy parameter
o. The line shows the critical amplitude A obtained from Eq.
(15) with c& =1. For amplitudes significantly smaller than A
the tip is stable; for significantly larger amplitudes the tip is un-
stable. Note the strong dependence of A on o for small o.
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(1D is the diff'usion length) for a fiat interface at k =k*,
where 0 has its maximum value. In Fig. 14 we show the
action of such perturbations which apparently are above
the critical threshold onto dendrites which consequently
do not maintain compact dendritic form. Figure 14(b) is

a typical snapshot of a fractal dendrite. Taking averages
over such tip regions at various times analogously as
done by Arneodo et al. [19] one arrives at an approxi-
mately parabolic envelope whose scaling is in agreement
with the prediction for fractal dendrites [7].

Although the Mullins-Sekerka instability has only real
eigenvalues a perturbation at the tip could at least in
principle also oscillate in time with frequency co, thereby
producing new spatial oscillations with new nodal points.
Assuming conservation of the nodal points everywhere
except at the tip —and ignoring external noise for the
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FIG. 14. (a) Evolution of a small perturbation of numerical

origin at the tip. The stability length here was about RO/5 with

an initial tip radius Ra=50 and an initial diffusion length

la=267. A well-defined spatially oscillating mode develops.

The tip is unstable against this mode, which does not oscillate in

time directly at the tip. As already mentioned in Fig. 9, here

and in the following all lengths are measured in units of the

computational lattice spacing LU. The parameters used were

D =1, 6=0.5, e4=0.012, and do=0. 0095. (b) Fractal dendrite

computed on four grids. The parameters used were 8= 1,
5=0.44, @4=0.03, and do =0.03. The tip radius of the average

envelope R,„=100 is about a factor of 7 larger and the normal-

ized average growth rate V=0,„do=0.00045 is a factor of 2

larger than the theoretical values for an ideal nonfractal den-

drite without noise. The structure is a factor of 1.52 faster than

the fractal seaweed pattern [Fig. 17(b)] with b, =0.44 and e4=0.
The scaling is in agreement with the theoretical prediction [7]
for fractal dendrites.

moment —it follows for small o. that the oscillation
period ~=2m/co is bounded by p ~ v~~ X, . If such an os-
cillation in time of the perturbation exists, then it would
be conceivable that the convective stabilization may not
be sufhcient to compensate for the still active Mullins-
Sekerka instability mechanism and the tip might be
linearly unstable. So far, however, we have no indication
for such a process from our numerical studies.

V. FRACTAL SEAWEED

A Aat interface which separates a phase A from a
phase B and which moves in a diffusion field at small su-

percooling cannot move indefinitely at a constant speed;
otherwise global conservation of the diffusing species
would be violated. In principle, however, a constant
growth rate of an average interface is possible if behind
that average interface the resulting "phase" is no more
homogeneous but a mixture of the two phases A and 8
This means that the actual local interface between A and
B must be meandering hereby forming alternating layers
of phase A and phase B. The envelope over this
meandering two-phase region then is the average inter-
face.

As a first central result of our simulations we describe
here the formation of fractal seaweed s-tructures. They
will be characterized by absence of observable anisotro-
pies and second by the existence of a region of length
scales within which a fractal dimension can be deter-
mined for the growing pattern. The theoretical scaling
concept [7] is based on an earlier discovery [6] in Lapla-
cian growth and can be summarized as follows. Assume
that a scaling range for fractal structures exists between
some short-range cutoff p and the diffusion length lD so
that the mass m of the aggregated object scales with

length 1 as m —(1lp) f, with Df as the fractal dimension.
On scales larger than the diffusion length the object ap-
pears to have an average mass density g ( 1 and the mass
scales simply as m —t)(l lp)", with d now being the actual
dimension of space. Obviously, right at I=/D the two
scaling relations must become equal

(19)
,

''P ] P

Assuming that the short-range cutoff p is proportional to
the stability length pMs=2n. +dplg) the equation allows
for a determination of growth rate as a function of super-
cooling [7]. The evolution of patterns characterizable by
this concept are now presented.

In Fig. 15 we show the time evolution of a hump ini-
tially introduced on the interface. The frame shown is al-
ways moved along with the forefront of the moving inter-
face. In each of the little figures the moving interface
moves upward into the channel, the sidewalls of the
channel have mirror reAection boundary conditions for
the diffusion field, and the top boundary is kept at the
value for the infinitely distant diffusion field ahead of the
moving interface. This top boundary is actually not
shown here in order to save space. In a11 cases it is kept
at least two diffusion lengths ahead of the topmost point



FRACTAL AND COMPACT GROWl H MORPHOLOGIES IN. . .

of the moving interface. The width of the channel here is
more than five times the diffusion length. The final figure
of this series already gives a clear indication for the ex-
istence of a fractal scaling range as the pattern shows
some rather inhomogeneous distributions over space
resembling cauliflower or seaweed.

In Fig. 16 we show the result of a box-counting
analysis for the fractal dimension of the boundary of such
a seaweed. The boundary curve was covered with a
minimal number N of circles of radius R. The measured
length La is then related to the fractal dimension DI of
that surface by the obvious relation

L (20)

applicable in one of the limits R ~~ or R ~0.Of course
we can only expect some intermediate range between the
two limits to follow such a scaling range: For smaller ra-
dii the structure becomes smooth DL =1 because of the
smoothing efFect of the surface tension, and at large radii
screening efFects are expected to become relevant. This is
actually recovered in Fig. 16 where the slope of the curve
corresponds to (DL —1—), giving Di =1.67. This value

in fact is quite precisely equal to the value —', obtained by
a mean-field argument for the bulk dimension.

The final state of the simulations for two diff'erent su-

percoolings 6=0.35 and 0.44 and at zero anisotropy is

8.5

8.0

7.5

In(R)

FIG. 16. The length I. of the whole solid-liquid boundary
was measured by covering the interface with a minimum num-

ber of circles with radius R. The natural logarithm of I. is plot-
ted vs the logarithm of R in order to get the fractal dimension

DI of the boundary from the slope 1 —DI. This yields

DL =1.67

shown in Fig. 17. Of course the structures still would be
dynamically changing, but their characteristic quantities
such as fractal dimensions have reached a steady state on
average. The fractal structure becomes more obvious the
smaller 5 is, as expected. The bulk fractal dimension Df
can now be defined by a box-counting method in the usu-
al way. Divide the system completely into squares of side
length r Any s.quare containing a part of the bulk from
the grown phase is counted as occupied. The number N„
of occupied squares then should scale in the fractal re-
gion as

—DN„-r (21)

FIG. 15. Time evolution of a fractal seaweed structure with
isotropic capillary length started from an initial hump. The pa-
rameters used were D=1, 5=0.393, channel width S'=700,
and do =0.01. The average velocity is about u =0.016, yielding
a diffusion length I& = 125.

v — 5&, $=21(2 D), —D
d, (22)

predicted for the growth rate depending on supercooling
for sufficiently small supercoolings. (We ignore possible

at least over some range of r values just like in the case of
the fractal boundary discussed above.

The result is plotted in Fig. 18. The box counting was
restricted to be the central third of the channel width to
minimize boundary effects. The effect is most pro-
nounced for the smallest value of lb=0. 35 considered
here. Shown is the effective fractal dimension Df(r) ob-
tained from the evaluation of Df(r)= —in(Nz„/N„)/ln2
for two subsequent box divisions differing by a factor of 2
in box size. There clearly exists an intermediate range of
length scales giving a plateau for the local fractal dimen-
sion at a value of about Df & 1.73. At larger values of b,
the plateau is less pronounced and it lies at slightly larger
values. Accordingly the result Df &1.73 must be con-
sidered as an upper bound and the surface exponent
DL =1.67 &Df as a lower bound on the bulk fractal di-
mension. We conclude that our present result
1.67&Df &1.73 appears to be fully consistent with the
value 1.715 found for the fractal dimension of Laplacian
aggregation [21] in continuous space as was predicted [7].

The next point to be addressed concerns the scaling re-
lation
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noise effects for the moment. } It orpiinates from the rela-

tion mentioned above (19): (I/p) -(I/p) 6, where I
should be identified as the diffusion length and p as the
stability length, Eq. (7). From a log-log plot of the veloci-
ty vs 5 for the three values of 5=0.35, 0.393, and 0.44
we found that the three points clearly can be connected
by a straight line with slope =6.0. In order to show that
this works well at least in this 5 range, we plot V/5 vs
6 in Fig. 19 with 4=6.0. The deviations from a hor-
izontal straight line are within our numerical uncertain-
ties. Assuming an exponent of Df =1.71, one would ex-

pect /=6. 9. On the other hand, if one would use a con-
stant value of p for the small scale cutoff independent of
velocity as originally proposed and confirmed for stochas-
tic growth model without surface tension [6], one would
expect an exponent of about 1(i=3.5. Our results clearly
support Eq. (22) with /=2/(2 —D&). These results
therefore give a quantitative confirmation of this recently
formulated scaling prediction [7]. Note also that it is by
no means trivial that such an interface can move at a rate
which is constant on average and not decreasing with
time like a flat interface necessarily would do. The frac-
tal scaling here is similar to scaling near a critical point
in second-order phase transitions. The critical point
would correspond to supercooling 6~0 so that the
diffusion length diverges and the range of length scales
corresponding to the plateau in Fig. 18 also diverges.
Note that despite the fact that our smallest value of
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FIG. 18. Box-counting analysis of the pattern shown in Fig.
17(a). The central third of the channel is completely divided

into squares of side length r. Any square containing a part of
the bulk from the grown phase is counted as occupied. The

number N„of occupied squares then should scale in the fractal
—D

region as N, -r . The local fractal dimension Df, which

should be independent of the box size r for an ideal fracta1, is

plotted vs the natural logarithm of r. Here this is only true in a

range of about one magnitude of length scales and gives a frac-

tal dimension of Df =1.73. Symbols correspond to doubling of
box size.

(23)

5=0.35 still seems to be relatively large, the plateau in

Fig. 18 extends over more than an order of magnitude in

length scale already. In principle we could of course fur-

ther reduce 6 in the simulations, but the large value of
the exponent P quickly leads to an enormous increase in

the diffusion length as the long-range cutoff. This in turn
would require a substantial increase in lattice size and
computing time driving us quickly beyond the limits of
currently available computer equipment. In any case the
factor of 10 in length scales achieved here is apparently
sufficient for a precision of the critical exponent
2/(2 —Df ) within about 10%%uo.

Finally we have also made an attempt to estimate the
noise strength in these simulations and to test the predic-
tion [7] of velocity depending logarithmically on noise as

I I

0.04

FIG. 17. Fractal seaweed structures grown over very long
times in a wide channel (relative to the diffusion length ID) at
low undercooling. The average velocities of their envelopes
have already reached constant values. The width of the narrow
troughs is about equa1 to the Mullins-Sekerka length pMs. The
parameters used were D =1, e4=0, and lattice size 1121X1121;

~=0 3» do=0. 0068, lz =182, pMs=7', (b) 6=0.44,
d0=0.015, 1D =101,pMs=7. 7. A11 lengths are given in lattice
units LU and all times in LU /D are as already mentioned in

Fig. 9.
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FIG. 19. The normalized average velocity V=Udo/D of the
envelope of the structures from Fig. 17 and a structure at
5=0.393 (not shown) divided by 6 with 41=6.0 is plotted vs

undercooling A. Deviations from a horizontal straight line are
within our numerical uncertainty.
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resulting finger first increases, goes through a maximum,
and then decreases again as v-w ' (with the diffusion
constant as a proportionality factor). For wide channels
this is consistent with the condition imposed by the con-
servation law that the diffusion length cannot be substan-
tially smaller than the width of the finger. Otherwise the
phase separation occurring during finger formation by
diffusion could not take place.

In a previous numerical investigation by a Green s-

function technique [39] this predicted behavior was
confirmed for channel growth. We have now repeated
these simulations with our fully dynamical code and
confirm the cited results. In particular we also quantita-
tively confirm the appearance of a symmetry broke-n (SB}
finger which grows off center in the channel once a criti-
cal width has been exceeded (Fig. 28}. In a previous
study [39] on channel growth we could not decide wheth-
er this occurrence of the asymmetrical finger is a linear or
a nonlinear instability. This will be discussed in more de-
tail at the end of this section.

These asymmetric or symmetry-broken fingers seem to
represent a key point in the growth of compact-seaweed
morphology as already mentioned [17]. In Fig. 20 we

show a practically dendritic SB finger moving along the
wall as it develops with time from some initially centered
perturbation in a channel with rejecting sidewalls. Its
tip radius and growth rate matches within 1% with the

—
1D~ g=0. 7

)

IL

(b)

w(

('Q '"

FIG. 22. (a) Final state of the time sequence from Fig. 20 (not

shown there}. (b) Last picture of the compact seaweed structure
shown in Fig. 21. Structures like the asymmetric fingers in {a)
are visible. The diffusion length is only about 10% of the

periodicity length 8'. The growth rate is only 15% slower than

in (a). This supports the idea [7] of a growth rate selection

mechanism intrinsic to the pattern.

results obtained by the Green's-function method in

quasistationary approximation [39]. In Fig. 21 we show
the corresponding time sequence, but now with periodic
boundary conditions, i.e., without walls on the sides of
the channel. Surprisingly it looks as if the resulting
seaweed pattern tries to form asymmetric double fingers
in order to mimic the existence of a re6ecting wall. We
assert the convergence to stationary growth rate apart
from spatiotemporal fluctuations. This is also obvious in
the comparison given in Fig. 22 (with and without wall;
see our previous abbreviated paper [17]).

It seems that the resulting finger structure may depend
also on initial conditions as seen in Fig. 23 where two
differently developed asymmetrical fingers run in parallel
over several diffusion lengths. The finger tips, however,
do not depend on details. In Figs. 24(a) and 24(b) we
again show two snapshots of a double finger evolving
with time under periodic boundary conditions. Figure
24(b) has essentially come to a final state of steady
motion. The finger grows at an angle of 8.7' against the
average vertical growth direction. Would some remain-
ing 16-fold anisotropy be responsible for this angle (on
four rotated lattices) one should expect an angle of 22. 5'

or 12.25'. We have rotated this pattern into vertical

nba II
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FIG. 2 1 ~ Time sequence of channel growth with periodic

boundary conditions at the walls. Here two periods are plotted.
Structures like the asymmetric fingers in Fig. 20 start to dom-

inate this compact seaweed pattern. The first pictures look like

unstable dendrites, which is probably due to some rest anisotro-

py, because we used only two grids for the simulation. The pa-

rameters used were D = 1, 6=0.7, @4=0, lattice size 851 X 851,

do =0.434, and 8'=478. The average velocity was U,„=0.04,
which gives lD =50.

200 300 400 500

FIG. 23. Two different developed SB fingers running parallel

in a channel with reflecting walls at small anisotropy @4=0.05.
We obtained this structure by starting with a parabola with

E4=0 and switching on anisotropy after the first tip splitting.

The parameters and observables used were D = 1, 6=0.7,
do =0.375, ID =34, and R„p = 17.3.
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of unbinding transition in order to become single den-

drites. This drift cannot be an initial relaxation because
it is still visible after growing over 85 diS'usion lengths,

Fig. 26. Note also the increase in width compared to Fig.
25. Furthermore we checked at anisotropy zero that
these nonsymmetrical fingers exist also for smaller under-

coolings 6=0.68,0.64 with lower velocity and larger tip
radius, but at 6=0.62 the tip is destroyed by noise-

induced sidebranching similar to the fractal dendritic
case. This is in contrast to the doublon-unbinding de-

scribed before. Although we are not quite sure yet that
the unsymmetrical solution vanishes completely below
some critical 5,„„this supports the distinction between

two phases below (fractal seaweed) and above b,„;,=0.6

(compact seaweed) at the present level of noise. A clear
distinction of the two phases on the basis of the predicted
different internal length scales of the two morphologies
would require an approach to 6=0.5 at substantially re-

duced noise which we could not achieve so far. Assum-

ing a critical value of 6,„,=0.5 to exist as a limit for the
CS region as predicted, both the velocity and the tip ra-

dius of the nonsymmetrical finger scale in the range

0.64 ~ 5 ~ 0.75, in quite good agreement with the predic-
tion [Eq. (11)of Ref. [7]).

In Fig 27 we give the growth velocity versus capillary
anisotropy for the two possible branches of solutions ob-
served in these simulations, compact seaweed and com-
pact dendritic patterns. As mentioned already before
[17] this is a direct indication for the existence of a
discontinuous phase transition between the two growth
morphologies. Previous simulations on related models
did not show the independent existence of the two mor-
phologies at the same parameters.

A general argument that the transition should be of
first order is that a critical point generally is of
codimension-two, so that two parameters must be adjust-
ed in order to reach the transition point. In other words,
if in a system described by two parameters (b, e) only one
parameter is varied (e) and the other is kept fixed at an
arbitrary value, the phase transition is typically of first
order. This assumption is also supported by a recent
analytical check [40] that the transition from the symme-
trical finger in a channel with reflecting walls [37] to a
symmetrical dendrite is of first order. Concerning the
symmetry-breaking transition we show in Fig. 28 the
transition from a symmetrical (free) dendrite to an
asymmetrical dendrite moving along the wall in a rela-
tively narrow channel with reQecting sidewalls. The con-
trol parameter which was varied here was the anisotropy.

200

100—

50 —
,;'

300 400 500 600
100—

300—
0

300

X

400 500 600

200--

150—

I

L~x
/

(b) y

200 300 500 600

FIG. 25. (a) SB fingers with anisotropy @=0.075. The fingers

with isotropic surface tension as shown in Fig. 24(c) are used as

initial conditions. All other parameters, except anisotropy, are

the same as in Fig. 24: R„~= 19.9 and u =0.0515. (b) A normal

dendrite with the same physical and numerical parameters as in

(a), but with a parabola as initial condition. Apparently there

are two kinds of stable solutions. The dendrite moves slower

than the SB fingers by a factor of about 1.6. R„-„=37.1 and

U =0.0332.

FIG. 26. An unstable pair of SB fingers at t 4=0. 125 grown

on four grids with periodic boundaries. The structure with

e4=0.075 of Fig. 25(a) was used as initial condition. No other
parameters were changed. The fingers drift slowly away from

each other in order to become free dendrites. Note that this

drift is no initial relaxation process, because the structure has

already grown by about 85 diffusion lengths at time T2. The pa-
rameters used were D = 1, 6=0.7, do =0.4345, R„p = 19.4,
ID=34.5, and growth time TO=0, Tl =25900, and T2=49490.
At time T2 the tip radius and the velocity have reached quite
constant values of R„~=19.4 and u =0.058. The values of the

corresponding free dendrite, which was simulated with the same

parameters but with the dendrite with e4=0.075 as initial con-
dition [Fig. 25{b)],are R„~=20. 1 and v =0.0571. There is only

a difference of about 3% to the values of the two drifting

fingers. Furthermore there is a distance of about 3.9 diffusion

lengths between the tips of the two fingers as seen in the figure.

Hence we can conclude that these fingers have already become
free dendrites.
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While in Fig. 25(b) the dendritic solution is obtained in a
system with periodic boundary conditions without a wall,
the walls in Fig. 28 allow the dendrite to break the sym-

metry and, together with its mirror image across the wall,
to develop a double-finger structure. This appears to be
precisely what happens in the wide system without a
wall, Figs. 24 and 25 that two fingers move as twins in a
double-finger structure.

We think that this symmetry-breaking transition in a

Anisotropy &4=0.00, 0.05, 0.10, 0.15

0.4

Anisotropy q4

FIG. 27. Normalized velocity V=udo/D vs anisotropy of e4

for SB fingers (upper curve, ) and dendrites (lower curve, O).
The channel has periodic boundary canditions and all parame-
ters are as in Figs. 21, 24, and 25. If one approaches the critical
anisotropy (here e,„,&0.125) fram below, the distance between
the two SB fingers increases and their velocity and tip radius
come closer to the values of the corresponding dendrite. At an-

isotropy 0.125 there is no stable pair solution; the two fingers

tend away from each other very slowly in order to become free
dendrites. The crossover region from SB fingers to dendrites is

given by the dashed line. Up to now it is not clear whether the
two lines for dendrites and SB fingers are really connected. The
point X corresponds to the two dendrites of Fig. 26.

0.32

0.31

0.30
0

0.29

0.28
X

n 0.27

0.26
J

0.25

0.05 0.10 0.15

Anisotropy z4

FIG. 29. Position of the finger tip in the channel of Fig. 2S
plotted versus anisotropy. The walls are at position values of
y=0.0 and 0.5, respectively. A position near y=0.25 corre-
sponds to a symmetrical finger. A transition to an asymmetrical
finger takes place when the anisotropy becomes smaller than
0.11. At @4=0.10 both a symmetrical and unsymmetrical finger
can grow as a stationary metastable pattern. This shows that
the transition is discontinuous.

0.00

wide channel with refiecting walls is the same as the
pairing-unpairing transition Fig. 26 in the free system.
We have studied this in somewhat more detail using the
Green's-function method [39] employed previously for
channel growth. A central result of this analysis is shown
in Fig. 29 for supercooling b, =0.7 giving the position of
the finger as a function of anisotropy. Note that the
channel has here a width of 0.5 in internal units, corre-
sponding to 200 times the capillary length do. The center

of the channel accordingly is at position 0.25. For aniso-
tropies larger than about e4=0 lthe finge. r can remain in

the center and for smaller anisotropies a position closer
to the wa11 is also possible. Note in particular that at an-

isotropy @=0.1 both positions, near the center or near
the wall, are possible for the same set of parameters. This
proves that the transition from the center to the wall un-

der reduction of anisotropy is ofj7rst order or discontinue

ops, because in the neighborhood of the transition two
solutions can exist in a state which is at least metastable.
The small deviations visible from the central position

0.3

O. Z

Anisotropy q4 ——0.10

0. 1 0.4

0.0

0.0 0.4 0.6
l

0.8

0.3

0.2

X
FIG. 28. Structure of symmetrical and symmetry-broken

fingers in a channel at parameters L=0.7, do =0.01,
8'=200do, and anisotropy E4=0.00,0.05,0.10,0.15 obtained
with the Careen's function meth-od from [16,39]. We checked
that the calculation at @4=0 with the fully time-dependent
method agrees within 3%. The width 8'of the channel is just
above the critical value where nonsymmetrical solutions can
occur [39]. At amsotropy 0.15 the finger is in the center of the
channel (position 0.25 on vertical axis), with decreasing anisot-
ropy the position becomes oI'center. Rejecting walls are at po-
sitions y =0.0 and 0.5.

0.1

0.0

I

0.0
I

0.2 0.4 0.6
1

0.8

FIG. 30. Symmetrical and asymmetrical finger for the same
anisotropy @4=0.1. Other parameters were the same as in Fig.
28. The global conservation as expressed in the finger width is
fulfilled with a relative precision of about 10 for both pat-
terns.
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would cover a large percentage of space at long times.
While the results of Figs. 29 and 31 were obtained for a
still rather narrow channel, we expect that they hold also
qualitatively unchanged for the wide channel and finally
for the infinite system with respect to the double-finger
transition. We expect, furthermore, that for a sufBciently
narrow channel (but still wider than the critical width

[37,39]) the transition could change from a discontinuous
into a continuous transition with the analog of a tricriti-
cal point in between. We will leave this together with a
more detailed analysis of the velocity dependence near
the transition point to a forthcoming investigation.

VII. CONCLUSION

FIG. 31. Velocity of the finger in the channel with reflecting

boundaries as in Figs. 28 and 29 plotted versus anisotropy. The
left branch corresponds to the asymmetrical finger and the right
branch at larger anisotropies to the symmetrical finger. It is

still not clear whether the asymmetrical branch stops before it
reaches the symmetrical branch around e4=0. 11 or whether the

two branches intersect. Note the similarity to Fig. 27, where in

contrast periodic boundary conditions were used and the chan-

nel was about five times wider. For further details see text.

near the position values of 0.25 in Fig. 29 are due to small
numerical symmetry-breaking effects such as the channel
not being centered around the numerical value of zero.
Since they are irrelevant for all of the conclusions we did
not remove them. In addition this proves here the metas-
tability of the solution at the center. A comparison of
these two fingers at @4=0.1 is shown in Fig. 30. Finally
we show in Fig. 31 the resulting velocities as a function of
anisotropy. Again these are clearly two different
branches for the symmetrical and for the asymmetrical
finger. (Note that Fig. 31 looks very similar to Fig. 27.)
We have tried to increase the anisotropy from 0.10 to
0.11 for the anisotropic finger, but after a very long relax-
ation the finger converged to the symmetrical solution.
Therefore, we cannot decide at present whether the
asymmetrical branch intersects the symmetrical branch
in the velocity vs anisotropy relation.

This suggests some interesting possibilities for the pat-
tern selection process. The two branches plotted in Figs.
29 and 31 show that two different velocities are possible
around anisotropy of 0.1. One may assign different mea-
sures of stability or resilience to these two patterns ac-
cording to whether the system under noise spends more
time around the one or the other of the two structures. It
seems to be by no means clear that the pattern which is
more stable or more resilient in this sense also is the one
which runs with higher growth velocity. If the more resi-
lient pattern is the faster one, it wi11 be the one selected,
but if it would be the slower one, then it depends on the
product of these two measures which of the patterns

We presented a numerical method to study the ad-
vancement of an interface due to diffusional transport. It
was shown that the effects of the artificial anisotropy due
to the computational lattice can be suppressed by using a
stack of rotated lattices. The basic predictions for the oc-
currence of the growth morphologies compact and fractal
dendrites for anisotropic surface tension and compact
and fractal seaweed for vanishing anisotropy were

confirmed. We found that for arbitrary driving forces an
average interface can move at constant growth velocity
even with fully isotropic surface tension. Furthermore
we found fractal seaweed structures at zero anisotropy
and small driving forces 6 -0.5 with a fractal dimension
1.66&af &1.73, in agreement with the case of simple

Laplace aggregation without surface tension as predicted
[7]. If the anisotropy is increased the pattern can be de-
scribed as fractal dendritic, growing faster than a com-
pact dendrite, which is obtained at larger anisotropy.
This is in agreement with the prediction for noisy den-
drites. At large driving force b, 0.5, we see a transition
from the compact dendritic to the compact seaweed mor-

phology when anisotropy is reduced. Symmetry-broken
fingers of the growing phase seem to be the basic building
blocks for the compact-seaweed morphology. These re-
sults are supported by studies on channel growth which
give a discontinuous transition from the dendritic to the
channel (seaweed) mode of growth. Within our numeri-

cal accuracy the velocities become equal at the transition
point, but there is still another possibility not completely
ruled out yet. A major point to be clarified finally is still
the quantitative influence of noise on these pattern-
selection processes and we hope to report on this in the
near future.
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