
PHYSICAL REVIEW E VOLUME 49, NUMBER 4 APRIL 1994

Infiuence of the surface profile on the roughness contribution to the ellipticity coefBcient
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The light reflection on a fluid interface is considered for determination of the intrinsic surface profile
and roughness. An integral equation derived for the electric displacement vector in the surface layer is
iterated to second order in the dielectric permittivity difference he of the coexisting phases. The ellipti-
city coefficient at the Brewster angle of incidence is obtained generally for an arbitrary profile and rough-
ness spectrum assuming their spatial dimensions to be significantly less than the light wavelength. The
roughness contribution to the ellipticity coefficient is shown to depend crucially on the surface profile.
The ellipticity coefficient value calculated with the Fisk-Widom profile and roughness within the
capillary-wave model essentially coincides with that measured in the critical region, contrary to the
sharp-boundary result. The dependence of the ellipticity on the capillary-short-wave cutoff changes
from linear to logarithmic due to the finiteness of the profile thickness. The term of second order in Ae
violates a symmetry with respect to the permutation of coexisting phases.

PACS number(s): 05.70.Jk, 42.25.Gy, 68.35.Rh, 68.10.—m

I. INTRODUCTION

Light-refiection measurements appear to be a most reli-
able method of investigation of a fluid surface when
thickness parameters of interface are less than the wave-
length of the incident radiation. Two physical effects are
known to be responsible for deviations from the Fresnel
formulas: the intrinsic order-parameter profile and
thermal surface oscillations. Since the profile thickness
Lz and mean oscillation amplitude h both related to
wavelength A, are usually of the order of 10, rigid re-
quirements on the accuracy of measurements are to be
met.

When a system approaches a critical point its correla-
tion length r, as well as Ls and h grow involving a rela-
tive increase in surface contributions to the Fresnel for-
mulas. That is why the reflectivity investigations of
liquid surfaces have been done mostly in the critical re-
gion [1-9]. In a lot of these works the ellipticity
coefficient has been measured at the Brewster angle since
in this case the Fresnel term vanishes.

A description of experiment is presently based [8—10]
on the assumption that the two above-mentioned effects
are additive. The permittivity profile is accounted for in
the framework of the Drude classical approach consider-
ing the light reQection on an ideally smooth boundary of
a layered medium. Nowadays much attention is given to
the generalization of the Drude method taking into ac-
count the problem of a rigorous definition of the local re-
fractive index in the interface and justification of applica-
bility of such a definition [11,12].

The contribution of the thermal oscillations to the
reflection coeScients were found by Beaglehole [3] and
Zielinska, Bedeaux, and Vlieger [13]who had considered
a rough but stepwise boundary between two homogene-
ous Quid media. The surface oscillations were accounted
for within the framework of the capillary-wave theory
[14). The result obtained in Ref. [13]depends heavily on

the short-wavelength cutoff q,„of the capillary-wave
spectrum. An interference of the intrinsic profile and
capillary waves was accounted for by Marvin and Toigo
[15]. However, the nonadditive term found in Ref. [15]
does not transform continuously into the corresponding
formula of Ref. [13]when Lz ~0 as one would expect; on
the contrary, it brings about unphysical divergence.

Ellipticity coeflicient calculations [8,9] based on the ad-
ditive account for the interface Drude integral accom-
plished with the Fisk-Widom profile [16] and surface
roughness in the framework of the sharp-boundary model
have produced a significant overestimate as compared
with immediate experimental data measured for three
mixtures near the consolute point.

Considering the notion of surface rigidity Meunier [17]
eliminated the dependence on the q,„cutoff. The au-
thor [17] took into account the dependence of the surface
tension on curvature as well as terms of higher orders, ex-
panding a surface element in curvature. However, such
an approach requires the whole curvature series to be
summed up and gives an excessive value of q as com-
pared with that of the self-consistent consideration [18].
In Ref. [11] the rigidity was used alongside the q,„
short-wavelength cutoff in an attempt to bring into agree-
ment the calculated and measured results of Refs. [8,9].
The discrepancy was diminished, but insuSciently.

A nonlocality contribution due to a difference of the
correlation function of permittivity Quctuations in the
surface layer from that in the bulk were also considered
in Ref. [11].

In the present paper we derive the expression for the
ellipticity coeScient taking into account simultaneously
the intrinsic profile as well as the roughness of the sur-
face. We iterate an integral equation considered earlier
[19]for the electric displacement vector in terms of per-
mittivity difference he of coexisting phases. The formula
describing the effect of roughness significantly depends on
the form of the profile. The first he-order result trans-
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forms continuously into that of Ref. [13] when Ls ~0.
The finiteness of the profile thickness causes the depen-
dence on the cutoff parameter to deteriorate, changing it
from linear to logarithmic. The ellipticity coefficient
correlation in the second order in Ae violates a symmetry
with respect to a permutation of the coexisting phases.
Such a violation was found in Refs. [3,4] and discussed
theoretically in Ref. [15]. Our asymmetric correction is
two orders of magnitude higher than that obtained in
Ref. [15]and agrees with experimental estimates. The el-
lipticity coefficient calculated in the critical region for the
Brewster angle using the Fisk-Widom profile coincides
closely with experimental data [8,9].

First, starting from the wave equation in the integral
form we obtain in Sec. II the reQection coefficients ex-
pressed generally through the dielectric permittivity and
field in the interface. In Sec. III we derive an integral
equation for the displacement vector in the interface. In
Sec. IV we obtain expressions for the field and ellipticity
coefficient in the main order in he. The ellipticity
coefficient is calculated in Sec. V for the critical region
using the Fisk-Widom profile. The results are compared
with experimental ones. In Sec. VI we calculate the ellip-
ticity coefficient in the second b,e order. In the last sec-
tion we summarize and discuss the results.

II. THK REFLECTION COEFFICIENTS

Consider the light reflection on the boundary of two
Quid media a and b Set a pl.ane wave with circular fre-
quency co incident from the a phase upon the boundary of
the b phase. We take into account thermal oscillations of
the boundary, considering it planar in a niacroscopic
sense.

To account for surface effects in the problem of light
reflection we consider the wave equation in the integral
form. We use the equation for the electric displacement
vector since the latter satisfies the transversality condi-
tion for any medium, including a heterogeneous one.
Considering only the spatial dependence of the field, we
write the wave equation in the form [12]

D(r)=D, (r)+ J A, (r —r])M, (r],r2)D(r2)dr]dr&, (1)

where D, (r) =D,]]exp(iK, r) is the electric displacement
vector, K, is the wave vector and

A, (r)=e, (VV —Ib, )r 'exp(iK, r)

is the propagator in homogeneous bulk medium a with
permittivity e, . The M(r„rz) tensor presents a nonlocal
susceptibility and may be expressed as a series in terms of
the inverse permittivity fluctuations

M, (r],r~)=15(r]—r2)]%i, (r])

+ (4m. ) G, (r],r~)A, (r] —r~)+ . , (3)

where

G (r] r2)=[+ nf (I])][+ Efl'(I2)]
—(4~)'g, (r])P, (r, ) .

Here efl (r) is the Quctuating inverse permittivity and an

overbar means a statistical average. In particular, one
has e '(r)=efl '(r). G, (r],rz) is the two-body correlation
function. The description in terms of the inverse permit-
tivity fluctuations instead of those of permittivity is due
to using the wave equation for the electric displacement
vector.

Equations like Eqs. (1)—(5) describing the stochastic
character of the permittivity were widely considered pre-

viously [11,12,20,21]. They may be applied to hetero-

geneous two-phase systems (see Ref. [12]).
The essential feature of Eq. (1) is that the nonintegral

term describes a plane wave in a homogeneous medium.

In the reflection problem considered presently we choose
phase a as a reference system. Therefore we consider the
deviation of stochastic variable efl '(r) from the value

e, ', instead of a local mean value. With the distance

from the boundary inward phase b the solution of Eq. (1)
takes the form of the plane wave D],(r) =D&]]exp(iK], r),
where K& is the wave vector of the b bulk phase. The in-

cident wave D, (r) therewith eliminates according to the

Ewald-Oseen extinction theorem [22,23], and propagator

A, (r) transforms into A], (r).
Calculating the reflection coefficient one usually

neglects the spatial dispersion of the susceptibility tensor

M, (r, , r2),

M, r„r2D r2 r2=, r, D r)

For the sake of simplicity we restrict ourselves to the
case of optically isotropic a and b bulk media and surface
layer.

In the local approximation (6) Eq. (1) becomes

D(r)=D, (r)+ Jdr]A, (r —r])g, (r])D(r]) . (7}

Let the Cartesian axis z be directed normally to the

boundary, the z & 0 half space be occupied by phase a,
and the z & 0 half space be occupied by phase b.

We describe the rough boundary with the equation
z=h(p) where p=(x, y) are the tangential Cartesian
coordinates and h(p) is the stochastic boundary deviation

from the equilibrium plane z =0. We assume the optical
properties of the system to be averaged already over all

the fluctuations except those of h (p). In specific calcula-

tions we suppose that the equilibrium intrinsic profile de-

pends only on the distance from the instant boundary. In
particular, it gives for the permittivity and local suscepti-
bility

e(r) =e(z —h(p)),

g, (r) =g.(z —h(p)) .

and

(4)

The contribution accounting for the deviation from the
spatial dependence of the form (8) was considered in Ref.
[11]. The result containing the correlator of such devia-

tions remains theoretically incalculable.
In Ref. [13]a medium was assumed to be homogeneous
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up to the boundary, that for the susceptibility gives an
approximation

1t, (r)=8(z —h (p) )(){o, (9)

where 8(z) is the Heaviside step function and
$0=(4m) '(e, ' e—

b
') is the gap of the 1t), (z) function

when one transits from phase a to b.
We present the sought solution of Eq. (7) as a sum of

two terms: the plane wave of bulk phase b and the devia-
tion from it, where

=8(z)1t,+ay(z), (13)

Subscript a is omitted at derivatives (){)'")=8"tt)jBz" since

they may be expressed through the dielectric profile e(z}
Note that function H(r) specifies the surface roughness.
When h{p}~0H{r}also vanishes. We single out from
the profile P, (z) the stepwise term

y. (z)=8(z)y, +8(—z)y. (z)+8(z)y, (z)

D(r) =Dbpexp(iKb r)+6 D(r) (10)

The advantage of such a representation is that product
f,(r)hD(r) is localized within the surface layer. Indeed
variable g, (r)=(4n} '[e, ' —e '(r)] decreases moving
inward phase a and variable b,D(r) vanishes inside phase
b. We present P, (r}in the form

)t{),(r)D(r) =8(z)(t)ODb(r)+EP(r),

where

(14)

Note that function 5$(z) is localized in the surface layer.
Using Eqs. (10)—(13) we present the product 1{),(r)D(r)

as follows:

Q, (r)=g, (z) +H(r) . (11)
EP(r)=[5/(z)+H(z, p)]Db(r)+tt), (r)ED(r} . (15)

H(r) = —g'(z )h (p)+ —P"(z)h (p)+1

21
(12)

Assuming the validity of Eq. (8) one may expand H(r) in
a series in terms of h (p),

Here QP(r) has the meaning of an excess surface polar-
ization vector. The surface corrections to the reflection
coefficients may be easily expressed through b,P(r). We
have in the first order in I.z/A,

(ki )(mbkm, )
E) )(t(~

' ) —X D((
'
1 d(zEP, (z)co p,seed ()z)si to, )

(p) Ocos 9 a pb

K) =K I
' 1 2im,—$0 'D j

' I dz ( EP (z) } (17)

where the angular brackets denote averaging over the
roughness oscillations, subscripts II and l mean the light
polarization parallel and normal to the plane of in-
cidence, respectively, K~+ and KI ' are the Fresnel
reflection coeScients, m, =K,cos(p, . s =a or b, y, is the
angle between the normal and wave vector K„and D))
and D) are respective components of the electric dis-

placement vector

Dbo=(D))cosdpb, D~, —D)~sinyb) .

Formulas like Eqs. (16) and (17) have been derived re-
peatedly beginning with the Drude classic result [24].

We consider the ellipticity coefficient P=IK((/'Kj I

which at the Brewster angle takes the form

Eb+E
PB =2778 llbEO

b 6a

X J dz(g, (r)[h D„(r)n, +AD, (r)nb ]}
II

where Ko =2m lk, is the vacuum wave number and n, and
nb are the refractive indices in the a and b media.

III. THE ELECTRIC DISPLACEMENT VECTOR
IN THE SURFACE LAYER

Substituting Eqs. (10) and (15) into Eq. (7) we solve the
latter with respect to ED(r),

ED(r)=D, (r) —Ds(r)+s)c Jdr, A, (r —r, )e(z, )Ds(r, )

+ I'iA f 7') zi +H zi, i Db ri

(19)

The first integral in the right-hand side is taken explicitly
and produces plane waves: the reflected one for z (0 and
the plane wave difference Db(r) —D, (r) for z)0. We
calculate the rest of the integrals assuming the efFective

profile thickness as well as characteristic dimensions of
the surface oscillations to be small as compared to the
light wavelength.

In Eq. (19) the surface localized functions are con-
veniently expressed by two-dimensional Fourier integrals
over the tangential variables. In particular, we have

d qH(r)= J H (z)exp(iq. p)
(2n )

(20}

and similarly for the product g, (r)ED(r). The subscript

q denotes the Fourier transform.
Generally we have to calculate integrals of the form
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J(r)=f dr&A, (r—r, )g (z, )exp(iq. p, + iKbr, ), (21)

where gq(z) denotes some two-dimensional Fourier trans-
form. Since the characteristic wavelength of the rough-
ness oscillations is smaller than that of the light, the wave
region q »A, makes the main contribution to in-
tegrand (21).

Substituting into Eq. (21) the Fourier transform of the
propagator

A ( ) 4, (qq Ib)f d K exp(iKr)
(2n ) K —(K, +irf)

7}~0+ (22)

J(r) =2e, (VV —Ib, )exp(iq p)

X f gq(z] )dz)

Xf dK(K+ )

Xexp[iK(z —z ]) +iq, z& ] . (23)

exp( —
q ~z

—z, ~ }= [q —2q5(z —z, ) ]

Integrating over K by means of the residue theorem and
performing the differentiation while taking into account
the identity

and taking into account that q »K, and Kb, we easily
integrate over tangential variables we obtain

X exp[ —
q ~z

—z, ~] (24)

J(r) =4ne, exp(iq p) gq(z)P, — —P, —I f dz&gz(z] )exp( —
q ~z

—z] ~
)

z

where P, =I—e,e, is the projector onto the plane normal to the e, unit vector along the z axis.
When q =0, substituting Eq. (22) into (21) we get

(25)

J(r)=4ne, g (z)exp(iKb r}P, . (26)

As a result Eq. (19) for b,D(r) may be written in the form

[I—4me, f,(r)P, ]b D(r) =4m e, [1(]&(z)+H(r)]P,Dbo

d q
2 3

2me, f— . exp(iq p)q f dz, exp( —q~z —z, ~}
—P, —I

(2~} 00 2
z

X [Hz(z, )Dbo+ [f,(r, )b D(r, )]q] . (27)

Here the plane waves D, (r), D„„(r),and D&(r) are sub-

stituted by their amplitudes since the variables in Eq. (27)
are localized in the spatial range much smaller than the
light wavelength. Note that a rearrangement may be
done in Eq. (27),

yb(z)+H(z, p)=gb(r) . (28)

We analyze the terms of Eq. (27) with respect to the or-
der of be. The values of g, (r), 1((b(r}, and H(r) are of
the first order in be. Therefore all the terms in the
right-hand side of Eq. (27) not containing the sought
function b.D(r) are of the same order, and hence b,D(r)
itself is also of the first be order. The last term in in-
tegrand (27) is of the order of lf, bD —b,e . Thus one can

I

solve this integral equation by perturbations.
As is seen, Eq. (27) is separated into two independent

equations for tangential and normal components of the
bD(r) vector.

IV. ELLIPTICITY COEFFICIENT
IN PRINCIPAL ORDER IN h, e

We pass on to solution of Eq. (27) and subsequent cal-
culation of the ellipticity coefficient. We immediately ob-

tain b,D(r) in the principle order in b,e, dropping the
term containing bD(r} in the right-hand side of Eq. (27).
Substituting this formula for ED(r) into Eq. (18) we get
the e11ipticity coefficient in the form

811 e~ebQe~ +ebKO
pB,=

~ ~

f" dz(P, (r) (r)eP (r}b)

——f" dz [e(r)+2e, ]g, tr) f exp(iq p)q f r(z, Hetz, )exp( —qlz —z&l))
4 (2n. ) oo

(29)
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We analyze the result obtained. The first integral in Eq.
(29) stems from the nonintegral term of Eq. (27). Assum-

ing the dependence on r in the form e(z —h(p)) =e(r) we

get

f dz( 11,(r)e(r)pb(r))

z, z — ez —h bz —h —= —ra.
(30)

This expression does not depend on the surface oscilla-
tions h (p) and coincides with the constant factor with the
Drude formula for the ellipticity coeScient. The minus is
introduced in Eq. (30) to make rD coincident with the
Drude integral. Note that rz )0 since functions P, (z}
and pb(z) are opposite in sign.

Consider the second integral term containing the aver-
age over the roughness fluctuations. Taking into account
Eq. (11}and substituting within the required accuracy
e(r)+2@,=3@„where e, =(e, +eb )I2, we present the
average as follows:

(P.(r)H, (z) ) )=1t.(z)(Hq(z, ) ) + (H(r)Hq(z, ) )

(31)

The mean value of H(r) is invariant with respect to
tangential transpositions due to the spatial homogeneity
in the (x,y) plane, and the correlation function depends
only on the relative distance between tangential coordi-
nates, i.e.,

( )
~'(z)~'(z) )

g',"(, , )=
16 e,

Substituting this equation into Eq. (34) we get

As is seen from Eq. (36} the contributions of the rough-
ness fluctuations and intrinsic profile are not additive.

In the case of the sharp boundary between two media
homogeneous up to the plane of separation one has
e'(z) =A@5(z). Substituting Eq. (35) into Eq. (34) one ob-
tains the well-known result of Zielinska, Bedeaux, and
Vlieger [13],

3hz d q
rg =rsvp

=
(2sr)2

(37)

V. COMPARISON Wl'LH EXPERIMENT

Given the permittivity profile and correlation function
of roughness the formulas obtained permit an immediate
comparison of theory and experiment. We calculate the
ellipticity coeScient for the boundary of two fluid media
near the critical point. In this case the intrinsic profile is
assumed to be described by the Fisk-Widom formula [16].
The correlation function ( ~hq~2) for the fluid boundary
is given by the capillary-wave theory [14] in the form

r„= f f dzdz, f q(~h ~
)e'(z)e'(z, )

64m e, — (2m. )

X exp( q Iz z
~ I ) (36)

(H(r) ) =g"'(z),
(H(r}K(r, ) ) =g' '(z, z, , ~p

—p, ~
) .

(32}
BT

g(Pb —P, )+Oq
(38)

Thus the first term of Eq. (31) does not contribute to the
ellipticity coeScient since

q(K~(z))-q5(q)=0 .

Expanding correlation function (32) into the two-
dimensional Fourier integral

d2
g'"(z, z~, Ip

—
P~ I

}=f,g,"'(»z& )exp['q'(P Pt }]

where g is the acceleration of gravity, p, and pb are the
mass densities of the a and b bulk media, and o is the sur-
face tension.

On the other hand, most reliable experimental data on
the ellipticity coefficient are obtained also in the critical
region [8,9], since the thickness of the surface layer grows
unlimitedly as the critical point is approached and there-
fore the surface contributions to the reflection become
sufficiently large.

Using the Fisk-Widom profile

we present the ellipticity coeScient in the form

S/21'
0

Par [~ ~

~ "D+"8 ~

where

(33}

e(z) =e, + f(zl(2r, )),

where the universal function f( Y) has the form

~2tanh( Y)

[3—tanh ( Y}]'
(39)

r„= e, f f" dz dz, f— qg' '(z, z, )
00 (2n )

Xexp{—q(z —z, ~) . (34)

Equations (30), (33), and (34) give the ellipticity
coeScient in the principal order in Le without any limi-
tation on the relative value of ( h ) '~ /Ls.

Restricting expansion (12) for H(r} to the first term,
the gz '{z,z, ) correlation function can be presented in the
form

we calculate the ellipticity coefflcient terms (36}and (30}
due to the roughness and pro61e, respectively.

Substituting profile (39) into Drude integral (30) we get

her,
rn= ' f [1 f (Y}]dY . —

3277 E'
(40}

The value of the universal integral parameter
gn = f "„[1 f ( Y) ]dY for the F—isk-Widom profile is
well known [8],g~ =2.28.
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Substituting derivative E'(z)=[be/(4r, )]f'( Y) of Eq.
(39) into Eq. (36) and defining the Fourier transform of
the localized function f'( Y),

f'(Y)=(2m) ' J d~q(a)exp(ia Y),

we obtain

346 co d& 2 $2q ~
2

rR= z, q (~)
256rr s, r, — 2' (2~) q +[~/(2r )]2

o o
IDES)DWJ/+Puaruluiu,
SF'/lb'(l&ggrt&eFlr~gg/g
e

X(ih, i') . (41)

Substituting Eqs. (40) and (41) into Eq. (33} we rear-
range the ellipticity coefficient as follows:

ps, =&2ir(nb n. ~r—,X '~riD+ri~ ~,

where

() i. . . , )

().(l() I 0.0 l Q. 1

3 de, d'q q'( iiiqi')
8r, —~ 2~ (2n) q +[a/(2r, )]

(42)

(43)

where q,„is the short-wavelength cutoff' [14].
We emphasize that the finiteness of the surface layer

thickness weakens the dependence on the cutoff parame-
ter, namely, changing it from linear to logarithmic.

In the case of a sharp boundary one has

fsB( 1')=4r, 5(z ) =25( 1'), tp(a ) =2

and integral (43) is readily calculated,

gP(a)in[1+(2r, q,„/ii) ]=8r,q,„.
oo $77

One obtains in this case

3
(re)ss=

4 q ..4' r, o.

It is the well-known formula of Zielinska, Bedeaux, and
Vlieger [13].

Calculating riR we use the scaling expressions

0' =Rk'g Tr~, gm~x a pr~

for the surface tension and cutoff, where R and ap are
universal parameters with known values R =0.128 and

ao =0.748 [18,25].
The calculated value of dimensionless roughness con-

tribution in case of the Fisk-Widom profile is qz =0.77.
The total sum of the Drude term and that of roughness
gives qa+qz =3.05. Figure 1 shows the extent to which
the results obtained are consistent with the measurement
data of Ref. [8].

For the sharp boundary Eq. (44) gives ri„=1.39 and

qD+q~ =3.67 in a noticeable discrepancy with the ex-
periment of Ref. [8].

Using the capillary-wave theory and Eq. (38), and
neglecting the gravity term we obtain

p (ir)in[1+(2r, q,„/s) ],3 ii™dK 2 2

32~r 0' —oo 2'

VI. THE SECOND ORDER IN he

The result obtained above is valid in principal order in
Ae and therefore is applicable to media with a small
difference of refractive indices, in particular, to those in

the critical point vicinity.
To describe the refiection of light on the boundary with

suSciently larger refractive index difFerence we solve Eq.
(27) in the next order in be. To this end we iterate this
equation. We present the ED(r) field as a sum of two
terms

bD(r) =ADO(z)+ EDH(r), (45)

where b,DO(z) is the value of b,D(r) for the ideally
smooth surface H =0. One easily obtains from Eq. (27)

EDO(z) =4ne(z)gb(z}P, Dio . (46)

This formula is the solution of Eq. (27) for the Drude lay-
ered surface in main order in I.&/X.

According to Eq. (18) one has to find the average

(f,(r)b,D(r)). Multiplying Eq. (27) by g, (r) and

averaging afterwards we obtain from the last term of the
right-hand side of Eq. (27) the average of the form

(P,(r)g, (r, )&D(r, )) .

Taking into account definitions (11)and (45) we rearrange
the last average as follows:

BE[.)ljCED TEMPERATURE t =
Tc

FIG. 1. The universal parameter g=gD+g„plotted vs re-

duced temperature t =
~
T T, ~

/T—, as measured for three criti-

cal mixtures in Ref. [8]. Solid circles, CSz+ CHiOH;
open circles, C6H5NO2+ n -C&OH», open squares,

CH3OH+C6H»+C6D». The shaded region shows the least-

squares error. The lines present the theoretical values of g: 1,

g=gD+g& =3.05, +here gD is Drude's contribution (40) and

gz is the capillary wave term (43); 2, the q=3.67 value taken

from Ref. [8],being the sum of the same Drude term and (riq )ss.
The theoretical value g=3.05 is practically equal to the mean

value of experimental data [8].
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(y, ( )1(2,(,)&D(,))=(1(,( )y, (,))&D ( )

+f, ( )(i', ( )&D (,))

+t(), (z )(H(r, )bDii(r, ))

+O(H ) . (47)

Averages of the form ( A (r, )8(r, ) ) do not depend on the
x&,y& coordinates due to the translational invariance in
the tangential plane. Therefore their two-dimensional
Fourier transforms are 5-function-like and do not con-
tribute to the ellipticity coefficient

q (H(r, )ED~(r i ) )q-q5(q) =0 .

The same is valid for terms linear in H. As a result we
can rearrange the last term of Eq. (27) to the form

[it),(r, )24[D(r, )] itg, (z, )dq)D (z, )+H (z, )ADO(z, ) .

(48)

To obtain the Fourier transform ED~(z) we rewrite Eq.
(27) in main order in he as follows:

d q4D(r)=f,exp(iq p) 4 rrz[ ()J( z)(2 z)' (()q)+H z(z)) P,

+2qre, (P„——,'Pg)q f dz, exp( —q~z —z, ~)H (z, ) Dbo.

As is seen, the expression in the large parentheses just determines the sought Fourier transform hD (z).
Iterating Eq. (27) we obtain, accounting for Eqs. (48}and (49),

d qP„ED(r)=2zz, f qz exp(iq p)q f dz, exp( —qlz —z, l )
(2m. )

X[He(z&)+2rrz, qq, (z&)f dzzHe(zz)exp( —
qlz~ —zzl)]P, Dze

P,ED(r) =4m e(r)gb(r)P, Dbo

—rrz(r)f zexp(iqp)q f dz, exp( —qlz —z&()
(2ir)2 00

(49)

(50)

X ze z(z~ )H ( ~)+e4zze, p, (z, ) He(z, )
— f dzzexp( —qlz, —z, l )

4

XH (z2) P,Dbo . (51)

Par =

Substituting Eqs. (50) and (51) into the ellipticity coefficient we obtain to the second order in b,e

8HE'Heb ird e'H+ebko e'q (I d qrD+ dzdz, exp( —
q z —z, )

e 00 (2ir)2

e(z) —e,
Xq 3+4

Ec
g(2)(Z, Z )

he
q & 1

C

+3zz, q, (z&)qf dzzexp( —
qlz&

—zzl)ge~'(z, zz) (52)

Equation (52) is valid for the insulator boundary with
an arbitrary spectrum of roughness. It may be
significantly simplified accounting for roughness in accor-
dance with Eq (35) in t.he first h(p) order in the sharp-
boundary approximation. In this case we have

3rz= —e,4 4$Ea Eb

d2f q (iI j')q 1—
(2 )2 q 24m,

J

(53}

Equation (52) is improved as compared with Eqs. (33)
and (34); it contains corrections of the dele, order and
thus violates the symmetry with respect to the permuta-
tion of coexisting media a and b. Such an asymmetry was

l

first revealed experimentally [3,26,27] and thereafter dis-
cussed theoretically [15]. However, an effect predicted in
Ref. [15] was two orders of magnitude less than that
found experimentally.

The correction term in Eq. (53) agrees in magnitude
with the experimental asymmetry value However, .one
has to consider Eq. (53) just as an estimate of the elliptici-
ty coefficient asymmetry, since the sharp-boundary model
may be applied at most to calculations in the principal
order. In particular, the sharp stepwise density

p(z) =p, +(pb —p, )e(z)

of coexisting phases yields the e(z) profile with the finite
thickness in the second order in bp.

Results which agreed quantitatively have to be com-
puted from Eq. (52) provided that profiles are specified.



2956 V. L. KUZMIN AND V. P. ROMANOV

VII. CONCLUSION

We have calculated the ellipticity coeScient on a
boundary of two insulator media taking into account the
permittivity profile as well as surface roughness. The
permittivity difference of coexisting phases was chosen as
the expansion parameter. The obtained integral equation
for the local displacement vector in the surface layer per-
mits us to get a solution by means of the standard itera-
tion procedure. Particular calculations require the profile
and roughness correlation function both to be specified.

We have shown that the contribution of roughness de-
pends on the surface profile. The term describing this
contribution transforms continuously into the respective
formula of the sharp-boundary model when I.~ ~0.

Another essential feature of the result obtained is that
the dependence of the ellipticity coeScient on the

capillary-wave cutoff weakens in the case of a finite thick-
ness profile. Such a weakening is of crucial importance to
the theory since the capillary-wave equation has itself
been derived assuming the surface curvature to be small
and hence is not applicable for short-wavelength oscilla-
tions. In our approach as distinct from the sharp-
boundary model the relative contribution of long-
wavelength oscillations grows and makes more justified
the assumption (8) that the profile is conserved with the
surface oscillations.

We use the well-known definition for the cutoff as the
inverse correlation length. An alternative method of the

q, „determination proposed recently [28] using the
viscosity and sound velocity of liquid gives in the noncrit-
ical region a magnitude of the same order.

The results obtained have eliminated the discrepancy
between the theory and ellipticity coeScient measure-
ments [8,9] in the critical region.
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