
PHYSICAL REVIEW E VOLUME 49, NUMBER 4 APRIL 1994

Critical behavior at nematic —smectic-A phase transitions
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The effective experimental critical exponents a, y, v~~, and v, obtained from high-resolution heat capa-

city and x-ray studies of nematic —smectic-A transitions in liquid crystals are presented as a function of
the ratio T» /T» of the nematic-smetic-A transition temperature to that of the nematic-isotropic tran-

sition. These results, which are the most extensive ever reviewed, show complex systematic trends that
are compared with the theoretically predicted crossover from three-dimensional XY to tricritical
behavior and the anisotropic behavior predicted to arise due to coupling between the smectic order pa-
rameter and director Auctuations.

PACS number(s): 64.70.Md, 61.30.—v, 64.60.Fr

I. INTRODUCTION

The nematic (N) —smectic-A (Sm-A) transition has
been the most extensively studied of all liquid-crystal
phase transitions. The nematic phase is an orientationally
ordered but translationally disordered phase with rodlike
molecules aligned with their long axes parallel to the
director n. The smectic-A phase contains layers (one-
dimensional translational order) with the normal to the
layers parallel to the director; i.e., the long axes of mole-
cules in a layer are perpendicular to the layer. Since de
Gennes first pointed out in 1972 the close analogy be-
tween the S-Sm- A transition and the normal-
superconducting phase transition in metals [1], there has
been great interest in the critical behavior at this transi-
tion. Although the N—Sm-A transition would seem to
represent a simple kind of one-dimensional freezing, it
has proved to be one of the most challenging, as yet un-

solved, problems in the statistical mechanics of con-
densed matter.

During the past twenty years, many high-resolution
heat-capacity and x-ray studies have been devoted to the
N Sm Atransitio—n [2—-34]. These studies were aimed at
determining the critical exponents a for the heat capacity
C~, y for the order-parameter susceptibility X, and vi and

vi for the correlation lengths
g~~

and gi parallel and per-
pendicular to the normal to the smectic layers. In addi-
tion, optical studies have also been made of the Frank
twist-and-bend elastic constants E2 and E3 in the nemat-
ic phase [35—38] and the compressional elastic constant
B in the smectic phase [39—41]. The result of these ex-
periments has been a wide range of effective critical ex-
ponents that do not agree with the values expected from
the 3D-XY (d =3, n =2 vector model) universality class.

'Present address: Francis Bitter National Magnet Laboratory,
MIT, Cambridge, MA 02139.

The theory of the N—Sm-A transition has also received
considerable attention [42—50]. The simplest model
would involve an isotropic 3D-XI" fixed point governing
the asymptotic behavior, with corrections-to-scaling
terms needed in the preasymptotic regime [51,52], since
that regime is accessed experimentally. This model gives
a good description of C, X, and the correlation volume

(~~pi for compounds with very large nematic ranges, but
does not account for the weak critical anisotropy (v~~Avi)
observed in the correlation lengths [32]. Large nematic
range should correspond to large values of the splay elas-
tic constant E&. In the limit where E& ~ 00, gauge trans-
formation theory [45] predicts that the XY fixed point is
unstable. However, effective critical behavior that is
weakly anisotropic might be observed in a nonasymptotic
experimental regime [45]. In the opposite limit, where
E

&
~0 theory predicts that the N- Sm- A transition is

like that in a type-II superconductor with vI~
=vz= viz

but with inverted heat-capacity amplitude ratios [43,45].
However, calorimetric studies that yield critical ex-
ponents a =ax~ also yield amplitude ratios inconsistent
with this inverted XY model [25]. It should also be noted
that Monte Carlo simulations of N —Sm-A transitions
give noninverted C peaks [47]. The anisotropy in the
critical behavior of gi and gi, which arises due to the
finite splay stiffness 0&E, & ao, has been treated by
dislocation-loop melting theory [44], gauge transforma-
tion theory [45], and self-consistent one-loop theory
[49,50].

Recent experiments on the X—Sm- A, and E—Sm- A 2

transitions of compounds exhibiting monolayer Sm-A,
and bilayer Sm-A2 phases [30—34] and recent theoretical
predictions of Patton and Andereck [49,50] provide a
stimulus to review the trends in effective critical ex-
ponents that have been reported experimentally. Partial
descriptions of such trends have been given previously
[15,53,54]. Clear if somewhat complicated patterns
emerge from the experimental data. Although not all
outstanding issues are resolved, the overall experimental
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behavior can be understood qualitatively and provides a
starting point for further theoretical work.

II. EFFECTIVE CRITICAL EXPONENTS

The most reliable critical exponents a, y, v~~, and v~

determined in the nematic phase near N—Sm-A transi-
tions are given in Table I, arranged in order of increasing
MacMillan ratio Tz„ /T~z (i.e., decreasing nematic

range). These exponent values were typically determined
from experimental data over the reduced temperature
range 2X10 &t &10, where t =(T T, )/—T, . The
smectic susceptibility and correlation lengths were fitted
with pure power laws,

ot g~~ riot grot (1)

while the excess heat capacity b,C~
=

C~
—

C~ (back-
ground) has been fitted with the form

aC,*=a'~t~- 1+DE ~t~
' +a (2)

where 8, is the critical contribution to the regular (non-

singular) term and the corrections-to-scaling exponent 5,
is set equal to the XY value 0.524 [51]or to the essentially
equivalent value 0.5. Heat-capacity data are available
both above and below T„and the data analysis involved

simultaneous fits to hC* with a+=a =a. Since typi-
cally 300-500 data paints were available for hC, range
shrinking [13,25] cauld be carried out and the necessity

TABLE I. Effective critical exponents obtained from heat-capacity and x-ray studies of second-order nematic-smectic-A transi-
tions. The nature of the smectic phase is indicated: A for nonpolar monomeric smectics, A

&
for polar monolayer smectics, Ad for

partial bilayer smectics, and A2 for bilayer smectics. The chemical structures corresponding to the common symbolic names are
given in Table II. Typical uncertainties in the experimental values are +(0.02-0.05) for a, +(0.05-0.06) for y, and k(0.03-0.05)
for v][ and v&.

Material

3DXY
T8
T7
DB5+C5 stilbene

DB8ONO2
DB6+TBBA'
DB6
7APCBB
D6.1AOB
8OPCBOB
7.7S5'
6OCB+ 8OCBd
609
40.7
7.8S5'
CBOOA'
8S5
7.6CB
8.5S5
40.8
8OCB
9S5
8CB

9.8S5
10S5
EEBAC
9CB'
9.04CB'
Tricritical

Type

A)
A)
Ai
A)

Ad

A2
A

Ai
A

Ad

A

A

A

Ag

A

Ad

A

A

Ad

A

Ad

A

A

A

Ad

Ad

Tzz /TNI

0.660
0.706
0.780
0.808
0.810
0.820
0.863
0.889
0.898
0.916
0.920
0.923
0.926
0.927
0.934
0.936
0.953
0.954
0.958
0.963
0.967
0.977
0.981
0.983
0.991
0.994
0.995

—0.007
XY
XY
XY
XY

b
XY
XY
XY
b
b

—0.03
~0
0.15
~p

—0.03
0.10
0.13
0.20
0.22
0.31
0.40
0.45

0.50

0.5

1.316
1.26
1.23
1.30
1.28
1.36
1.29
1.34
1.24
1.39
1.52
1.49
1.45
1.46
1.45

1.3—1.5
1.53
1.38
1.48
1.31
1.32
1.31
1.26
1.22
1.10
1.23
1.09
1.07
1.0

VII

0.669
0.70
0.69
0.73
0.69
0.72
0.67
0.70
0.75
0.71
0.82
0.76
0.78
0.78
0.81
0.70
0.83
0.82
0.78
0.70
0.71
0.71
0.67
0.66
0.61
0.71
0.57
0.54
0.5

Vj

0.669
0.65
0.61
0.57
0.59
0.52
0.52
0.64
0.65
0.56
0.68
0.62
0.68
0.65
0.68
0.62
0.68
0.58
0.66
0.57
0.58
0,57
0.51
0.53
0.51
0.45
0.37
0.38
0.5

Ref.

[51]
[22,32]
[22,32]

[24,25,32]
[31,32]

[19]
[19]

[28,34]
[29]

[26,30,32]
[16]

[10,18]

[15]
[16]

[2-4,8]
[5,1 1]

[17,33]
[20]

[12,23]
[8,9,12]

[6,20]
[7,13,20]

[20]
[6,20]

[14]
[17,20]

[20]
[1]

This mixture containing 18 mol % TBBA is considered to be far enough removed from the N—Sm-A
&

—Sm-A & point at —12 mol%
TBBA to be unaffected by that multicritical point.
C, measurements have been made, but the excess heat capacity hC~ is too small to permit evaluation of a.
7.xS5 represents a mixture of 7S5 and SS5, with O.x being the mole fraction of 8S5. The N —Sm-A —Sm-C point lies at 7.57S5, and

7.7S5 as well as 7.85S5 are considered far enough removed to be unaffected by that multicritical point.
This mixture contains 25 mol%%uo 6OCB. For mixtures with a 6OCB mole percent greater than 30 there is no stable Sm- A phase. The

quoted exponents are obtained with a phenomenological extension of optimal density theory; see Ref. [18].
'This compound is included for the sake of completeness in spite of the fact that the measurements were very early ones (mid 1970s)
and the critical exponents are less certain than those for the other materials. CBOOA exponents are not plotted in Figs. 1—3.
According to the calorimetric data in Ref. [17],9CB is close to the tricritical point but very weakly first order. The estimated tricrit-
ical mixture is 8.96 CB.
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of retaining corrections-to-scaling terms has been
confirmed in many cases. For S—Sm-A& and F-Sm-A2
transitions in materials with large nematic ranges, when
n was allowed to be a free parameter, its value was al-

ways close to zero and statistically equivalent fits were
obtained with u fixed at the XY value of —0.007 [25—28].
For X-Sm-Ad and S-Sm-A transitions in materials
with moderately large nematic ranges, Ac becomes very
small (or even undetectable) and no a exponent can be
determined [10].

The systems listed in Table I represent a comprehen-
sive set of all "simple" second-order S-Sm-A transitions
known to the authors. The structures and chemical
names of these materials are given in Table II. Not in-

cluded in Table I are systems near special regions in the
phase diagram or multicritical points other than the tri-
critical point. Omitted are data near the N-Sm-A-Sm-C
point (such as 7SS+8SS and 7S5+8OCB), data where
Fisher renormalization occurs due to steep phase boun-
daries (7S5+8OCB and 8OCB + TBBA), data near the
reentrant nose of a N-Sm- A& -N„curve (6OCB
+8OCB), data near the N —Sm- A, —Sm A z point
(DB6+TBBA), and data from reentrant nematic

(N„) lakes or estuaries having the Sm-Ad N„Sm- —A , se--

quence (DBsONOz+DB&oONO2 and 11.O.NCS + 10
OPCBOB). All of these systems involve special compli-

cations that are understood at least in general terms, and
such systems are not helpful to establishing the pattern
for normal N Sm- A beha—vior.

The exponents in Table I are plotted versus the ratio
T~„/TM, where T~„ is the nematic-smectic-A critical
temperature and T~l is the first-order nematic-isotropic
transition temperature. Since ( TM —T~„)/T~l = 1
—T~„/T~&, this ratio is a direct measure of the width of
the nematic range. The thermodynamic exponents a and

y are shown in Fig. 1, and the correlation exponents v~I

and v~ are shown in Fig. 2. Also shown is a plot of

v~j +2vj values in Fig. 3. This quantity represents the
effective critical exponent for the correlation volume pig.
In each case, the isotropic 3D-XY exponent values [51],
a= —0.007, y =1.316, v=0. 669, 3v=2.007, are indicat-

ed by a horizontal dashed line.

III. DISCUSSION

It is clear from Figs. 1-3 that the experimental
efFective critical exponents show a complicated but sys-
tematic pattern as a function of TN„ /TM. This ratio is a
necessarily crude measure of two important sources of
deviations from isotropic 3D-XFbehavior.

The first type of deviation involves crossover from a
second-order to a first-order transition via a Gaussian tri-
critical point. This behavior occurs due to coupling be-
tween the smectic order parameter 4 and the nematic
orientational order parameter S [1]. When the nematic
range is narrow and the orientational susceptibility is
large, this coupling can drive the coefficient b of the 4
term in the free-energy negative, which leads to a first-
order S-Sm- A transition. Tricritical behavior occurs at
the point where the coefficient b =0.

The second type of deviation from isotropic XY
behavior is due to the coupling between director Auctua-
tions 5n and the smectic order parameter 4 [45,49]. We
shall stress here the self-consistent one-loop theory of
Patton and Andereck [49,50], which does not utilize the
gauge transformation approach used by Lubensky [45].
This coupling is intrinsically anisotropic and the Patton-
Andereck model predicts a very gradual crossover in the
behavior from isotropic to a broad weakly anisotropic
critical correlation regime (weak coupling) to strongly an-
isotropic (vi=2vi) behavior in the strong-coupling limit.
Numerical solutions [50] for a set of bare parameter

TABLE II. Chemical structures for various smectic materials together with their commonly used

symbolic names. The phenyl group is denoted by P. Replacement of the integer n by n. x represents a

mixture of two homologs, n and n + l, with x being the mole fraction of the higher homolog.

Symbolic name

nSm
nOm
nO. m

DnAOB
EEBAC
TBBA

Chemical structure

Nonpolar
C„H2„~,—0—tft—COS—~C H~

C„H2„p,—0—P—COO—P—0—C~ Hp~ p )

C„Hp„+,—0—p—CH=N —p—C H2~~,
C„Hp„~,—P—NO =N—P—C„Hp„+,
C,H g

—0—P—CH =N—$—CH =CH—COOC, H g

C~H,—p—N =CH—p—CH =N p C4H—9—

nCB
nOCB
CBOOA
n. O.NCS
DBn or DB„CN
C„stilbene
DB„ONO2
Tn
nOPCBOB
nAPCBB

Polar
C„Hp„~,~—P—CN

C„Hp„+ ~
—0—P~—CN

CgH), —$—N= CH—~CN
C„H,„+,—0—P—COO—$—NCS

C„H2„~,—p—OOC—p—OOC—Q—CN
C H2 y ~~—CH =CH—p—OOC—p—CN

C„H,„~,—0—P—OOC—P—OOC—$—NO~

C„H2„+)
—0~—COO—$—CH =CH~—CN

C„H~„~,—0—P—OOC—$—0—CH,~CN
C„H,„+,—OOC—P—OOC—P—OOC—P—CN
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Q ~o
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4 can be compared with the experimental variation of
vII/y and vz/y as a function of TNz /TNt given in Fig. 5.
The effective exponent behavior in Figs. 1—3 clearly indi-
cates that tricritical crossover efFects occur in the range
0.93& TN„/TNI &1. Thus let us consider primarily the
v/y behavior in Fig. 5 for TN„/Tta &0.93, where the
Gaussian tricritical Sxed point should not influence the
results. Comparison with Fig. 4 suggests these systems
are in the weak-coupling regime where vII/y is constant
and vj/y exhibits a dip. The plateau value v~/y=0. 45
for TN„/TM &0.8 agrees fairly well with the theoretical

04-

0.3-

0.2-

o SmA
d

SmA
1

SmA
2

0.7

0.6—
0

01 - 9„„
0 =----D---Q--- —-M-b, ----Q-~-~- ———=

0
0.6 0.7 0.8 0.9

TNA / TNI

0.5—
SmA

p'
tc

FIG. 1. Thermodynamic effective critical exponents a and y.
The isotropic 3D-XY values of azz= —0.007 and yz+=1.316
are indicated by the dashed lines, and the tricritical values
a„=0.5 and y„=1.0 are indicted by small arrows. Crossover
from second order to tricritical is limited to the range

TNA ~TNI ~ 0'93'

values K3p/K2p=3 K3p/K] =2, and gIIp/gjp 7) tyPical
of polar liquid-crystal systems show that crossover ex-
tends over -8 orders of magnitude in reduced tempera-
ture, as shown in Fig. 4. The theoretical variable a/a3p is
proportional to t". Thus for y=yx+=1. 316, the 11 de-
cades between a/a3p 10 and 10 correspond to -8
decades in t. Note that the weakly anisotropic regime
from a/a3p 10 to 10 (where vj & v; „,~;, but

vII
—-v; „,~;,}corresponds to -4 decades in t, and the fur-

ther crossover to the strongly anisotropic regime takes
another -4 decades in t. Since experimental correlation
lengths are typically available over less than three de-
cades in reduced temperature, we take the view that ex-
perimental effective exponents vII and v~ represent aver-

age values over a short part of the very broad crossover
range.

The strength of the coupling between the director fluc-
tuation and the order parameter, and thus the position of
the accessible experimental reduced temperature range
within the a/a3p crossover regime will depend on the
magnitude of the splay elastic constant K&. Generally
speaking, the Frank elastic constants K,. vary as the
square of the nematic order parameter S [1,49]. Thus
materials with small acmatic ranges will have small E&
values at TN„and should lie deeper into the anisotropic
crossover. In contrast to this, materials with large
nematic ranges will have large K& values and should
straddle the isotropic and weak-anisotropic regimes. The
theoretical anisotropic crossover behavior shown in Fig.

o SmA
d

SmA
0.4— 1

o SmA
2

„(o)
0.6

l

0.7
I

0.9 1.0

0.80—

0.70—

0.60—

0.50— p'
tc

0.6 0.7
I

0.8

NA NI

0.9 1.0

FIG. 2. Effective correlation exponents (a) v& and (b) v~~. The
horizontal dashed line represents v&z =0.669. As in Fig. 1, tri-
critical crossover occurs in the range TN& /TNI &0.93, and the
tricritical exponent value v„=0.5 is indicated by the small ar-
rows.
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2.2—
0.60—

2.0

0.50—

rgP g~
0o

& c)

SmA

o SmA
d

1 4
& SmA,

SmA
2

3v
tc

0.40—

I

0.7
I I

0.8

NA Ni

I

0.9
0.30

0.6
!

0.7
I I

0,8
I

0,9 1,0

FIG. 3. Effective exponent v~~+2v& describing the critical
behavior of the correlation volume f~~(~. The dashed line is
3v~q =2, 007.

]o- 1 I

1
/

/

I
/

/

prediction v~/y =0.42 at a /a3o ——5 X 10 . For the
range 0.93& T~„/TNI &1) one expects tricritical (tc)
crossover and possibly stronger anisotropy but there is no
available theory for simultaneous 5n-1t and S4 coupling
e6'ects. In the simplest view, anisotropy would be corn-
pletely due to 5n4 coupling and the Patton-Andereck
model might give qualitatively correct predictions for
vl/y and v~/y even when y crossovers over from

yxr =1,316 to y„=1.0. If this view is valid, then strong
anisotropy is never realized in these experimental systems
(since v~~/y does not rise toward 2) and furthermore
a/o3o is not a monotonic function of T~„/T~r in the
range -0.9 & TN„ /Tzl 1.

FIG. 5. Variation of experimental v~~/y and v, /y ratios of
effective critical exponents as a function of the McMillan pa-
rameter T»/T». The lines are merely guides for the eye.
Open ymbols are vll/y and solid symbols are v&/y. 6 and A
for Sm- A „E3and ~ for Sm-A „0and ~ for Sm-Ad, 7 and g
for Sm-A

A. Heat capacity

The heat-capacity behavior is in good agreement with
3D-XY predictions for all samples with T~„/T&I &0.93.
This agreement includes not only the value of the critical
exponent a but all the universal amplitude ratios expect-
ed for a 3D-XY system [25,32]. In particular, the experi-
mental amplitude ratios A /3+=0. 99%0.004 are in

good agreement with the 3D-XY universal value
A /A+ =0.971420.0126 [52] and are inconsistent with
an inverted-XY value of 1.0294; see Ref. [25] for a de-
tailed discussion of this point. Thus the theoretical pre-
diction of inverted 3D-XY behavior at the E Sm-A tran-—
sition [43] is not supported by experimental data over the
accessible reduced temperature range.

When the nematic range becomes short, i.e.,
TJv„/TJvl &0.93, the expected crossover to tricritical
behavior is observed. This crossover for C~ has been ob-
served in many systems that are not included in Table I
since x-ray data are not available [55,56]. The Tz„ /Tzz
value at the tricritical point and the crossover curve of
a,s vs T» /T~l are not universal, but data for different
homologous series follow very similar trends [17,54—56].

0 I l t i t i l

[o' 10 [o-~
s I s

o 2

a /a -t~
50

[o
—lo

FKJ. 4. Variation of theoretical v~~/y and v, /y effective ex-
ponent values as a function of the theoretical variable a/a3O
(which is proportional to ty) according to the self-consistent
one-loop theory of Patton and Andereck [49,50]. This figure,
taken from Ref. [50], is based on a typical set of model parame-
ters (see text).

B. Smectic susceptibility

The order-parameter susceptibility is obtained from
the intensity of diffuse x-ray scattering in the nematic
phase. Data for systems with T&„/TNI ~0.93 show y
crossing over toward the tricritical value of 1.0. Systems
with large nematic ranges, T~~ /TNI &0.88, exhibit
effective y values that are close to or lower than yzz
when y,& is obtained from a pure power-law fit. Howev-
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er, internal consistency requires that corrections-to-
scaling terms must play a role in the susceptibility expres-
sion whenever they are important for the heat capacity.
Analysis of the four N-SM- A i systems with

TN„/Tta &0.81 shows that preasymptotic 3D isotropic
XY theory represents the susceptibility data well using
correction terms completely determined by the C data,
i.e., there are no freely adjustable parameters associated
with the susceptibility correction terms [32]. Neglect of
such preasymptotic correction terms in the isotropic XY
model can be shown to generate efFective exponents

y,z& yx~. Thus the y values in Fig. l for
TN„/TNI &0.85 are unafFected by tricritical or aniso-
tropic coupling terms and can be well described by 3D-
XY theory.

An empirical feature of the y-vs-TNz/Tati curve in

Fig. 1 that deserves special comment is the set of ten y
values greater than yxr that are observed for systems
with 0.88 & TN„/Tttt &0.96. There does not seem to be
at present any theoretical model that predicts such
behavior. The gauge theory of Lubensky [45] does not
predict well-defined values for y, and it is estimated in
the self-consistent one-loop theory [50] that director fiuc-
tuations do not play a role in renormalizing y over the
weakly anisotropic region. However, the data in Fig. 1

clearly indicate that y rises above yxi before crossover
toward tricriticality occurs.

C. Correlation lengths

The vt behavior in Fig. 2(a} can be viewed as a compos-
ite of two effects: anisotropy due to coupling to director
fiuctuations and tricritical crossover due to 4-S coupling.
The Patton-Andereck prediction for the anisotropy efFect
can be calculated from Fig. 4 if we assume y=yxi,
which seems to be valid at least for systems with
Tz„/TNI&0. 85. The resulting vi values vary from
vi=y/2=vx„ in the isotropic regime, where coupling to
director fluctuations has a negligible effect, to vz—-0.54
for the weak-anisotropy regime (value calculated for a
typical set of model parameters). In the strong-coupling
region, the prediction is vi =y/2 but y is not well known
theoretically. Since the necessary Frank elastic constants
are unknown for the materials with TN„/TNI &0.9, the
precise position in terms of TN„ /TNI for the minimum in

vj is uncertain. However, the general agreement in the
range of magnitudes for experimental and theoretical v~
values in the weak-coupling regime is encouraging. One
puzzling feature of Fig. 2(a) should be noted. Although
tricritical crossover occurs for Tn„ /Tni )0.93 as expect-
ed from the a and y behavior, the last three vz values as-
sociated with the largest T~„/TNI ratios are less than the
Gaussian tricritical value of 0.5. The reason for this is
unclear, but no theory has yet attempted to deal simul-
taneously with both 5n-g and P-S coupling to produce a
theory of anisotropic tricritical crossover.

The efFective vll values shown in Fig. 2(b) exhibit a dis-
tinctly different type of deviation from the 3D-XY value
than that observed for v~. It should be stressed that the
self-consistent one-loop theoretical curve for v shown in

II

Fig. 4 is based on the same model parameters as were
used for vi. Note that predicted deviations from
vJ yx„/2 =vier do not begin until the middle of the
weak-anisotropy region. One of the significant features of
the Patton-Andereck model is the prediction that devia-
tions of gll and gi from isotropic XY behavior first occur
at quite different reduced temperatures for a given 5n —g
coupling strength or, conversely, at different coupling
strengths for a given experimental range of reduced tem-
perature values [49,50].

The experimental v~~ values for systems with

Tttz/Tm 0.81 lie systematically above the expected
vxr values, but these differences may not be significant in
view of the typical uncertainty of +0.03 in vll values. As

T~„ /Tzz increases from -0.8 to -0.93, the experimen-
tal vll values increase significantly and then crossover to-
ward tricritical behavior occurs in the range
0.93&T~„/T~l &1, as it does for all the critical ex-
ponents. It appears that one cannot access experimental-
ly the strongly anisotropic second-order regime (where
vll=2vi} associated with strong 5n /co-upling in the
Patton-Andereck model. Indeed, as indicated in Fig. 5,
the behavior of

v~~
is very well correlated to that of y'

over the entire range of Ttt„/Tttt. One does not see a
trend toward vII~1 as y~l (which would arise from

vll/y =1}as one might expect from the simplest view of a
highly anisotropic tricritical point. Indeed, Fig. 5 shows
that vll /y' =0.55 is a useful empirical generalization.
This yields (2-nllr) =y'r/VIIF=1 82 or nllr=o 18 instead
of gxr=0 03 ove. r a wide range of Tz„/Tzz. For the
largest nematic ranges, where we believe y=yxi and

v~~+2v~=3vzz when correction terms are property taken
into account, this vtll empirical value implies that

vll
—-0.72 and vi™0.64 as a consequence of 5n )cou--

pling.

D. Correlation volume

Figure 3 shows the behavior of vll+2v~, which charac-
terizes the critical variation of the correlation volume

These exponent values were obtained, as usual,
from pure power-law fits to the correlation volume data.
Let us consider in more detail the region represented by
systems with 0.66& Tz„/Tttt &0.81. In this range, the
efFective vll+2vi values all lie below 3'„,as one would
expect for an isotropic XY model when corrections-to-
scaling terms play a significant role. It is known from all
heat-capacity analyses that corrections-to-scaling terms
are required to describe the hC data. In the case of ma-
terials with long nematic ranges, the hC~ data are well
described by exact solutions of preasymptotic 3D-XY iso-
tropic theory [32]. In this case, the magnitude of the
heat-capacity correction-term amplitude D,+ depends on
the value of a nonuniversal temperature scaling parame-
ter 80. Compared to other XY systems, such as helium
near its lambda transition, the value of 80 is relatively
large for polar liquid crystals with large nematic ranges.
Thus, to be internally consistent, one should consider the
role of corrections-to-scaling terms for the susceptibility
and correlation volume. The magnitude of such correc-
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tion terms all depend on the single parameter 00, which

can be determined from heat-capacity analysis and used

without further adjustment for analysis of X and (~~(i.
Analysis of the four N —Sm- A, systems with

T~„/T~l &0.81 shows that the behavior of (~~pi can be

well represented by preasymptotic 3D isotropic XY
theory using v~~+2vi =3vxr [32]. Thus hyperscaling

v~~
+2' =2 a is obeyed, and furthermore there is good

agreement for the product of nonuniversal amplitudes
A+ and ((~~(i)0 with the two-scale-factor universal value

for the XY model [32]. This assumption that one can use

isotropic XY theory for the correlation volume is clearly
ad hoe since anisotropy in

g~~
and gi is observed for these

systems. However, the idea that the description of the
correlation volume may be close to that of isotropic
theory even when the individual correlation lengths are
anisotropic does not seem unreasonable in view of the
direct relation between g~g'i and the free energy per unit

volume via two-scale-factor universality. In this view,
the 5n-f coupling could be the source of large correction
terms for (~~(i, which are then reflected in large correc-
tion terms for the heat capacity and susceptibility
behavior.

IV. CONCLUSION

The effective critical exponents a, y, vl, and vi for
1V—Sm-3 transitions exhibit complicated but systematic
trends as a function of the McMillan ratio T~„/T~z.
This parameter represents a convenient but imprecise
measure of the strength of two important couplings: the

Scouplin-g between the smectic and nematic order pa-
rameters that gives rise to crossover toward a tricritical
point and an eventual first-order transition when

Tz„/T~z is very close to 1, and the 5n-P coupling be-

tween the director Auctuations and the smectic order pa-
rameter that gives rise to anisotropic behavior for the
correlation lengths.

The tricritical crossover affects all of the critical ex-

ponents and becomes dominant in the range
0.93 & T~„ /T„I & 1. This complicates the theory of 5n-P
coupling in a regime where that coupling is expected to
become stronger. However, it is unlikely that E, in any
experimental system ever gets sufficiently small so that
the Patton-Andereck strong-coupling limit (where

vl=2vi) ean be realized. This view is supported by the
fact that for a given homologous series the N-I transition
becomes more strongly first order as Tz„/T~l~ 1 [56].
Thus K, should jump discontinuously at Tzl to a
significant value in the nematic phase. It also follows
from this view of K& behavior that the type-II supercon-
ductor fixed point associated with K, ~0 does not play
any role in liquid-crystal N —Sm-A critical behavior. A
proper theory for materials with Tz„/Tzl ~0.93 will re-

quire simultaneous treatment of both f Sand 5n-P cou--
pling leading to anisotropic crossover from second-order
behavior to a Gaussian tricritical behavior that may still
exhibit anisotropy.

By studying materials with large nematic ranges, say,
Tzz/Tzz &0.81, one can avoid the effects of g-S cou-

pling, but weak anisotropy still occurs for the correlation

lengths, especially gi, which is more influenced by 5n

coupling than (~~. For these materials, the heat capacity
and smectic susceptibility can be well described by
preasymptotic versions of isotropic XY theory in which
first-order corrections-to-scaling terms play an important
role [32]. It should be stressed that, for b, C& data over

the accessible reduced temperature range, the amplitude
ratio A /A+ agrees with the normal XY value and is

inconsistent with the inverted-XY value.
It also appears empirically that the correlation volume

for materials with Tz„ /Tzz & Q. 81 can be described in a

self-consistent manner using the same preasymptotic iso-

tropie theory. One challenge for future theory is to ex-

plore the connection between anisotropic
g~~

and

behavior and pseudoisotropic /~~(i behavior, including a
link between the magnitude of the correction terms for

(~~(i and those for X and C . Another theoretical chal-

lenge is to provide an explanation for effective y values

greater than yzz. An experimental challenge is to mea-

sure the Frank elastic constants for splay (E, ), twist

(Kz), and bend (Ki) in the materials with large nematic

ranges. The Patton-Andereek model [50] makes predic-
tions for the anisotropic renormalization of the elastic
constants Kz and E3 that could be tested experimentally.
Note in particular that both the one-loop and gauge
transformation theories predict a different onset of the
crossover behavior for 5E2 and 5E& than that predicted
for the correlation lengths. Thus comparison of effective
5E exponents with efFective g exponents must be done
with caution. However, in the one-loop model the under-

lying correlation lengths determined indirectly from the
Frank elastic constants should agree with those measured
directly with x rays, which is in contrast to gauge-
dependent differences predicted by gauge transformation
theories [45]. The available experimental evidence on
this point from materials with larger T~„/T~z values

[15,35,53] favors the agreement predicted from the self-

consistent one-loop theory.
For materials with T~„ /TM values in the intermediate

range 0.81—0.93, the experimental situation is more com-

plex and the theoretical situation is less clear. Heat-
capacity data continue to conform well to isotropic XY
behavior, but the susceptibility exponent y rises from

yx~ = 1.316 to —l. 55 before crossover toward tricritical
begins. This y,& behavior is not predicted by any of the
present models. For the correlation behavior, there is

considerable scatter in the v~~ and vj trends, some aspects
of which agree with anisotropic Patton-Andereck predic-
tions. Note that this range of Tzz /TM values involves

an overlap of data from different types of smectic-A
materials —both Sm-3 and Sm-Ad materials which

comprise all of the systems with large Tzz/T~I values

and Sm A
&

and Sm- 3 2 materials that dominate at small

Tz~ /T~l values.
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